inverter project titles

9
INVERTER PROJECT TITLES: 1) Fixed Switching Frequency Sliding Mode Control for Single-Phase Unipolar Inverters 2) Single-Stage Boost Inverter With Coupled Inductor 3) High Efficiency AC–AC Power Electronic Converter Applied to Domestic Induction Heating 4) A ZVS Grid-Connected Three-Phase Inverter 5) A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles 6) A Filtered SVPWM for Multiphase Voltage Source Inverters Considering Finite Pulse- Width Resolution 7) Single-Phase to Three-Phase Power Converters: State of the Art 8) Generalized Frequency Domain Formulation of the Switching Frequency for Hysteresis Current Controlled VSI Used for Load Compensation 9) Cascade Dual Buck Inverter With Phase- Shift Control. MULTILEVEL CONVERTER

Upload: ajith-kumar

Post on 30-Oct-2014

116 views

Category:

Documents


3 download

TRANSCRIPT

INVERTER PROJECT TITLES:1) Fixed Switching Frequency Sliding Mode Control for Single-Phase

Unipolar Inverters2) Single-Stage Boost Inverter With Coupled Inductor3) High Efficiency AC–AC Power Electronic Converter Applied to

Domestic Induction Heating4) A ZVS Grid-Connected Three-Phase Inverter5) A New Battery/UltraCapacitor Hybrid Energy Storage System for

Electric, Hybrid, and Plug-In Hybrid Electric Vehicles6) A Filtered SVPWM for Multiphase Voltage Source Inverters

Considering Finite Pulse-Width Resolution7) Single-Phase to Three-Phase Power Converters: State of the Art8) Generalized Frequency Domain Formulation of the Switching

Frequency for Hysteresis Current Controlled VSI Used for Load Compensation

9) Cascade Dual Buck Inverter With Phase-Shift Control.

MULTILEVEL CONVERTER1) Improved Natural Balancing With Modified Phase-Shifted PWM

for Single-Leg Five-Level Flying-Capacitor Converters2) Steady-State Analysis of Interaction Between Harmonic

Components of Arm and Line Quantities of Modular Multilevel Converters

3) Active-Power Control of Individual Converter Cells for a Battery Energy Storage System Based on a Multilevel Cascade PWM Converter

MULTILEVEL INVERTER1) Application of the Bee Algorithm for Selective Harmonic

Elimination Strategy in Multilevel Inverters2) Study of Multisampled Multilevel Inverters to Improve Control

Performance3) Efficient Sequential Switching Hybrid-Modulation Techniques

for Cascaded Multilevel Inverters

4) Multilevel Current Waveform Generation Using Inductor Cells and H-Bridge Current-Source Inverter

5) A Novel Single-Phase Five-Level Inverter With Coupled Inductors

BOOST CONVERTER1) Soft-Switching Boost Converter With a Flyback Snubber for High

Power Applications2) Four Quadrants Integrated Transformers for Dual-Input Isolated DC–DC Converters

3) High-Efficiency Modular High Step-Up Interleave d Boost Converter for DC-Micro grid Applications

4) Nonisolated ZVT Two-Inductor Boost Converter With a Single Resonant Inductor for High Step-Up Applications

5) Analysis and Design of a Zero-Voltage-Switching and Zero-Current-Switching Interleaved Boost Converter

6) A ZVS Interleaved Boost AC/DC Converter Used in Plug-in Electric Vehicles

7) A High-Efficiency Single-Phase AC/DC Converter With Enabling Window Control and Active Input Bridge

8) A Comparative Study of a New ZCS DC–DC Full-Bridge Boost Converter With a ZVS Active-Clamp ConverterBOOST RECTFIER

1) Model Predictive Control of an AFE Rectifier With Dynamic References

2) Analysis on Center-Tap Rectifier Voltage Oscillation of LLC Resonant Converter

3) A Novel DC-Side Zero-Voltage Switching (ZVS) Three-Phase Boost PWM Rectifier Controlled by an Improved SVM Method

4) Digitally Implemented Average Current-Mode Control in Discontinuous Conduction Mode PFC Rectifier

5) Switched Control of Three-Phase Voltage Source PWM Rectifier Under a Wide-Range Rapidly Varying Active Load

BUCK CONVERTER1) Analysis of EMI Terminal Modeling of Switched Power

Converters2) A Low-Power AC–DC Single-Stage Converter With Reduced

DC Bus Voltage Variation3) Interleaved Buck Converter Having Low Switching Losses and

Improved Step-Down Conversion Ratio4) A High-Power Input-Parallel Output-Series Buck and Half-

Bridge Converter and Control MethodsCUK CONVERTER

1) New Efficient Bridgeless Cuk Rectifiers for PFC Applications2) A Novel Integrated DC/AC Converter With High Voltage Gain

Capability for Distributed Energy Resource SystemsDC DC CONVERTER

1) High Step-Up DC-DC Converters Using Zero-Voltage Switching Boost Integration Technique and

3) Light-Load Frequency Modulation Control4) Single-Switch High Step-Up Converters With Built-In

Transformer Voltage Multiplier Cell5) Dynamic Response Analysis of DC–DC Converter With

Supercapacitor for Direct Borohydride Fuel Cell Power Conditioning System

6) High-Power Bidirectional DC–DC Converter for Aerospace Applications

7) A Novel ZVZCS Full-Bridge DC/DC Converter Used for Electric Vehicles

8) Peak Current Mode Bifrequency Control Technique for Switching DC–DC Converters in DCM With Fast Transient Response and Low EMI

