investigation of cu doped cadmium sulphide photoconductive ... · the cds cell. keywords:...

6
Chiang Mai J. Sci. 2019; 46(5) : 1009-1014 http://epg.science.cmu.ac.th/ejournal/ Contributed Paper Investigation of Cu Doped Cadmium Sulphide Photoconductive Cells Suchittra Inthong [a], Pratthana Intawin [a], Arnon Kraipok [a], Jaruwan Kanthachan [a], Sukum Eitssayeam [a], Uraiwan Inthata [b], Manlika Kamnoy [a], Denis Sweatman [a] and Tawee Tunkasiri*[a] [a] Department of Physics and Materials, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. [b] School of Science, Mae Fah Luang University, Chiang Rai 57000, Thailand. *Author for correspondence; e-mail: [email protected] Received: 14 March 2019 Revised: 10 May 2019 Accepted: 16 May 2019 ABSTRACT Thin film cadmium sulphide photoconductive cells were prepared on clean glass slides by Chemical Bath Deposition (CBD). Copper (Cu) ions were used for doping. Cupric Chloride (CuCl 2 ) and Cadmium Chloride (CdCl 2 ) were mixed with thiourea (CH 4 N 2 S) solution. Different amounts of CuCl 2 (0.1, 0.2, 0.3 and 0.4 % (molar)) were employed. The annealing temperatures were 300 °C, 400 °C and 500 °C. The XRD analysis revealed that the as-deposited film showed the cubic CdS phase but the hexagonal phase appeared at 300 °C and at higher temperatures. The microstructure study showed that the grain size of 500 °C annealed 0.4 % Cu doped CdS was biggest. Good agreement was found between crystallite size and photosensitivity. With further development by using pair of dopants, this technique could produce better photosensitivity of the CdS cell. Keywords: conductive cells, photoconductive cells, Cu doped cadmium sulphide, photosensitivity 1. I NTRODUCTION For several decades, semiconductors have been studied to be employed as solar cells. They can be classified into 3 generations. The first is traditional or wafer based cells. They are made of crystalline silicon such as monocrystalline silicon and including poly-silicon. Second generation cells are thin film solar cells such as amorphous silicon, binary compounds such as cadmium telluride (CdTe), cadmium sulphide (CdS), gallium arsenide (GaAs) etc. and ternary compounds such as gallium arsenide phosphide (GaAsP), Copper indium diselenide (CuInSe 2 ) and those having chalcopyrite structure. The third generation of the solar cell includes a number of thin film technologies which have not yet been commercially applied and are still in research. The most popular generation 2 com- pounds are the compounds in groups III-V and II-VI for example gallium arsenide (GaAs), cadmium sulphide (CdS), zinc sulphide (ZnS) etc. These compounds were originally used as

Upload: others

Post on 28-Mar-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Investigation of Cu Doped Cadmium Sulphide Photoconductive ... · the CdS cell. Keywords: conductive cells, photoconductive cells, Cu doped cadmium sulphide, photosensitivity 1. INTRODUCTION

Chiang Mai J. Sci. 2019; 46(5) : 1009-1014http://epg.science.cmu.ac.th/ejournal/Contributed Paper

Investigation of Cu Doped Cadmium Sulphide Photoconductive CellsSuchittra Inthong [a], Pratthana Intawin [a], Arnon Kraipok [a], Jaruwan Kanthachan [a],Sukum Eitssayeam [a], Uraiwan Inthata [b], Manlika Kamnoy [a], Denis Sweatman [a] and Tawee Tunkasiri*[a][a] Department of Physics and Materials, Faculty of Science, Chiang Mai University, Chiang Mai 50200,

Thailand.[b] School of Science, Mae Fah Luang University, Chiang Rai 57000, Thailand.

