ir and dft analysis of fischer-tropsch catalysts

18
Dynamic characterization of Co/TiO 2 Fischer-Tropsch catalysts with infrared spectroscopy and DFT calculations Jie Gao, Simon Podkolzin, Adeniyi Lawal Stevens Institute of Technology Hoboken, New Jersey, USA Emiel de Smit, Bert Weckhuysen Utrecht University Utrecht, Netherlands George Fitzgerald Accelrys San Diego, California, USA

Upload: george-fitzgerald

Post on 11-Jun-2015

1.276 views

Category:

Technology


5 download

DESCRIPTION

IR and DFT studies of Co/TiO2 Fischer-Tropsch catalysts. This work was presented at the 22nd North American Catalyst Society meeting on 9 June 2011. It elucitates the structure of Co and CoO Fischer-Tropsch catalysts used in production of synthetic fuels..

TRANSCRIPT

Page 1: IR and DFT analysis of Fischer-Tropsch catalysts

Dynamic characterization of Co/TiO2 Fischer-Tropsch catalysts with infrared spectroscopy and DFT calculations Jie Gao, Simon Podkolzin, Adeniyi Lawal

Stevens Institute of Technology

Hoboken, New Jersey, USA

Emiel de Smit, Bert Weckhuysen Utrecht University

Utrecht, Netherlands

George Fitzgerald Accelrys

San Diego, California, USA

Page 2: IR and DFT analysis of Fischer-Tropsch catalysts

Fischer-Tropsch Synthesis: Syngas to fuels

Page 2

2000 1920 1940 1960 1980

20

40

60

80

100

100

200

300

400

500

600

Oil

pri

ces,

US

D p

er

barr

el

20

40

60

80

100

100

200

300

400

500

600

Prices are unadjusted for inflation.

Nu

mb

er

of

pu

bli

cati

on

s

Patents

$/barrel Research

Embargo 73-74

CO + H2 = hydrocarbons + H2O

Although F-T technology has been known for more than 80 years, information on the fundamentals of this chemistry is still limited, hindering improvements in catalyst and process development.

Chem. Soc. Rev. 37, 2758 (2008)

Page 3: IR and DFT analysis of Fischer-Tropsch catalysts

• Characterization of Co/TiO2

• In-situ FTIR spectroscopic measurements for evaluation of dynamic changes of the surface and surface species

• Development of models for reaction mechanism studies

Objectives of This Work

Page 3

Page 4: IR and DFT analysis of Fischer-Tropsch catalysts

DRIFTS under Fischer-Tropsch conditions

Page 4

170018001900200021002200

Wavenumber, cm-1

Absorb

ance

21162060

2056

2056

102 min

22

4

96

100

0.025 a.u.1996

2176

2010

1500200025003000

Wavenumber, cm-1

Absorb

ance

2850 2112

96

0.05 a.u.

293022

2060

2176 1360

1992

100

102 1378

1570

1448

4 min

2010

1576

170018001900200021002200

Wavenumber, cm-1

Absorb

ance

21162060

2056

2056

102 min

22

4

96

100

0.025 a.u.1996

2176

2010

1500200025003000

Wavenumber, cm-1

Absorb

ance

2850 2112

96

0.05 a.u.

293022

2060

2176 1360

1992

100

102 1378

1570

1448

4 min

2010

1576

CO is on Co (not support) since the same double peak is observed for other supported Co catalysts: Co/SiO2, Co/Al2O3.

J Catal. 211, 422 (2002); Appl. Catal. A 316, 68 (2007)

Full spectrum Enlarged CO range

Co type 1 Co type 2

IWI Co/TiO2-350 catalyst

CO + H2 = Hydrocarbons + H2O. Feed GHSV 3010 h-1, CO/H2 mol feed ratio of 0.5, 1 atm, 220°C, CO conversion ~1 mol %.

