irfb s sl4410 - infineon technologies · rr reverse recovery char ge ––– 61 92 nc t j = 25°c...

12
05/02/07 Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability www.irf.com 1 D 2 Pak IRFS4410 TO-220AB IRFB4410 TO-262 IRFSL4410 IRFB4410 IRFS4410 IRFSL4410 HEXFET ® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits S D G S D G S D G S D G V DSS 100V R DS(on) typ. 8.0m max. 10m I D 96A Absolute Maximum Ratings Symbol Parameter Units I D @ T C = 25°C Continuous Drain Current, V GS @ 10V A I D @ T C = 100°C Continuous Drain Current, V GS @ 10V I DM Pulsed Drain Current P D @T C = 25°C Maximum Power Dissipation W Linear Derating Factor W/°C V GS Gate-to-Source Voltage V dv/dt Peak Diode Recovery V/ns T J Operating Junction and °C T STG Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw Avalanche Characteristics E AS (Thermally limited) Single Pulse Avalanche Energy mJ I AR Avalanche Current A E AR Repetitive Avalanche Energy mJ Thermal Resistance Symbol Parameter Typ. Max. Units R θJC Junction-to-Case ––– 0.61 R θCS Case-to-Sink, Flat Greased Surface , TO-220 0.50 ––– °C/W R θJA Junction-to-Ambient, TO-220 ––– 62 R θJA Junction-to-Ambient (PCB Mount) , D 2 Pak ––– 40 220 See Fig. 14, 15, 16a, 16b 250 19 -55 to + 175 ± 20 1.6 10lb in (1.1N m) 300 Max. 96 68 380 PD - 96902C

Upload: others

Post on 31-Oct-2019

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

05/02/07

Benefits Improved Gate, Avalanche and Dynamic dV/dt

Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability

www.irf.com 1

D2PakIRFS4410

TO-220ABIRFB4410

TO-262IRFSL4410

IRFB4410IRFS4410

IRFSL4410HEXFETPower MOSFETApplications

High Efficiency Synchronous Rectification in SMPSUninterruptible Power SupplyHigh Speed Power SwitchingHard Switched and High Frequency Circuits

S

D

G

SD

G

S

D

GS

DG

VDSS 100VRDS(on) typ. 8.0m max. 10mID 96A

Absolute Maximum RatingsSymbol Parameter Units

ID @ TC = 25°C Continuous Drain Current, VGS @ 10V AID @ TC = 100°C Continuous Drain Current, VGS @ 10VIDM Pulsed Drain Current PD @TC = 25°C Maximum Power Dissipation W

Linear Derating Factor W/°CVGS Gate-to-Source Voltage V

dv/dt Peak Diode Recovery V/nsTJ Operating Junction and °CTSTG Storage Temperature Range

Soldering Temperature, for 10 seconds

(1.6mm from case)

Mounting torque, 6-32 or M3 screw

Avalanche CharacteristicsEAS (Thermally limited) Single Pulse Avalanche Energy mJIAR Avalanche Current AEAR Repetitive Avalanche Energy mJ

Thermal ResistanceSymbol Parameter Typ. Max. Units

RθJC Junction-to-Case ––– 0.61RθCS Case-to-Sink, Flat Greased Surface , TO-220 0.50 ––– °C/WRθJA Junction-to-Ambient, TO-220 ––– 62RθJA Junction-to-Ambient (PCB Mount) , D2Pak ––– 40

220

See Fig. 14, 15, 16a, 16b

250

19

-55 to + 175

± 20

1.6

10lbin (1.1Nm)

300

Max.96

68

380

Page 2: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

2 www.irf.com

Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.Repetitive rating; pulse width limited by max. junction

temperature. Limited by TJmax, starting TJ = 25°C, L = 0.14mH RG = 25Ω, IAS = 58A, VGS =10V. Part not recommended for use above this value. ISD ≤ 58A, di/dt ≤ 650A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%.