*Author for correspondence; e-mail: [email protected]

Received: 14 March 2019Revised: 10 May 2019

Accepted: 16 May 2019

ABSTRACT Thinfilmcadmiumsulphidephotoconductivecellswerepreparedoncleanglassslides

byChemicalBathDeposition(CBD).Copper(Cu)ionswereusedfordoping.CupricChloride(CuCl2) and Cadmium Chloride (CdCl2)weremixedwiththiourea(CH4N2S)solution.Differentamountsof CuCl2(0.1,0.2,0.3and0.4%(molar))wereemployed.Theannealingtemperatureswere300°C,400°Cand500°C.TheXRDanalysisrevealedthattheas-depositedfilmshowedthecubicCdSphasebutthehexagonalphaseappearedat300°Candathighertemperatures.Themicrostructurestudyshowedthatthegrainsizeof 500°Cannealed0.4%CudopedCdSwasbiggest.Goodagreementwasfoundbetweencrystallitesizeandphotosensitivity.Withfurtherdevelopmentbyusingpairof dopants,thistechniquecouldproducebetterphotosensitivityof the CdS cell.

Keywords:conductivecells,photoconductivecells,Cudopedcadmiumsulphide,photosensitivity

1. INTRODUCTION Forseveraldecades,semiconductorshave

been studied to be employed as solar cells. They canbeclassifiedinto3generations.Thefirstistraditionalorwaferbasedcells.Theyaremadeof crystallinesiliconsuchasmonocrystallinesilicon and including poly-silicon. Second generationcellsarethinfilmsolarcellssuchasamorphous silicon, binary compounds such as cadmium telluride (CdTe), cadmium sulphide (CdS), gallium arsenide (GaAs) etc. and ternary compounds such as gallium arsenide phosphide

(GaAsP), Copper indium diselenide (CuInSe2) andthosehavingchalcopyritestructure.Thethirdgenerationof thesolarcell includesanumberof thinfilmtechnologieswhichhavenot yet been commercially applied and are still in research.

The most popular generation 2 com-pounds are the compounds in groups III-V andII-VIforexamplegalliumarsenide(GaAs),cadmiumsulphide(CdS),zincsulphide(ZnS)etc.Thesecompoundswereoriginallyusedas

Page 2: Investigation of Cu Doped Cadmium Sulphide Photoconductive ... · the CdS cell. Keywords: conductive cells, photoconductive cells, Cu doped cadmium sulphide, photosensitivity 1. INTRODUCTION

Chiang Mai J. Sci. 2019; 46(5)1010

thesubstratesandalsoimplantedwithotherions such as neodenium (Nd) and thallium (Tl).Later,mostof theworkwasconcentratedonGaAsasitwasthecompoundcommonlyusedintechnologiessuchasfortheproductionof Gunndiodesandlasers.GaAsisaveryimportant compound semiconductor. It has manyadvantagesoversilicon,suchashighermobility,andhasthepossibilityof formingsomedevices,forexample,Gunndiodeswhichcannotberealizedwithsilicon.

Group III-V compounds can also be usedas lightemittingdiodes (LED)forexample,GaAs-PemitsredlightwhilstGaAsemitinfraredlight.Photoreflectancestudyof strainedGaAsN/GaAsT-junctionquantumwireswascarriedoutbyKlangtakaietal.[1].Structuralandmechanicalpropertiesof GaAsunderpressureupto200GPawerestudiedbyPluergphonetal.[2].Ternarycompoundssuch as CuInSe2wereintensivelystudiedbySa-yakanitetal. [3] inorderto investigatetheirelectronicstructure,forpossibleuseashighlyefficientsolarcells.However,therearestillsomecomplicationsfortheproductionof both GaAs and CuInSe2 solar cells.

In II-VI semiconductor compounds, therearequiteafewcompoundssuchasCdS,CdSe,ZnOetc.,havingawidebandgapwhichareverygoodforemployingaslightemittingdiodesandlaserdiodesforblueandultravioletapplications.Duetoproblemswithconductivity,theapplicationof thesecompoundsisstillquestionable.ZnOisthebestexample.Itshowsexcellentopticalcharacteristics,thoughit remains problematic to create high charge carrierdensitiesviadopinginthecompound[4].

Dopingof otherionsintoII-VIcompoundssuch as CdS and CdSe can increase the conduction of thematerialsandtheycanbecomephoto-cells.Bothcompoundsarebasicallyvariableresistancedeviceswhoseresistancedependsuponthesensitivitylevelof theincidentlight,theresistancefallingastheilluminationincreases.

