irodov 106-235.pdf

131

Click here to load reader

Upload: john-thomas

Post on 16-Sep-2015

194 views

Category:

Documents


64 download

TRANSCRIPT

  • Compact ISC Physics (XII)106

    Q: 1.247: Method 1: Torque equation on whole system about centre

    of pulley

    2mRRmRmRgkmgm

    22

    12

    212

    )mm(R)kmm(g

    2m

    12

    12

    Acceleration of mass m1 :

    2mmm

    )kmm(gR12

    121

    displacement in time t : 21ta2

    1S

    Workdone of friction = 21t

    2mmm

    )kmm(gkmgskm 2

    12

    122

    11

    )mm(2mt)kmm(gkmW

    21

    212

    21

    Method 2: m2g - T1 = m2a1 -----(i) T1-km1g = m1a2 -----(ii) 2mRRTT

    212 ----(i) a2 =

    R -----(iv) from (i) and (ii) and (iv) :

    2mmm

    )kmm(g

    12

    121

    21ta2

    1S

    )mm(2mt)kmm(gkm

    s)gkm(W21

    212

    21

    1

    Ans.

    Q: 1.248: F.B.D. of cylinder : Force equation : KN1 + N2 = mg ------(i) KN2 = N1 -----(ii)

    Torque equation about centre of cylinder : 2

    mRRKNRKN2

    21 2mR]NN[KR

    221

    -------(iii) from (i) and (ii) : 2122 k1kmgNand

    k1mgN

    put in (iii) : )K1(R

    )K1(kg22

    . We know

    : 2W02WW 202

    02 )K1(kg4

    )K1(Rw 220

    )K1(gk8

    )K1(Rw2

    turnof.no22

    0

    T1

    T1

    m g2

    km g2

    a1m1 T2 T2

    disc

    a1

    W0

    R

    CylinderN2

    N1W

    KN1

    KN2

  • 107

    Q: 1.249 : Calculation of torque : Where df = friction force on differential region = This is scalar

    sum because are going to calculate torque. df = k [dN] gxdx2Rmk 2

    2RdxmgxK2

    The differential torques : dxR

    kmgx2xdfd2

    2 kmgR3

    2

    R

    dxkmgx2dR

    02

    2

    Rkg

    34kmgR

    32

    2mRI

    2

    We know W = W0 + t kg4WR3tt

    Rkg

    34W0 Ans

    Q: 1.250: 2/1w 2/1cw 2/1kw . Time calculation : 1

    0

    t

    0

    0

    w2/1 kdtw

    dw

    Cw2t

    2/10

    1

    Angle calculation : dkwwdw 2/1 0

    0

    0

    w

    2/1 kddww0

    C3

    W2 23

    0 . Man angular velocity

    =

    CW2C3

    W2t 21

    23

    0

    0

    1

    3w0 Ans

    Q:1.251: Moment of inertial of chord :

    22 xRMR)x(mI

    ll

    l

    I = mR2. Toque about 0 : = I

    2

    2mR

    2MRRmgx

    l

    )m2M(Rmgx2

    l Ans.

    Q:1.252: (a) Torque equation about ICOR : 2mR57R)Sinmg(

    R7sing5

    Torque about com: 2mR52Rfr

    R7gSin5mR

    52fr sinmg

    3510fr ----- (i). At slipping : fr = K mg

    W

    Rx

    df

    dx

    R0

    x

    lmgx

    M

    R

    x

    M

    l-x

    mg mgS

    in

    m,R

    fr

    ICOR

    acm

  • Compact ISC Physics (XII)108

    Cos ------- (ii) from (i) and (ii): sinmg3510kmgCos tan35

    10K tan72K

    (b) 2ICOR WI21KE 22 tMR5

    721KE

    2

    22

    2

    2222 t

    14Sinmg5

    R7x7Sing25tMR

    107KE

    Q:1.253: (a) Torque equation of ICOR which is attached with point of

    string. 2mR23mgR R3

    g2 3

    gcm 2Ra . Force equation

    on cylinder : mg-2T = m2g/3 T = mg/6

    (b) ]ta[mgv.FP cm

    t

    3g2mg tmg3

    2P 2 Ans.