S

D

G

Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.θ

Static @ TJ = 25°C (unless otherwise specified)Symbol Parameter Min. Typ. Max. Units

V(BR)DSS Drain-to-Source Breakdown Voltage 100 ––– ––– V∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.094 ––– V/°CRDS(on) Static Drain-to-Source On-Resistance ––– 8.0 10 mΩVGS(th) Gate Threshold Voltage 2.0 ––– 4.0 VIDSS Drain-to-Source Leakage Current ––– ––– 20 µA

––– ––– 250IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA

Gate-to-Source Reverse Leakage ––– ––– -200RG Gate Input Resistance ––– 1.5 ––– Ω f = 1MHz, open drain

Dynamic @ TJ = 25°C (unless otherwise specified)Symbol Parameter Min. Typ. Max. Units

gfs Forward Transconductance 120 ––– ––– SQg Total Gate Charge ––– 120 180 nCQgs Gate-to-Source Charge ––– 31 –––Qgd Gate-to-Drain ("Miller") Charge ––– 44 –––td(on) Turn-On Delay Time ––– 24 ––– nstr Rise Time ––– 80 –––td(off) Turn-Off Delay Time ––– 55 –––tf Fall Time ––– 50 –––Ciss Input Capacitance ––– 5150 ––– pFCoss Output Capacitance ––– 360 –––Crss Reverse Transfer Capacitance ––– 190 –––Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 420 –––Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 500 –––

Diode CharacteristicsSymbol Parameter Min. Typ. Max. Units

IS Continuous Source Current ––– ––– 96 A

(Body Diode)ISM Pulsed Source Current ––– ––– 380 A

(Body Diode)VSD Diode Forward Voltage ––– ––– 1.3 Vtrr Reverse Recovery Time ––– 38 56 ns TJ = 25°C VR = 85V,

––– 51 77 TJ = 125°C IF = 58AQrr Reverse Recovery Charge ––– 61 92 nC TJ = 25°C di/dt = 100A/µs

––– 110 170 TJ = 125°CIRRM Reverse Recovery Current ––– 2.8 ––– A TJ = 25°Cton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

ConditionsVDS = 50V, ID = 58AID = 58A

VGS = 20VVGS = -20V

MOSFET symbol

showing the

VDS = 80V

Conditions

VGS = 10V VGS = 0VVDS = 50Vƒ = 1.0MHzVGS = 0V, VDS = 0V to 80V , See Fig.11VGS = 0V, VDS = 0V to 80V , See Fig. 5

TJ = 25°C, IS = 58A, VGS = 0V

integral reverse

p-n junction diode.

ConditionsVGS = 0V, ID = 250µAReference to 25°C, ID = 1mAVGS = 10V, ID = 58A VDS = VGS, ID = 150µAVDS = 100V, VGS = 0VVDS = 100V, VGS = 0V, TJ = 125°C

ID = 58ARG = 4.1Ω

VGS = 10V VDD = 65V

Page 3: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

www.irf.com 3

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature

Fig 2. Typical Output Characteristics

Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage

0.1 1 10 100 1000

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D, D

rain

-to-

Sou

rce

Cur

rent

(A

)

4.5V

≤60µs PULSE WIDTHTj = 175°C

VGSTOP 15V

10V8.0V6.0V5.5V5.0V4.8V

BOTTOM 4.5V

2 3 4 5 6 7 8 9 10

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D, D

rain

-to-

Sou

rce

Cur

rent

)

TJ = 25°C

TJ = 175°C

VDS = 25V

≤60µs PULSE WIDTH

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

3.0

RD

S(o

n) ,

Dra

in-t

o-S

ourc

e O

n R

esis

tanc

e

(

Nor

mal

ized

)

ID = 58A

VGS = 10V

1 10 100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

C, C

apac

itanc

e(pF

)