Page 5: IR and DFT analysis of Fischer-Tropsch catalysts

Fischer-Tropsch Co/TiO2 catalysts

Page 5

IWI-Co/TiO2 350°C HDP-Co/TiO2 350°C

Co

IWI-Co/TiO2 350°C HDP-Co/TiO2 350°C

Co

Co(NO3)2·6H2O Degussa P25 TiO2 (45 m2/g, 0.27 cm3/g)

4 Samples:

IWI-300, IWI-350

HDP-300, HDP-350

Co deposition:

IWI HDP Incipient Wetness Impregnation Homogeneous Deposition Precipitation

pH adjusted with urea

9.5 wt % 7.8 wt %

Drying, calcination at 400°C for 4 h (ramp rate of 5°C/min)

Reduction:

300°C 350°C

2 h in 100 ml/min of 50% H2/He flow

Page 6: IR and DFT analysis of Fischer-Tropsch catalysts

Spectra evolution as a function of He purge duration at room T

• CO at 2050 cm-1 decreases at higher reduction T

• CO at 2050 cm-1 is higher for HDP

• CO at 2050 cm-1 decreases more rapidly on He purging

• When CO at 2050 cm-1 dominates, bridged-bonded CO at 1800-1900 cm-1 is small or not detectable

IR for CO adsorption on Co/TiO2

Page 6

Wavenumber, cm-1 Wavenumber, cm-1

1700 1800 1900 2000 2100 2200

Ab

so

rba

nce

2

4

6

8

10 min

1942 2020

0.02 a.u.

2050

2054

2178 2120

1700 1800 1900 2000 2100 2200

Ab

so

rba

nce

6

2120 2180

1936

10 min

2

2020

2048

1834

2052

0.02 a.u.

1834 2010

4

8

1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

0.02 a.u .

6

8

4

2046 2172

2116

2018

10 min

2

2020

2042 1852 1796

Theoretical

1802

atop

2020

3 fold bridge

Co(001) Co(001) CoO(100)

1944 1968 1830

CoO

d. IWI 350 ° C

1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

2048

2052

2120 2174

0.02 a.u .

4

6

8 min

2

1852 1802 1796 2020

Theoretical

2042

atop

CoO(100) Co(001)

3 fold

Co(001)

1876

2020

bridge

1936

b. HDP 350 ° C

2020

1700 1800 1900 2000 2100 2200

Ab

so

rba

nce

2

4

6

8

10 min

1942 2020

0.02 a.u.

2050

2054

2178 2120

1700 1800 1900 2000 2100 2200

Ab

so

rba

nce

6

2120 2180

1936

10 min

2

2020

2048

1834

2052

0.02 a.u.

1834 2010

4

8

1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

0.02 a.u .

6

8

4

2046 2172

2116

2018

10 min

2

2020

2042 1852 1796

Theoretical

1802

atop

2020

3 fold bridge

Co(001) Co(001) CoO(100)

1944 1968 1830

1700 1800 1900 2000 2100 2200 1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

0.02 a.u .

6

8

4

2046 2172

2116

2018

10 min

2

2020

2042 1852 1796

Theoretical

1802

atop

2020

3 fold bridge

Co(001) Co(001) CoO(100)

1944 1968 1830

0.02 a.u .

6

8

4

2046 2172

2116

2018

10 min

2

2020

1944 1968 1830

a. HDP Co/TiO2 300°C

Type 2

c. IWI 300°C

d. IWI 350

1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

2048

2052

2120 2174

0.02 a.u .

4

6

8 min

2

1852 1802 1796 2020

Theoretical

2042

atop

CoO(100) Co(001)

3 fold

Co(001)

1876

2020

bridge

1936

1700 1800 1900 2000 2100 2200 1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

2048

2052

2120 2174

0.02 a.u .

4

6

8 min

2 1876

2020 2020

1936

b. HDP 350

2020 2020

2036

CO on Co Type 1

Page 7: IR and DFT analysis of Fischer-Tropsch catalysts

Models for Co nanoparticles

Page 7

Co(001) 2 top rows removed Co(001)

Co(102)

Co(001) with 1/6 ML O

Co(001) with 1/3 ML O Co(001) with 1/2 ML O

Periodic DFT calculations with MS DMol3

Page 8: IR and DFT analysis of Fischer-Tropsch catalysts

Estimates of Co particle sizes (nm)