    Q:1.254: F.B.D. of cylinder in frame of lift : Torque about ICOR = 20 mR23R)wg(m

    R3

    )wg(2 0 )Wg(32RW 0

    1 . In terms of vector : )wg(32w 0

    1 . Torque about

    com : 02

    wgR32

    2mRIFR

    3)wg(mF 0 . In vector form :

    3)wg(mF 0

    Ans.

    T Tcylinder

    R

    mg

    Q:1.255: Torque about ICOR point P : (mgsin) r = (I+mr2)

    2mrIsinmgr

    acm = R = r

    2

    2cm

    mrIsinmgra

    Ans.

    w1

    m, R

    cylinder

    F

    mg

    w0

    ICOR

    F

    mg + mw0

    R

    mgCos

    acm

    P

    mgsin

    T

  • 109

    Q:1.256: At time of slipping friction will act at maximum value KN then.Force equation in y dirn : KN = macm K(mg+F) = macm -------(i). Torque

    equation about ICOR :

    2mR

    23FR

    mR3F2

    )i(inputm3F2Racm 3

    F2ma)Fmg(k cm

    k

    32Fkmg k32

    kmg3

    k32kmgF

    k32kmg3

    32acm

    k32kg2acm

    Ans.Ans.

    Q:1.257: (a) Force equation along x axis : F Cos fr = m acm -----(i) Torque equation about com:

    RamRIaRfrFr cm2 cmamRRfrFr

    ------(ii) from (i) and (ii) : )1(mR)rRCos(Facm

    (b) W = (F Cos) displacement 2cmta21)FCos( )1(m2

    )R/rCos(tFW222

    v

    Q:1.258: Torque equation on sphere (A): 12

    1 2mRRT2

    2mRT2 11

    -

    ----(i). Torque equation on sphere (B) : 22

    1 2mRRT2

    2mRT2 21

    --

    ---(ii). From (i) and (ii): 1 = 2 . Force equation on (B): mg-2T1 = maB ------(ii)

    Constraint : Acceleration of point P = R1 = aB-R2 . Then aB= R1 + Ra2 =2Ra1 . Put in (iii): mg-2T1 = m2Ra1 = 2mR1 -----(ii) from (i) : mR1 = 4T1 put in(iv) mg - 2T1 = 8T1 T1 = mg/10Q:1.259: Troque about point P for system :

    )MRI()R3(m)RR2(mgMgR 22

    2222 MRImR9)M3M(gR

    MRImR9MgRmgR3

    . Hence acceleration of particle :

    aA = 3R 222

    AMRImR9

    )m3M(gR3a

    2

    A

    RIm9M

    )m3M(g3a

    Ans.

    acm

    KN

    cylinderm

    mg F

    y

    x

    r

    m

    F

    fr

    acm

    I = mR 2

    (A)

    (B)

    T1

    T1

    2

    2

    P

    Q

    m R1

    m R1

    1

    2

    mg

    T2

    mg

    P

    MR

    m

    mg

  • Compact ISC Physics (XII)110

    Q:1.260: (a) Cylinder Force equation on system : F = (m1 + m2) acm 21cm mm

    Fa

    . Torque

    equation about frame attached with centre of sphere. 2RmFR

    21 Rm

    F2

    1 . Acculeration of

    point K : 121

    cmk mF2

    mmFRaa

    )mm(m)m2m3(Fa

    211

    21k

    (b) WF = Work done by F = Grain in K.E.

    2k ta2

    1F.E.K )mm(mt)m2m3(F

    21.E.K

    211

    2212

    Q:1.261: Acceleration of plank = acm - R. Then force equation on system : (Frm ground frame).F = m2 acm + m1 (acm - R) ----(i) Torque equation with frame attached with centre of sphere :

    21

    21cm1 Rm5

    2RmFRRam ------(ii) from (i) and (ii)

    21

    cmm

    72m

    F72a Ans.