InthisarticlewestudythelightsensitivitysomeII-VI photocells. Some II-VI materials such asCdSwereemployed.Cuionswereusedfordopinginthecompoundviaachemicalreaction.Thephotocellswerepreparedviachemicalbathdeposition(CBD).Silverpaintwasappliedtomaketheohmiccontact.Photosensitivityaswellasmicrostructureandcrystallinityof thesamplesafterannealingwerestudied.

2. MATERIALS AND METHODSCBDisatechniqueforlargeareathin

filmdepositionviaachemicalreaction.Thetechniquecanbefoundpublishedelsewhere[5].Fromourpreliminaryexperiment(notrecordedhere)wefoundthatif weemployed0.05Mof cadmium chloride (CdCl2)solutionmixedwith0.05Mof thiourea(CH4N2S) solution it can produceagoodfilmof CdS,asinvestigatedusing a scanning electron microscope (FE-SEM, JSM6335F).Therefore,inthiswork,copperdopedcadmiumsulphide(CdS)waspreparedbymixingcupricchloride inthecadmiumchloride solution (about 0.05 M, 150 cm3). Themixedsolutionwaspouredintoacleanbeakerwithamagneticstirreratthebottom.Then0.05Mthiourea(CH4N2S) solution (150 cm3)wasslowlypouredintothebeaker,whichwasheatedupto80ºC,withthemagneticbarcontinuouslystirring.Theamountsof cupricchloride (CuCl2)were0.1%,0.2%,0.3%and0.4%(molar).Eachconcentrationwasaddedintothesolutionseparately.ThepHof thesolutionwascontrolledupto9,byslowlyaddingasolutionof 25%of ammoniumhydroxide(NH4OH).Atthisstage,acleanglassslidewasimmersedvertically inthebeakerforabout1hr.Athinfilmof CudopedCdSwasthendeposited on the immersed glass slide. The filmsweredriedfor24hrsandthengraduallyannealedat300°C,400°Cand500°C.Thestructureandthesurfaceof thethinfilmswereexaminedusinganX-raydiffractometer(XRD,JDX-8030)andascanningelectronmicroscope

Page 3: Investigation of Cu Doped Cadmium Sulphide Photoconductive ... · the CdS cell. Keywords: conductive cells, photoconductive cells, Cu doped cadmium sulphide, photosensitivity 1. INTRODUCTION

Chiang Mai J. Sci. 2019; 46(5) 1011

(FE-SEM,JSM6335F),respectively.Silverpaintwaspastedontomaketheohmic

contactonthefilmsurface.Themeasurementof thecurrent-voltage(I-V)characteristicwascarriedoutontheundopedanddopedCdSfilms.Filmsof anotherII-VIcompoundsuchasCdSewerealsopreparedforcomparison,employingthesamepreparationprocedure.Copperwasusedfordopingatthesameamountasthatof the Cu-doped CdS. The circuit employed to measurethecurrent-voltage(I-V)curveswasasimplecircuit,i.e.adcvoltagesupplyconnectedinparalleltothefilmandanammeterinseries.TheI-Vcurveof eachfilmwasmeasuredinthedarkandunderirradiationwithwhitelight.Aforty-wattPhillipsbulbwasemployed.Thegraphsareshowninthisreport.

3. RESULT AND DISCUSSIONSThestructureof theCudopedCdSwas

investigatedbyXRD.Thediffractogramsof differentamountsof Cu-dopedCdSfilmsshowedthattheconcentrationof dopantdidnotchangethediffractogramssignificantly.Thediffractogramsof Cu-dopedCdSat0.1%,0.2%,0.3% and 0.4% concentrations are presented

inFigure1a,togetherwiththediffractogramsof 0.4%Cu-dopedfilmannealedat300°C,400°Cand500°C.Thestandardpeaksof JCPDSfilesarealsopresented.ItappearsthattheXRDpeaksof theunannealedCdSfilmshowedcubicunitcellCdS(JCPDS,41-1049).Howeverfrom300°Candabove,thestructureof thehexagonalunitcell(JCPDS,75-1546)appeared.Thepeaksof cubicCdSstill appeared, indicating that the cubic and hexagonalCdSweremixedtogether,thoughthehexagonalphasewasmorepronounced.Inourexperiment,theas-depositedCdSfilmshowedcubicphase(f.c.c)andthisresultisinagreementwiththatobtainedbyOlivaetal.[6],whoalsofoundcubicunitcellof theas-depositedCdSfilm,usingthesamepreparationprocedure.