Characterization of Co/TiO2 F-T catalysts

Page 8

IWI-Co/TiO2 350°C HDP-Co/TiO2 350°C

Co

IWI-Co/TiO2 350°C HDP-Co/TiO2 350°C

Co

Catalyst EXAFS XPS TEM

IWI-Co/TiO2 350°C 2.5 4.0 4.3

HDP-Co/TiO2 350°C 3.2 1.3 3.5

Co particle sizes were similar for different

preparation methods and reduction temperatures

Page 9: IR and DFT analysis of Fischer-Tropsch catalysts

Characterization of Co/TiO2 F-T catalysts

Page 9

XPS spectra

Co2p3/2 and Co2p1/2 peaks at 781.1–781.2 eV and 796.5–796.8 eV

energy separation between the peaks of ~15.5–15.8 eV:

→ presence of a CoO-like phase.

H2 Temperature Programmed Reduction

Temperature, °C

H2 c

on

sum

pti

on

, au

(A) Co3O4 + H2 → 3CoO + H2O

(B) CoO + H2 → Co + H2O

Reduction Reaction

CoO is expected

at the reaction

conditions

Precipitation

Impregnation

Page 10: IR and DFT analysis of Fischer-Tropsch catalysts

Models for Co nanoparticles

Page 10

CoO(111) 1 Co layer on CoO(100)

2 Co layers on CoO(100)

CoO(100)

Correct model for catalytic

nanoparticles along with Co(001) for

metallic Co

Page 11: IR and DFT analysis of Fischer-Tropsch catalysts

3 fold

8 min

6

4

2

2200 2100 2000 1900 1800 1700

Wavenumber, cm-1

Ab

sorb

ance

2048

2174

2020

2052

1936 1876

2120

0.02 a.u.

atop

CoO(100)Co(001)

2036 2020 19001963 1840

CoO(100)Co(001)

bridge

Theoretical

3 fold

8 min

6

4

2

2200 2100 2000 1900 1800 1700

Wavenumber, cm-1

Ab

sorb

ance

2048

2174

2020

2052

1936 1876

2120

0.02 a.u.

atop

CoO(100)Co(001)

2036 2020 19001963 1840

CoO(100)Co(001)

bridge

Theoretical

3 fold

8 min

6

4

2

2200 2100 2000 1900 1800 1700

Wavenumber, cm-1

Ab

sorb

ance

2048

2174

2020

2052

1936 1876

2120

0.02 a.u.

atop

CoO(100)Co(001)

2036 2020 19001963 1840

CoO(100)Co(001)

bridge

Theoretical

0.02 a.u.2036 2018

20462020

19681944 1830

21722116

2200 2100 2000 1900 1800 1700

10 min

8

6

4

2

Wavenumber, cm-1

Absorb

ance

atopCoO(100)

Co(001)2036 2020 19001963 1840

CoO(100)Co(001)

bridge 3 fold

Theoretical

0.02 a.u.2036 2018

20462020

19681944 1830

21722116

2200 2100 2000 1900 1800 1700

10 min

8

6

4

2

Wavenumber, cm-1

Absorb

ance

atopCoO(100)

Co(001)2036 2020 19001963 1840

CoO(100)Co(001)

bridge 3 fold

Theoretical

HDP 350°C

2200 2100 2000 1900 1800 1700

2048

2180

2010

2020

1810

2052

1936 1834

2120

0.02 a.u.

10 min

8

6

4

2

Wavenumber, cm-1A

bsorb

ance

2200 2100 2000 1900 1800 1700

2048

2180

2010

2020

1810

2052

1936 1834

2120

0.02 a.u.

10 min

8

6

4

2

Wavenumber, cm-1A

bsorb

ance

IWI 300°C

IWI 350°C

10 min

8

6

4

2

2200 2100 2000 1900 1800 1700

Wavenumber, cm-1

Absorb

ance

2050

21782020

2054

1942

2120

0.02 a.u.