VGS = 0V, f = 1 MHZCiss = Cgs + Cgd, C ds SHORTED

Crss = Cgd Coss = Cds + Cgd

Coss

Crss

Ciss

0 20 40 60 80 100 120

QG Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

VG

S, G

ate-

to-S

ourc

e V

olta

ge (

V) VDS= 80V

VDS= 50V

VDS= 20V

ID= 58A

0.1 1 10 100 1000

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D, D

rain

-to-

Sou

rce

Cur

rent

(A

)

VGSTOP 15V

10V8.0V6.0V5.5V5.0V4.8V

BOTTOM 4.5V

≤60µs PULSE WIDTHTj = 25°C

4.5V

Page 4: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

4 www.irf.com

Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 11. Typical COSS Stored Energy

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 12. Maximum Avalanche Energy vs. DrainCurrent

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

VSD, Source-to-Drain Voltage (V)

1

10

100

1000

I SD

, Rev

erse

Dra

in C

urre

nt (

A)

TJ = 25°C

TJ = 175°C

VGS = 0V

25 50 75 100 125 150 175

TC , Case Temperature (°C)

0

10

20

30

40

50

60

70

80

90

100

I D,

Dra

in C

urre

nt (

A)

Limited By Package

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

TJ , Temperature ( °C )

100

105

110

115

120

125

130

V(B

R)D

SS

, Dra

in-t

o-S

ourc

e B

reak

dow

n V

olta

ge (

V)

0 20 40 60 80 100 120

VDS, Drain-to-Source Voltage (V)

0.0

0.5

1.0

1.5

2.0

Ene

rgy

(µJ)

25 50 75 100 125 150 175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

500

600

700

800

900

EA

S ,

Sin

gle

Pul

se A

vala

nche

Ene

rgy

(mJ) ID

TOP 6.7A9.7A

BOTTOM 58A

0 1 10 100 1000

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D,

Dra

in-t

o-S

ourc

e C

urre

nt (

A)

OPERATION IN THIS AREA LIMITED BY R DS(on)

Tc = 25°CTj = 175°CSingle Pulse

100µsec

1msec

10msec

DC

Page 5: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

www.irf.com 5

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Typical Avalanche Current vs.Pulsewidth

Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15:(For further info, see AN-1005 at www.irf.com)1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far inexcess of Tjmax. This is validated for every part type.

2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded.3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.4. PD (ave) = Average power dissipation per single avalanche pulse.5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase

during avalanche).6. Iav = Allowable avalanche current.7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as

25°C in Figure 14, 15).tav = Average time in avalanche.D = Duty cycle in avalanche = tav ·fZthJC(D, tav) = Transient thermal resistance, see Figures 13)

PD (ave) = 1/2 ( 1.3·BV·Iav) =T/ ZthJC

Iav = 2T/ [1.3·BV·Zth]EAS (AR) = PD (ave)·tav

1E-006 1E-005 0.0001 0.001 0.01 0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

The

rmal

Res

pons

e (

Z th

JC ) 0.20

0.10

D = 0.50

0.020.01

0.05

SINGLE PULSE( THERMAL RESPONSE )

Notes:1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W) τi (sec)0.2736 0.000376

0.3376 0.004143

τJ

τJ

τ1

τ1τ2

τ2

R1

R1 R2

R2

ττC

Ci i/RiCi= τi/Ri

25 50 75 100 125 150 175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

EA

R ,

Ava

lanc

he E

nerg

y (m

J)

TOP Single Pulse BOTTOM 1% Duty CycleID = 58A

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

tav (sec)

0.1

1

10

100

1000

Ava

lanc

he C

urre

nt (

A)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse)

Page 6: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

6 www.irf.com

Fig 16. Threshold Voltage vs. Temperature

-75 -50 -25 0 25 50 75 100 125 150 175 200

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

VG

S(t

h) G

ate

thre

shol

d V

olta

ge (

V)