Afterannealingat300°CthehexagonalCdS phase started to appear. The occurrence of hexagonalCdSphaseisinaccordancewiththeresultobtainedbyGiletal.[7],whofoundthehexagonalCdSphaseafterheatingabove250°C.Uponfurtherannealingat400°Cand500°C,thehexagonalphasewasmorepronounced.Thetransformationof cubicphasetohexagonalphasecanbeexplainedas

Figure 1.(a)TheX-raydiffractogramsof theasdepositedfilms,Cu-dopedCdSat0.1%,0.2%,0.3%and0.4%,includingtheannealed0.4%Cudopedfilm,at300ºC,400ºCand500ºC.(•)=anunidentifiedpeak.(b)TheI-Vcurvesof the0.4%CudopedCdSandCdSesamples.

Page 4: Investigation of Cu Doped Cadmium Sulphide Photoconductive ... · the CdS cell. Keywords: conductive cells, photoconductive cells, Cu doped cadmium sulphide, photosensitivity 1. INTRODUCTION

Chiang Mai J. Sci. 2019; 46(5)1012

follows.Theannealingtemperaturecanincreasethe lattice parameter and interplanar distance. Thelatticedeformsslowlyfromf.c.cphasetothetransitionstate.Uponslowlycoolingdownto room temperature, the atoms then rearrange andslipintothehexagonalclosepack(hcp)structure.Presumably,theyhavelessenergythanforpackinginf.c.cstructure.However,inourworkcubicpeak(111)stillappeared(Figure1a)butthepeakheightdecreasedafterannealingat400°Cand500°C.The(200)peakof cubicCdSwasusedtoevaluatethedecreasingamountof cubicphase.Themaximumpeak(111)of cubicphasecannotbeusedsinceitoverlappedwiththehexagonalpeak(002).Thequantitativemeasurementwasperformedusingtheareaunderthe(200)peakinarbitraryunits.Itwasfoundthatthecubicphasedecreaseddownto40%(at500°C)fromthatof thedepositedfilm.

InFigure1a.theunidentifiedpeak(•)intheXRDpatternappearedthroughoutfrompreparation and annealing processes. The unidentifiedpeakmayoccurfromimpurityinthechemicals.ACdOpeak(JCPDS78-0653)appearedduringannealingfrom300°Cto500°C.Thisisduetotheinfluenceof oxygenfromtheaironCdSandsotheformationof CdOthenoccurred[8].CdOisalsoann-typesemiconductorhavingabandgapof 2.18eV.Underanappliedvoltage,itcanalsocontributetothephotosensitivityalongsidethatof Cu-dopedCdS.Theexistenceof CdOmayaffectthedecreaseinresistanceof thesamplestogetherwiththeeffectof crystallitesize.

OtherII-VIcompoundssuchascadmiumselenide (CdSe) and cadmium telluride (CdTe) are in the same group and can be employed as solarcells.Thisisduetotheirphotosensitivityinthevisiblespectrum.WechoseCdSeforcomparingwithCdSfilmsas itsbandgap(1.74 eV) is closer to CdS (2.42 eV) than that of CdTe(1.49eV)atroomtemperature.CdSisanimportantn-typesemiconductor.Under

anappliedvoltage(evenwithoutexposingtothe light) the electrons can conduct through the sample.

Copper is achemicalelementwithveryhighelectricalconductivity.It isoftenemployedfordopinginsemiconductors.Petreetal.[9]studiedtheinfluenceof Cudopingonopto-electronicpropertiesof chemicallydepositedCdS.Zhuetal.[10]studiedtheeffectsof differentdopingratiosof CudopedCdSonQDSCsperformance.HabbasandAhmad[11]studiedtheeffectof dopingonsomephysicalpropertiesof chemicalsprayedCdSfilms.AfterdopingwithCuions,thechargemobilitywasthenincreasing.