    And acceleration of blank : w1 = acm - R -----(iii) put acm in (i) and calculate and put in ----(iii) :

    211

    m72m

    Fw

    Ans.

    acm

    m1

    Fkm2B

    A m1

    Fm2

    2macm

    acm

    F

    m2

    m1

    R

    x

    ysphere m2

    m1

    R

    Fm1acm

    m2acm

    Q:1.262: (a) Torque about bottom point is zero. Hence angular momenton will be consermed about

    bottom point then. cmcm VRmLL

    OwmR21L 0

    2initial

    -------(i)

    )RW(MRmR21L 2final

    wmR2

    3 2 -------(ii)

    from (i) and (ii) : wmR23wmR

    21 2

    02 3

    w0w

    m 1R

    w

    Vcm

    mg

    Nmcylinder

    Rw0

    kmgkSlipping

  • 111

    Torque equation about com :

    2mRkmgR

    2 kR

    g2 . We know : w = w0 - t

    kgRw

    31tt

    kRg2w

    3w 0

    00 (b)

    20

    22ffr )RW(m2

    1wmR23

    21kikW

    220fr Rmw6

    1W Ans.

    Q:1.263: Suppose at angle ball have the sphere then energy equation : Loss of P.E. = Gain of K.E.

    2cm

    2 wI21cmmV

    21)cos1()rR(mg 2cm

    2 wI21cmmV

    21)cos1()rR(mg

    )cos1()rR(g7

    10cmV2 ------(i) force equation in direction of N

    : )rR(cmmVNCosmg

    2

    for leave contact N = 0 then.

    rRcmmV0Cosmg

    2

    )rR(g

    cmVCos2

    . Put cos in ( i) :

    )rR(g7

    10Vcm

    Q:1.264: Suppose at time t solid cylinder make angle with verticalenergy eqaation :

    )RCosR(mgwmR23

    21

    RVmR

    23

    21 22

    202

    CosmgRmgRwmR43mV

    43 222

    0 -----(i) Force equation in dirn of normal reaction : mg Cos

    - N = mRw2 mg Cos = N + mRw2 put mgCos value in equation (i) : mgRwmR47mV

    43N 2220 -

    -----(i). For stopping Bouncing N: will be minimum when W will be maximum and this condition willbe come when = . Hence we have to avoid bouncing at = then there will be no bouncing

    before = . Now for minimum V0 put N = 0 and then gR74V

    73WR 2o

    22 . Put = and R2w2

    value in (i) : CosgR37gR

    74V 20 )4Cos7(3

    gRV0 Ans.

    m2

    R

    Vcmmg

    m1rN

    mg

    wNR

  • Compact ISC Physics (XII)112

    Q:1.265: Since angular velocity(w) iscontinuously decreasing then there is chanceof minimum value of normal reaction at groundwhen particle is at maximum height or top ofhoop. Then force equation in y direction onsystem from reference attached with com ofhoop. 2 mg - N = mRW2 [Here w=final angualr velcoity]. Since N = 0 2mg = mRW2 w2 = 2g/R ----(i). Now energy equation : (from ICOR):

    2222

    02 w)R2(mmR221)R2(mg

    RVmR2

    21

    Rg2)mR6(

    21mgR2

    2mV2 2

    20

    gR8V0

    Q:1.266: Velocity of top point : VP = 2v. Hence kinetic energy of

    crawler : 2)v2(

    2m

    21k

    k = mv2 Ans.

    Q:1.267: We know kinetic energy from fixed axis rotation is

    given by: 2zzz2

    yyy2

    xx WI21WI

    21WxI

    21K . If

    reference frame is not traslatory. And if reference frame istranslatory then we know to use kinetic energy of COM.

    0WandRvWand

    rvW zyx . Then 0WI2

    1WI21K 2yyy

    2xzz

    222

    22

    RvMRmr

    52

    21

    rvmr

    52

    21

    2

    22

    Rr

    721mv

    107K Ans.

    Q:1.268: (a) From this reference frame centrifugal force on particle of mass

    (dm) is : 2icf wr)dm(dF 2

    icf wr)dm(F i2 r)dm(w

    mr)dm(mwF i2cf where

    mr)dm(R ic

    Position of CoM

    c2

    cf RmwF (b) Corolis force: ]wv[dm2dFcor

    wv)dm(2wv)dm(2Fcor

    = wmv)dm(m2

    where

    mV)dm(Vc

    CoMofVelocityVc

    cm

    N

    wmg

    mg x

    y

    R

    m

    V0

    w

    m

    v

    m/2

    m/2

    x

    y

    0

    z

    v

    R

    m

    y

    0

    z

    xx

    ir

    Pdm

    V

  • 113

    Q:1.269: Method : 1 dc = (dF) x Cos = w2x2sincos dm =

    w2sincosx2 l

    m dx

    2

    2

    dxxcossinl

    mw 22c

    l

    l

    242sinmw2

    c

    l

    2sinmw241 22

    c l

    Method : 2 sinw12

    mL2l

    dtdsinw

    12m

    dtLd 2

    l

    cosw)sinw(12

    m 2l 2sinw

    24m 22l

    Ans.