10 min

8

6

4

2

2200 2100 2000 1900 1800 1700

Wavenumber, cm-1

Absorb

ance

2050

21782020

2054

1942

2120

0.02 a.u. HDP 300°C

3 fold

8 min

6

4

2

2200 2100 2000 1900 1800 1700

Wavenumber, cm-1

Ab

sorb

ance

2048

2174

2020

2052

1936 1876

2120

0.02 a.u.

atop

CoO(100)Co(001)

2036 2020 19001963 1840

CoO(100)Co(001)

bridge

Theoretical

3 fold

8 min

6

4

2

2200 2100 2000 1900 1800 1700

Wavenumber, cm-1

Ab

sorb

ance

2048

2174

2020

2052

1936 1876

2120

0.02 a.u.

atop

CoO(100)Co(001)

2036 2020 19001963 1840

CoO(100)Co(001)

bridge

Theoretical

3 fold

8 min

6

4

2

2200 2100 2000 1900 1800 1700

Wavenumber, cm-1

Ab

sorb

ance

2048

2174

2020

2052

1936 1876

2120

0.02 a.u.

atop

CoO(100)Co(001)

2036 2020 19001963 1840

CoO(100)Co(001)

bridge

Theoretical

0.02 a.u.2036 2018

20462020

19681944 1830

21722116

2200 2100 2000 1900 1800 1700

10 min

8

6

4

2

Wavenumber, cm-1

Absorb

ance

atopCoO(100)

Co(001)2036 2020 19001963 1840

CoO(100)Co(001)

bridge 3 fold

Theoretical

0.02 a.u.2036 2018

20462020

19681944 1830

21722116

2200 2100 2000 1900 1800 1700

10 min

8

6

4

2

Wavenumber, cm-1

Absorb

ance

atopCoO(100)

Co(001)2036 2020 19001963 1840

CoO(100)Co(001)

bridge 3 fold

Theoretical

HDP 350°C

2200 2100 2000 1900 1800 1700

2048

2180

2010

2020

1810

2052

1936 1834

2120

0.02 a.u.

10 min

8

6

4

2

Wavenumber, cm-1A

bsorb

ance

2200 2100 2000 1900 1800 1700

2048

2180

2010

2020

1810

2052

1936 1834

2120

0.02 a.u.

10 min

8

6

4

2

Wavenumber, cm-1A

bsorb

ance

IWI 300°C

IWI 350°C

10 min

8

6

4

2

2200 2100 2000 1900 1800 1700

Wavenumber, cm-1

Absorb

ance

2050

21782020

2054

1942

2120

0.02 a.u.

10 min

8

6

4

2

2200 2100 2000 1900 1800 1700

Wavenumber, cm-1

Absorb

ance

2050

21782020

2054

1942

2120

0.02 a.u. HDP 300°C

Models for Co nanoparticles

Page 11

CoO(100)

Co(001)

atop

bridged

3-fold

Calculated heats of adsorption are consistent with peak intensity changes on He purging: 143 kJ/mol on Co, 133 kJ/mol on CoO.

NO bridged CO on CoO.

Page 12: IR and DFT analysis of Fischer-Tropsch catalysts

Spectra evolution as a function of He purge duration at room T

• CO at 2050 cm-1 decreases at higher reduction T

• CO at 2050 cm-1 is higher for HDP samples

• CO at 2050 cm-1 decreases more rapidly on He purging

• When CO at 2050 cm-1 dominates, bridged-bonded CO at 1800-1900 cm-1 is small or not detectable

IR for CO adsorption on Co/TiO2 Redux

Page 12

Wavenumber, cm-1 Wavenumber, cm-1

1700 1800 1900 2000 2100 2200

Ab

so

rba

nce

2

4

6

8

10 min

1942 2020

0.02 a.u.

2050

2054

2178 2120

1700 1800 1900 2000 2100 2200

Ab

so

rba

nce

6

2120 2180

1936

10 min

2

2020

2048

1834

2052

0.02 a.u.

1834 2010

4

8

1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

0.02 a.u .

6

8

4

2046 2172

2116

2018

10 min

2

2020

2042 1852 1796

Theoretical

1802

atop

2020

3 fold bridge

Co(001) Co(001) CoO(100)

1944 1968 1830

CoO

d. IWI 350 ° C

1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

2048

2052

2120 2174

0.02 a.u .

4

6

8 min

2

1852 1802 1796 2020

Theoretical

2042

atop

CoO(100) Co(001)

3 fold

Co(001)

1876

2020

bridge

1936

b. HDP 350 ° C

2020

1700 1800 1900 2000 2100 2200

Ab

so

rba

nce

2

4

6

8

10 min

1942 2020

0.02 a.u.