TheI-Vcurvesof theunannealedandannealedat300°C400°Cand500°Cof 0.4%CudopedCdSfilmswereexposedtowhitelight.Thecurvesof thefilms(Figure1b)showedstraightlines,indicatingthatcurrent(I)variesasthevoltage(V).Moreover,atthesameappliedvoltage,thehighertemperatureannealedsampleshowedahighercurrent.Thesametrendoccurredforthe0.4%CudopedCdSeI-Vcurve.However,thephotosensitivityof theCdSefilmwasalittlebithigherthanforthatof the500°CannealedCdSsample.Thedifferencesweresmall.

Thestudyof themicrostructureof thesamplesannealedat300°C,400°Cand500°C(of the0.4%Cudopedfilm)arepresentedinFigure2.Itcanbeseenthatthegrainsizeof thesamplesdevelopedfromnanometer(annealedat300°C)tomicrometerat500°C.Thismaybeduetothedegreeof crystallinityof sampleswhichincreasedwiththehighertemperature anneal.

The resistancesof the samples inFigure1(b)werecalculatedandaretabulatedintable1togetherwiththeircrystallitesizeandmicrostrain.Thecrystallitesizes(D)of thesampleswerecalculatedfromXRDdatausingDebye-Scherrer’sequationasfollow.

Page 5: Investigation of Cu Doped Cadmium Sulphide Photoconductive ... · the CdS cell. Keywords: conductive cells, photoconductive cells, Cu doped cadmium sulphide, photosensitivity 1. INTRODUCTION

Chiang Mai J. Sci. 2019; 46(5) 1013

D=0.9λ/βcosθ (1)

Whereβ=full-widthathalf maximum(FWHM) λ=X-Raywavelength(1.54Å) θ=Bragg’sdiffractionangle

Themicrostrain(ε)of thesamplewascalculatedfromtheequation(2)

β=4εtanθ (2)

Equation(2)wasderivedfromBragg’sequation.

Theresistanceof theunannealedsamples(0.4%CudopedCdS)withoutexposingtothelightwasabout2×106Ω.Theresultsforthecrystallitesizeof theunannealedsamplewascomparabletothatobtainedbyAbbasandAhmad[11]whopreparedtheirsamplesbychemicalspraytechniques.Thepeakusedtocalculatethecrystallitesizeandstrain(hcpCdS)was(101),duetoitsmaximumintensity.Someotherpeakswereeitherof lowintensityoroverlappingwiththoseof cubicpeaks.From Table 1, it can be concluded that the

Figure 2.TheSEMmicrostructureof the0.4%Cu-dopedsample,annealedat(a)300ºC,(b)400ºCand(c)500ºC.

Table 1.Crystallitesizes,microstrainsandresistancesof 0.4%Cu(molar)dopedCdSfilms.

Temperature Crystallite size Microstrain Resistance(°C) D (nm) ε (×10-3) (×106 Ω)

unannealed 30 1.45 2

300°C 35 1.3 0.8

400°C 50 1.2 0.6

500°C 300 0.5 0.5

crystallitesizesof theunannealed,300°Cand400°Cannealedsamplesslowlyincreasedbutthenrapidly increasedat500°C.This is inaccordancewiththegrainsizeof thesamplesasinFigure2.Theresistanceof eachfilmslowlydroppedfrom2×106Ωdownto0.5×106Ω,asshowninTable1.Theresistanceof CdSedroppedfrom7×106Ωdownto~0.3×106Ω.

Itwas thought that thegrainsizeorthecrystallitesizemayplaythekeyroleforphotosensitivity.Asthecrystallitesizeof CdSgrewbigger,itthendecreasedthenumberof thecrystalliteboundaries.Thereforethepotentialbarriersbetweenthecrystalboundarieswerelessthanthatof smallergrains.Therefore,thechargecarriersof thecrystalconductthrough

Page 6: Investigation of Cu Doped Cadmium Sulphide Photoconductive ... · the CdS cell. Keywords: conductive cells, photoconductive cells, Cu doped cadmium sulphide, photosensitivity 1. INTRODUCTION