    Q:1.270: Torque of centrifuglal force

    about 0: l

    0

    2 cosxwsinx(dm)d

    cossin3

    mw22l ------(i) Torque of

    mg about 0 : sin2mgmg

    l -----(ii)

    from (i) and (ii) : for equilibniom: mg Sinmgcossin3mw

    2

    22ll

    l2w2g3cos

    Q:1.271: where k = coefficient of friction. x0 = Perpendicular distance b/w line of mg and N. HereN = mg. Since body is in rotational equilibrium then Thorque about COM will be zero. Kmg a/2 =

    NX0 = mgx 2kax0 . Suppose at time t cube is displaced by x distance then Torque about origin

    is: )2/ax(mg)2/axx(N 00 2a

    2a0 mgmgx)xx(mg 2a2a mgmg2

    kamg

    2

    mgka0 . Because of this torque angular

    velocity of centre will be decreasingcontinuously.

    x C

    w

    w (dm) xsin2

    wwcoswsi

    n

    x

    y

    (dm) xsin w 2(centrifugal force)

    x

    0

    w

    dxmg

    l/2

    y

    0

    z

    xx

    x

    a

    a kmg

    mg

    a/2x0

    N

  • Compact ISC Physics (XII)114

    Q:1.272: Method : 1 Suppose velocity of sleeve is Vr when its position fromaxis is x and angular velocity of rod is w then Centrifugal force: mxw2 = max

    dxdVvmwmx rr2

    l

    0

    2V

    0rr xdxwdVV

    r

    l

    0

    22

    r xdxw2

    V -----(i).

    Calculation of w : Using angular momentum conservation :

    w3

    MmxW3

    M 220

    2

    ll 22

    02

    Mmx3WMW

    ll

    put in (i) :

    l

    ll

    o222

    2o

    422r

    )Mmx3(dxxWM

    2V

    Mm31WV 0r l Ans.

    Method : 2 Energy conservation : 2r2

    222

    0

    2mV

    21w

    3Mm

    21W

    3m

    21

    lll -----(i). Using angular

    momentum conservation : w3

    MmW3

    M 220

    2

    lll ----(ii) put w in equation (i) :

    2r2

    2

    02

    222

    02

    mv21

    3Mm

    w3

    M

    3Mm

    21w

    3m

    21

    ll

    llll

    2r2

    2

    20

    4220

    2mV

    3Mm9

    wM3wm

    ll

    ll

    Mm31wV 0r l

    Q:1.273: Linear impluse equation :

    mJcmcm VMVJ . Angular impluse

    equation about com : l

    llm

    J6ww12

    mJ2

    2 .

    F.B.D. of half part of rod : 2

    x w42mforcelCentripitaF

    l 22

    2

    mj36

    42m

    ll

    22

    xm2J9Fl

    m VrM

    lA

    x

    B

    w0

    Just before impact Just after impactJ

    m, lCM

    l/2m

    w

    l/2cmV

    l/4

    2

    lx ,2mF

  • 115

    Q:1.274: (a) Top view : Angular momentum conservation about hinge : w3

    m2

    'mv2

    mv2lll

    ---- (i) Equation of e : 'vw2v l ------ (ii) from (i) and (ii) : )m4m3(

    mv12w

    l

    Vm4m3M4m3'v

    AnsAns

    (b) F.B.D. of rod : 2

    22

    m3M41

    MV8W2

    MFy

    l

    l

    Q:1.275: (a) Angular momentum conservation :

    w3

    Mmv2

    0ll lM

    mv3w 0 -----(i). Using energy

    conservation after collision :

    )cos(MgW3

    M21 22

    lll )cos1(g

    6w 2

    l

    )cos1(g6w 2 l

    )cos1(g6w l

    from (i) : )cos1(g6

    Mmv3 0

    ll

    )cos1(g6m3

    MV0 ll

    22

    0 sing32

    mMV l Ans.

    (b) 0cm mVV)Mm(P 0mVw2)Mm( l because = Hinge force put w and V0 then

    22Sing

    61MP l Ans.