9) High-Efficiency DC–DC Converter With Two Input Power Sources

10) PWM Plus Phase Angle Shift (PPAS) Control Scheme for Combined Multiport DC/DC Converters

11) One-Cycle Control for a Double-Input DC/DC Converter

12) Analysis and Design of a High Step-up Current-Fed Multiresonant DC–DC Converter With Low Circulating Energy and Zero-Current Switching for All Active Switches

Efficiency Optimization in Digitally Controlled Flyback DC–DC Converters Over Wide Ranges of Operating Conditions

13) Power Characterization of Isolated Bidirectional Dual-Active-Bridge DC–DC Converter With Dual-Phase-Shift Control

REF PAPERS:[1] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overviewof control and grid synchronization for distributed power generationsystems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398–1409,Oct. 2006.[2] M. Liserre, A. Pigazo, A. Dell’Aquila, and V. M. Moreno, “An antiislandingmethod for single-phase inverters based on a grid voltage sensorlesscontrol,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1418–1426,Oct. 2006.[3] F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficientinterface in dispersed power generation systems,” IEEE Trans. PowerElectron., vol. 19, no. 5, pp. 1184–1194, Sep. 2004.[4] E. Gubía, P. Sanchis, A. Ursúa, J. López, and L. Marroyo, “Ground currentsin single-phase transformerless photovoltaic systems,” Prog. Photovolt.,Res. Appl., vol. 15, no. 7, pp. 629–650, Nov. 2007.[5] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phasegrid-connected inverters for photovoltaic modules,” IEEE Trans. Ind.Appl., vol. 41, no. 5, pp. 1292–1306, Sep./Oct. 2005.[6] M. García, J. M. Maruri, L. Marroyo, E. Lorenzo, and M. Pérez, “Partialshadowing, MPPT performance and inverter configurations: Observationsat tracking PV plants,” Prog. Photovolt., Res. Appl., vol. 16, no. 6,pp. 529–536, Sep. 2008.[7] P. Sanchis, J. López, A. Ursúa, E. Gubía, and L. Marroyo, “On the testing,characterization, and evaluation of PV inverters and dynamic MPPTperformance under real varying operating conditions,” Prog. Photovolt.,Res. Appl., vol. 15, no. 6, pp. 541–556, Sep. 2007.[8] S. Busquets-Monge, J. Rocabert, P. Rodriguez, S. Alepuz, and

J. Bordonau, “Multilevel diode-clamped converter for photovoltaic generatorswith independent voltage control of each solar array,” IEEE Trans.Ind. Electron., vol. 55, no. 7, pp. 2713–2723, Jul. 2008.[9] M. C. Cavalcanti, K. C. Oliveira, A. M. Farias, F. A. S. Neves,G. M. Azevedo, and F. C. Camboim, “Modulation techniques to eliminateleakage currents in transformerless three-phase photovoltaic systems,”

IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1360–1368, Apr. 2010.[10] R. Gonzalez, E. Gubia, J. Lopez, and L. Marroyo, “Transformerlesssingle-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind.Electron., vol. 55, no. 7, pp. 2694–2702, Jul. 2008.[11] S. Daher, J. Schmid, and F. L. M. Antunes, “Multilevel inverter topologiesfor stand-alone PV systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7,pp. 2703–2712, Jul. 2008.[12] B. Singh, K. Al-Haddad, and A. Chandra, “A review of active filters forpower quality improvement,” IEEE Trans. Ind. Electron., vol. 46, no. 5,pp. 960–971, Nov. 1999.[13] H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive powercompensator comprising switching devices without energy storage components,”IEEE Trans. Ind. Appl., vol. IA-20, no. 3, pp. 625–630,May/Jun. 1984.[14] E. H. Watanabe, R. M. Stephan, and M. Aredes, “New concepts of instantaneousactive and reactive powers in electrical systems with genericloads,” IEEE Trans. Power Del., vol. 8, no. 2, pp. 697–703, Apr. 1993.[15] M. Aredes and E. H. Watanabe, “New control algorithm for series andshunt three-phase four-wire active power filters,” IEEE Trans. Power Del.,vol. 10, no. 3, pp. 1619–1656, Jul. 1995.[16] J. Leon, S. Vazquez, J. Sanchez, R. Portillo, L. Franquelo, J. Carrasco, andE. Dominguez, “Conventional space-vector modulation techniques versusthe single-phase modulator for multilevel converters,” IEEE Trans. Ind.Electron., vol. 57, no. 7, pp. 2473–2482, Jul. 2010.[17] J. L. Afonso, M. J. S. Freitas, and J. S. Martins, “P-q theory powercomponents calculations,” in Proc. IEEE Int. Symp. Ind. Electron.,Jun. 2003, pp. 385–390.[18] J. Liu, J. Yang, and Z. Wang, “A new approach for single-phase harmoniccurrent detecting and its application in a hybrid active power filter,” inProc. IEEE IECON, Jul. 1999, pp. 849–854.[19] R. I. Bojoi, G. Griva, V. Bostan, M. Guerriero, F. Farina, and F. Profumo,“Current control strategy for power conditioners using sinusoidal signalintegrators in synchronous reference frame,” IEEE Trans. Power Electron.,

vol. 20, no. 6, pp. 1402–1412, Nov. 2005.