ionospheric current and aurora csi 662 / astr 769 lect. 12 spring 2007 april 24, 2007 references:...

30
Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap. 8, P. 99 – 112 (supplement)

Upload: gregory-malone

Post on 05-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionospheric Current and Aurora

CSI 662 / ASTR 769 Lect. 12 Spring 2007

April 24, 2007

References:

•Prolss: Chap. 7.1-7.6, P349-379 (main)•Tascione: Chap. 8, P. 99 – 112 (supplement)

Page 2: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Topics

• Polar Upper Atmosphere• Ionospheric Currents• Aurorae• Ionosphere and magnetosphere coupling

Page 3: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionosphere Currents

Page 4: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Polar Upper Atmosphere• Polar Cap: ~ 30°• Polar oval: a few degree• Subpolar latitude

Page 5: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Polar Upper AtmosphereMagnetic field connection• Polar Cap: magnetotail lobe region, open• Polar oval: plasma sheet, open• Subpolar latitude: conjugate dipole field, closed

Page 6: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Convection and Electric Field• Polar cap electric field Epc

• Dawn to dusk direction• Epc = 10 mV/m• Polar cap potential: ~ 30 kV from 6 LT to 18 LT, over

3000 km

Page 7: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Convection and Electric Field• Polar cap electric field originates from solar wind dynamo

electric field• Same direction• Same overall electric potential drop• Electric field is ~ 40 times as strong as in solar wind

Eswsw BUE

Page 8: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Convection and Electric Field• Polar cap convection

• Caused by EXB drift• anti-sunward• Drift time scale cross the polar cap ~ 2 hours

BEUD /

Drift velocity = 500 m/s, whenE=10 mV/m, andB=20000 nT

Page 9: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Convection and Electric Field• Polar oval electric field Eo

• Dusk to dawn direction, opposite to polar cap field• E0 = 30 mV/m• Counter-balance the polar cap field

• Polar oval convection• Sunward convection• Form a close loop with the polar cap convection• Two convection cells

Page 10: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Convection and Electric Field• Polar oval electric field Eo

• Dusk to dawn direction, opposite to polar cap field• E0 = 30 mV/m• Counter-balance the polar cap field

• Polar oval convection• Sunward convection• Form a close loop with the polar cap convection• Two convection cells

Page 11: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionosphere Current• Pederson current: perpendicular B, parallel E ; horizontal• Hall current: perpendicular B, perpendicular E ;

horizontal• Burkeland current: parallel to B ; vertical

Page 12: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionosphere Current• Birkeland current: Field-aligned current

• Region 1 current: on the poleward side of the polar oval• Region 2 current: on the equatorward side of the polar oval

Page 13: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionosphere Current• Pederson current flows from dawn to dusk in the polar cap• Pederson current flows radially in the polar oval, dusk to dawn• Pederson current forms a closed loop with Burkeland currents

in the two boundary regions: region 1 and 2• Hall current direction is opposite to the convection, because

ions drift slower than the electrons• Westward at the dawn sector• Eastward at the dusk sector

Page 14: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionosphere Conductivity

Euuen

uuenj

Ej

ei

ei

/)(

)(

Deriving conductivity σ is to find the drift velocity under the E in the three components:

• Birkeland σ: parallel to B• Pederson σ: parallel to E, E per B• Hall σ: per E and B

Page 15: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionosphere Conductivity

Parallel conductivity BE

//

ieemne

snsss umEq

,

2

//

, 0

For plasmas (without neutral), Coulomb collision

ln/])[(108 2/33// kTe

Force equilibrium:Electric force = frictional forceNo Lorentz force

Page 16: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionosphere Conductivity

Transverse conductivity BE

0)( , snssss umBuEq

Force equilibrium:Electric force + magnetic force= frictional force

Page 17: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionosphere Conductivity

Transverse conductivity BE

}{

}{

22,

2

22,

2

22,

,

22,

,

)()(

)(

)()(

)(

)()()()(

iBni

iB

eBne

eB

iBni

iBni

eBne

eBne

Ben

H

Ben

P

Maximum conductivity: Transverse conductivity, especially Hall, confines to a rather narrow range of height (~ 125 km), the so called dynamo layer

iBni ,

Page 18: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Aurora

Image taken near Richmond VA, Oct 29, 2003

Page 19: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap
Page 20: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Akasofu, Secrets of the Aurora

Page 21: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Patches and Bands

Akasofu, Secrets of the Aurora

Page 22: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Aurora• Form

• Discrete: arcs, bands, rays, patches• Diffuse

• Height: > 100 km• Orientation

• Vertical: along the magnetic field line• Horizontal: primarily east-west direction

• Colors and emitting elements• O: red (630.0 nm, 630.4 nm), yellow-green (557.7 nm)• N2

+: blue-violet (391.4 nm – 470 nm)• N2: dark red (650 nm – 680 nm)

• Intensity: up to a few 100 kR (kilo Rayleigh)

Page 23: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Aurora• Aurorae are caused by the incidence of energetic particles onto

the upper atmosphere• Particles move-in along the open polar magnetic fields• The particles are mostly electrons in the energy range of ~100

ev to 10 kev. • Ions are also observed

Page 24: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Aurora Processes• Primary collision

• Scattering (elastic collision)• Collisional ionization• Collisional dissociation• Collisional excitation

• Secondary process• Secondary ionization• Secondary dissociation• Secondary scattering• Charge exchange• Dissociation exchange• Excitation exchange• Dissociative recombination• Radiative recombination• Collisional quenching

Energy conversion:•1% radiation•50% heating•30% chemical energy•Other: scatter back to magnetosphere

Page 25: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

The Rayleigh (R): A Basic Unit for measuring Aurora-Airglow Emissions

0

dzI(θ,φ, ) = ε(z,θ,φ, )

cosθ

• One R corresponds to the emission rate of 106 photons per second radiated isotropically from an atmospheric column with a base area of 1 cm2

• Brightness of the Milky Way Galaxy: 1 kR

Page 26: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Auroral Particles• Not solar wind particles• Particles are from magnetotail plasma sheet, with which the

polar oval is magnetically connected• Diffuse aurora

• convection and subsequent pitch angle diffusion of plasma sheet particles

• Discrete aurora• Produced by higher energy electrons (Ee > 1 keV) • Plasma sheet electron (Ee < 1 keV)• Additional acceleration is needed • Acceleration along magnetic field-aligned electric fields

• Double layer• Plasma instability produces localized potential

differences

Page 27: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionosphere-Magnetosphere Coupling• Region 1 current

• Magnetotail current is re-directed to the ionosphere

• Also produce auroral oval electrojet

• Energy is from solar wind dynamo

• Energy is dissipated in the ionosphere through Joule heating

Page 28: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionosphere-Magnetosphere Coupling• Region 2 current

• Associated magnetic field lines end in the equatorial plane of the dawn and dusk magnetosphere at a geocentric distance of L ≈ 7-10

• Driven by excess charge in the dawn and dusk sectors of the dipole field, caused by different particle paths of electrons and ions

Page 29: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

Ionosphere-Magnetosphere Coupling• Drift of particles from

the plasma sheet

Lu

u

D

BEE

D

ED

grD

gr Lu

Lu

1

2

3

• At small L, curvature-gradient drift dominates

• Particles can only drift to within a certain distance of the dipole

• Ions and electrons drifts in different direction along the dipole

• There is a forbidden zone for ions (electrons)

• Excess charges accumulate

Page 30: Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap. 7.1-7.6, P349-379 (main) Tascione: Chap

The End