Chiang Mai J. Sci. 2019; 46(5)1014

thegrainsmoreeasily.Inourexperimenthowever,withhightemperature(>500°C)annealedcannotgivebiggergrainsize.Instead,itproducedmoreCdOasaresult,theCdScrystalsdecrease.OtherionsdopedCdS,whichproduceasimilarmagnitudeof grainsize,couldalsobeemployed.Eitssayeametal.[11]carriedoutworkonNidopedCdSthinfilmsusingCBDtechniques.Thegrainsizeof theirsampleswasintherangeof 200-400nmwhichisinthesameorderasthatof ours(300nm).Itisalsowouldbeinterestingtoemploypairsof dopantssuchasCuandNiwhichcouldimprovethemorphologyof thethinCdSfilms.Furtherdevelopmentusingvariouspairsof dopantscouldbringbetterphotosensitivityof thephotoconductiveCdScells.

4. CONCLUSIONTheexperimentundertookthepreparation

of copperdopedCadmiumsulphidethinfilmphotoconductivecells.Thechemicalbathdeposition(CBD)techniquewasemployed.Glassslideswereusedassubstrates.Differentamountsof CuCl2 rangingfrom0.1%to0.4%wereusedfordoping.Annealingwascarriedoutat300°C,400°C,and500°C.TheSEMmicrographsof theCudopedsamplesshowedthattheCdSfilmprecipitatedontheglassslideshadgrainsizesinnanometerscaleat300°C,andgraduallygrewbiggerintothemicrometerscaleat500°C.Resultsagreedwellwithcorrelationbetweentheirphotosensitivityandtheircrystallitesizes.Photosensitivitywasbetterwiththehigherannealingtemperature.Furtherdevelopmentusingpairsof dopantscouldimprovetheCdSphotoconductivecellwhichcouldbedevelopedintolargeascaleindustry.

ACKNOWLEDGMENTTheauthorswould like to thankthe

Departmentof PhysicsandMaterials,Facultyof Science,ChiangMaiUniversity,Thailand

fortheirfinancialsupport.

REFERENCES [1] KlongtakaiP.,SanorpimS.andOnabeK.,J.

Nanosci. Nanotechnol., 2011; 11:10584-10588.DOI10.1166/jnn.2011.4037.

[2] PluengphonP.,BovornratanarakT.,VannaratS.andPinsookU.,Solid State Commun., 2014; 195:26-30.DOI10.1016/j.ssc.2014.06.016.

[3] YoodeeK.,WoolleyJ.C.andSa-yakanitV.,Phys. Rev. B,1984;30:5904.DOI10.1103/PhysRevB.30.5904.

[4] DakinJ.andBrownR.G.W.,Handbook of Optoelectronics: Volume I, CSC Press, Taylor and FrancisGroup,BocaRaton,2006.

[5] NairP.K.,NairM.T.S,GarciaV.M.,ArenasO.L.,PenaY.,CastilloA.,AyalaI.T.,Go-mezdaza,O.,SanchezA.,CamposJ.,HuH.,SuarezR.andRincornM.E.,Sol. Energ. Mat. Sol. C.,1998;52:313-344.DOI10.1016/S0927-0248(97)00237-7.

[6] OlivaA.I.,Solis-CantoO.,Castro-RodriguezR.andQuintanaP.,Thin Solid Films, 2001; 391: 28-25.DOI10.1016/S0040-6090(01)00830-6.

[7] GilY.C.,HyeD.K.,ByungT.A.andHoB.I., Thin Solid Films, 1993; 232:28-33.DOI10.1016/0040-6090(93)90757-G.

[8] HaiderA.J.,MousaA.M.andAl-JawadS.M.H.,J. Semicond. Tech. Sci., 2008;8:326-332.DOI10.5573/JSTS.2008.8.4.326.

[9] PetreD.,PintilieI.,PentiaE.,PintilieI.,andBotila T., Mater. Sci. Eng. B, 1999; 58:238-243.DOI10.1016/S0921-5107(98)00435-8.

[10] ZhuX.,ZouX.andZhouH.,J. Nanomater., 2014; 2015:1-4.DOI10.1155/2015/498950.

[11] AbbasT.A.andAhmadJ.M.,JELDEV., 2013; 17: 1413-1416.

[12] EitssayeamS.,IntathaU.,PengpatK.andTukasiriT.,J. Mater. Sci., 2005; 40:3803-3807.DOI10.1007/s10853-005-2549-8.