    2l

    V V'

    m m

    M M

    Just before impact Just after impact

    Vm

    l

    lM

    w

    Fy

    M l,

    m,

    m

  • Compact ISC Physics (XII)116

    (c) For momentom of system constant, hinge force will be zero. And forthis hinge velocity just after collision will be zero. Angular momentum conservation

    about hinge. w3

    MxmV2

    0l

    ------(i). Using linear momentum conservation

    : w2MmV0

    l -----(ii) Divide both equation : 3

    2x l Ans.

    Q:1.276: (a) Using angular momentum conservation : w2MRwmR

    2MR 2

    02

    2

    0wMm21w

    (b) Work done by force F = Change in K.E.

    20

    22

    22

    F WMR2MR

    21w

    2MR

    21W

    20

    22

    20

    22wmR

    2MR

    21w

    Mm21

    2MR

    21

    Mm21

    2wmR

    W2

    02

    F Ans.

    Q:1.277: (a) Since initially 0L

    and no torque on system about centre of disc then

    L will be constant always. 0ttanconsWI 11 0dt

    dI1

    0dI1 or

    I11 + I22 = 0 (from ground frame) where 1 and 2 is angular displacement. Then

    )'(Rm2Rm 2

    12

    2 121

    12

    1m2m'm2

    m2

    m'm

    Ans.

    (b) Using angular momentum conservation : RW)t('vRmw2Rm0 1

    22

    21

    22

    1 Rm2Rm

    w)t('RVm R)m2m()t('Vm2W

    12

    1

    dt)t('dV

    R)m2m(m2

    12

    1

    =

    I dt)t('dV

    )mm2(Rm2

    2Rm

    21

    12

    2

    dt

    )t('dVmm2Rmm

    21

    21

    Ans.

    V0

    x

    m

    M

    W

    F

    RR

    mw0

    M

    R

    0

    m1

    '

  • 117

    Q:1.278: (a) Angular momentum conservation about centre of disc:

    wIIWIWI 212211

    21

    2211II

    wIwIw

    (b) Workdone by friction : 2212

    222

    11 w)II(21WI

    21WI

    21Work

    w.w)II(21WI

    21WI

    21Work 21

    222

    211

    221

    21212

    22

    22

    12

    121

    222

    211

    )II(

    w.wII2WIWI)II(21WI

    21WI

    21

    221

    21

    21 )w.w()II(

    II21Work

    Ans.

    Q:1.279: Linear momentom conservation : mV =nm Vcm + mv' nVcm + v' = v ----(i). Equation

    of restitution : 'vw2lVV cm -----(ii).

    Angular momentum conservation about inertial

    point (A): mcVrmLcm000

    cm2

    V2

    mlw12

    ml00 6lwVcm -----(iii) from (i), (ii)

    and (iii) l)n4(v12w;

    n4)n4(v'v

    for v' = 0 n = 4 and for reverse direction : v' = () ive

    n>4. 1800 rotation : Angularmomentum conservation about 00 axis. 0 + I0w0 = IW - I0w0 IwI2w 00 .

    Work done by motor : 2

    002

    002 wI

    21wI

    21Iw

    21Work

    2002

    IwI2I

    21Iw

    21Work

    IwI2Work

    20

    20 Ans.

    (b) wwIdtkdwI

    dtLd

    0000

    0

    0000 II

    wIwI

    0

    20

    20

    IIwI

    Ans.

    w1I1

    w2

    I2

    nm, l A

    V

    m

    e = 1

    Before collision

    A

    V

    m

    e = 1 A

    v'

    m

    e = 1wVcm

    y

    x

    zkwIL 00

  • Compact ISC Physics (XII)118

    Q:1.280: (a) 900 rotation: Moment of inertia ofmotor + platform = I. Angular velocity of shaft =w0. Moment of inertia of sphere = I0 . Angularmomentum about 00 axis will be conserved.Because torque about 00 is zero. Then

    0

    00000 II

    wIwwIIwI0

    . Work =

    change in energy.

    200

    20

    2200 wI2

    1wI21Iw

    21wI

    21

    20 w)II(21

    )II(WI

    21

    )II(

    WI)II(

    21

    0

    20

    20

    20

    20

    20

    0

    Work done by motor =

    0

    20

    20

    IIWI

    21

    Ans.