2050

2054

2178 2120

1700 1800 1900 2000 2100 2200

Ab

so

rba

nce

6

2120 2180

1936

10 min

2

2020

2048

1834

2052

0.02 a.u.

1834 2010

4

8

1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

0.02 a.u .

6

8

4

2046 2172

2116

2018

10 min

2

2020

2042 1852 1796

Theoretical

1802

atop

2020

3 fold bridge

Co(001) Co(001) CoO(100)

1944 1968 1830

1700 1800 1900 2000 2100 2200 1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

0.02 a.u .

6

8

4

2046 2172

2116

2018

10 min

2

2020

2042 1852 1796

Theoretical

1802

atop

2020

3 fold bridge

Co(001) Co(001) CoO(100)

1944 1968 1830

0.02 a.u .

6

8

4

2046 2172

2116

2018

10 min

2

2020

1944 1968 1830

a. HDP Co/TiO2 300°C

CO on Co

c. IWI 300°C

d. IWI 350

1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

2048

2052

2120 2174

0.02 a.u .

4

6

8 min

2

1852 1802 1796 2020

Theoretical

2042

atop

CoO(100) Co(001)

3 fold

Co(001)

1876

2020

bridge

1936

1700 1800 1900 2000 2100 2200 1700 1800 1900 2000 2100 2200

Wavenumber, cm - 1

Ab

sorb

an

ce

2048

2052

2120 2174

0.02 a.u .

4

6

8 min

2 1876

2020 2020

1936

b. HDP 350

2020 2020

2036

CO on CoO

Page 13: IR and DFT analysis of Fischer-Tropsch catalysts

CO intensity ratio for Co and CoO

Page 13

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Inte

nsi

ty r

ati

o f

or

ato

p C

O o

n

Co a

nd

CoO

Co particle size, nm

Co7

Co4

Co14

Co26

Co38

/0.161.35 1 Co sizeratio e

Model particle size

ratio for CoO/Co is

estimated at 1.12

Ratio of CoO/Co can be

estimated based on IR spectra

Page 14: IR and DFT analysis of Fischer-Tropsch catalysts

F-T reaction mechanisms

Page 14

CH2* CH2*

+

CH2*CH2* CH2*CH2*

+CH2*+CH2*C2H4+ 2*

Carbide insertion

CH3*+H* CO*

CH3CO*+H*

+

CH3*+H*CH3*+H* CO*CO*

CH3CO*+H*CH3CO*+H*

+ CH3*+CO*COCH3*+ *

CO insertion

H2OCHOH* CHOH* CHCOH*

+ +

H2OCHOH*CHOH* CHOH*CHOH* CHCOH*CHCOH*

+ +

2CHOH*CHCOH**+H2O

Oxygenate

Page 15: IR and DFT analysis of Fischer-Tropsch catalysts

Simon Podkolzin Page 15

CH2*

+

CH2*

-36 kJ/mol

C2H4**

CH2* C2H4** CH2*

+

Chain growth through CH2 on Co and CoO

-247 kJ/mol

Page 16: IR and DFT analysis of Fischer-Tropsch catalysts

Simon Podkolzin Page 16

50 kJ/mol

12 kJ/mol

Chain growth through CO on Co and CoO.

Similar reactions but with different energetics.

CO*

+

CH3*+H* CH3CO**+H*

CH3CO**+H* CO*

+

CH3*+H*

Page 17: IR and DFT analysis of Fischer-Tropsch catalysts

• Methodology development for characterization of dynamic surface changes under reaction conditions

• Cobalt Fischer-Tropsch catalysts change dynamically between metallic Co and cobalt oxide CoO

• Extent of Co oxidation can be evaluated based on relative IR peak intensities of CO on Co and CoO

• Reaction steps are predicted to be similar on Co and CoO, but with different energetics

Summary

Page 17

Page 18: IR and DFT analysis of Fischer-Tropsch catalysts

Acknowledgments

Page 18

• Project partially funded by

US Congressional budget

allocation.

• Cooperative research license from Accelrys for

Materials Studio.

• Project partially funded by Dutch government

grant NRSC-C 2009-2013.