ID = 150µA

ID = 250µA

ID = 1.0mA

ID = 1.0A

100 200 300 400 500 600 700 800 900 1000

dif/dt (A/µs)

0

5

10

15

20

I RR

M (

A)

IF = 38A

VR = 85V

TJ = 25°C _____

TJ = 125°C ----------

100 200 300 400 500 600 700 800 900 1000

dif/dt (A/µs)

0

5

10

15

20

I RR

M (

A)

IF = 19A

VR = 85V

TJ = 25°C _____

TJ = 125°C ----------

100 200 300 400 500 600 700 800 900 1000

dif/dt (A/µs)

0

50

100

150

200

250

300

350

400

Qrr

(nC

)

IF = 19A

VR = 85V

TJ = 25°C _____

TJ = 125°C ----------

100 200 300 400 500 600 700 800 900 1000

dif/dt (A/µs)

0

50

100

150

200

250

300

350

400

Qrr

(nC

)

IF = 38A

VR = 85V

TJ = 25°C _____

TJ = 125°C ----------

Page 7: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

www.irf.com 7

Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms

VGS

VDS90%

10%

td(on) td(off)tr tf

VGS

Pulse Width < 1µsDuty Factor < 0.1%

VDD

VDS

LD

D.U.T

+

-

Fig 21b. Unclamped Inductive WaveformsFig 21a. Unclamped Inductive Test Circuit

tp

V(BR)DSS

IAS

RG

IAS

0.01Ωtp

D.U.T

LVDS

+- VDD

DRIVER

A

15V

20VVGS

Fig 23a. Gate Charge Test Circuit Fig 23b. Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2 Qgd Qgodr

Fig 20. for N-ChannelHEXFETPower MOSFETs

1K

VCCDUT

0

L

• • •

P.W.Period

di/dt

Diode Recoverydv/dt

Ripple ≤ 5%

Body Diode Forward DropRe-AppliedVoltage

ReverseRecoveryCurrent

Body Diode ForwardCurrent

VGS=10V

VDD

ISD

Driver Gate Drive

D.U.T. ISD Waveform

D.U.T. VDS Waveform

Inductor Curent

D = P.W.Period

!

!

+

-

+

+

+-

-

-

• !"#""• $%%• "#""&#

Page 8: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

8 www.irf.comTO-220AB packages are not recommended for Surface Mount Application.

!"!#$%$&'

()

(**+,

- (

()

.

)/,

*0

Page 9: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

www.irf.com 9

TO-262 Part Marking Information

TO-262 Package OutlineDimensions are shown in millimeters (inches)

!

"

##

Page 10: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

10 www.irf.com

!

Page 11: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

www.irf.com 11

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR’s Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 05/07

!

3

4

4

TRR

FEED DIRECTION

1.85 (.073)1.65 (.065)

1.60 (.063)1.50 (.059)

4.10 (.161)3.90 (.153)

TRL

FEED DIRECTION

10.90 (.429)10.70 (.421)

16.10 (.634)15.90 (.626)

1.75 (.069)1.25 (.049)

11.60 (.457)11.40 (.449)

15.42 (.609)15.22 (.601)

4.72 (.136)4.52 (.178)

24.30 (.957)23.90 (.941)

0.368 (.0145)0.342 (.0135)

1.60 (.063)1.50 (.059)

13.50 (.532)12.80 (.504)

330.00(14.173) MAX.

27.40 (1.079)23.90 (.941)

60.00 (2.362) MIN.

30.40 (1.197) MAX.

26.40 (1.039)24.40 (.961)

NOTES :1. COMFORMS TO EIA-418.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSION MEASURED @ HUB.4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Page 12: IRFB S SL4410 - Infineon Technologies · rr Reverse Recovery Char ge ––– 61 92 nC T J = 25°C di /dt = 100A µs ––– 110 170 T J = 125°C IRRM Reverse Recovery Current

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/