    Q:1.281: F.B.D. of rod : Here Ny = mg 20

    x w2mN l 2

    mg 0l . F.B.D. of hinge axis : Here

    F2 = Ny = mg 20

    x1 w2mNF l . Torque about point A : 2

    mg2

    F 01ll

    2mg

    2w

    2m 020 lll ll

    g2wg2w 2 Ans.

    BM NA

    0'

    B'

    P

    0 Iinitial

    Nw0

    final

    2l0

    mg

    A Bm,l

    2l

    w

    0'

    Nx

    Nyw

    mg

    F2F1

    NxNy

    A

    Q:1.282: (a) Resolved angular velocity : sinw12

    mL2l

    Ans.

    (b) icossinw12mjsinw

    12mL

    212

    2

    i l

    icossinw12

    mjsinw12

    mL2

    122

    1f

    isinw12mlL 2

    2

    2sinw

    12mL

    21

    (c) cossinw12mcosLW

    dtLdL

    dtLd 221

    24

    sinwm 2221 Ans.

    C

    wm,l

    x

    y

    w

    wsin wc

    os

    initial final

    wsin

  • 119

    Q:1.283: (a) Here w = Angular precession velocity. Then gyroscopic torque Lx'w

    = w IW Sin ---(i). Torque of gravity about hinge : = mg l sin ----(ii). Since

    we know that gyroscopic torque is provided by gravity then mglsin = wIwsin Iwmgl'w

    Ans.

    (b) F.B.D. of rod : FH = centrifugal force. 2

    H 'wsinmF l

    F.B.D. of rod :

    Q:1.284: Moment of gyroscopic forces : Lxw1

    = 2n Iw

    wnMRw2

    mRn2 22

    . Torque of psuedo force about origin: =

    m(g+w) l -----(i) 2nRww

    l from (i) and (ii) : m(g+w) l = nmR2w

    2nR)wg(w

    l Ans.

    Q:1.285: gwtan 222222net wgmwmgmF . Now gyroscope motion : Torque

    about fixed point L'wC

    ----(i) and 1sinIw'w

    -----(ii) from (i) and (ii) : 122

    1 sinwgmsinIw'w l

    IW

    wgm'w

    22

    l Ans.

    Q:1.286: jww 11 kww . Moment of inertia about own axis :

    2mR52I . Torque of gyro

    scope : L'w

    wmR52'w 2 . Since bearing distance is l then 'wwmR

    52Fl 2

    l5wwmR2F

    12 Ans.

    w'

    l

    mwImgFH

    2w')sin(m l

    wR

    m(g+w)

    w' = 2

    0

    mg Fnet

    mw

    vertical axis

    equilibrium axis

    equilibriuml

    w'

    w, I

    22 wgm

    wl

    w1

    m1R

    y

    x

    z

  • Compact ISC Physics (XII)120

    Q:1.287: Here w is angular presession velocity and hence T2'w t'wsinm T

    t2sinm

    Tt2Cos

    T2

    dtd'w m

    . Torque of gyroscope = L'w

    Iw'w

    w2

    mrT

    t2cosT

    2 2m

    . And this is equal to

    bearing torque. t2coswmrT

    2F 2m

    l

    1t2cosFmax then lTwmr

    F2

    mmax

    Ans.

    Q:1.288: Hence w = 2 and velocity of angular presession is w

    = v/R . Then Torque of gyroscope is : L'w

    IwRv

    n2IRv

    RnIv2

    Ans.

    Q:1.289 : Here w = 2n and angular precession

    velocity is Rv'w . Here dirn of w is in

    negative y dirn while direction of w is in zdirection. We know Torque of gyro scope =

    Lx'w

    n2IR

    )Iw(R

    vv

    . Let gyroscopic force

    is F then RnIv2Fl

    RlnIv2F

    w

    w'

    l

    m, r, w2

    mrI2

    Radius of bearing = l

    v

    R

    I, w

    w'

    v

    R

    w'

    wI

    ly

    x

    z

  • 121

    Q:1.290: If temperture is increased by T then increase in lengthof rod : l = l T ----(i) . Since no increament of length hence for F should decrease its length

    in same amount. Using hooks law: strainstressE where E = youngs modules

    ll

    A/FE

    ll

    EAF

    from (i) : ]T[EAF Pressure = TEA

    F Ans

    Q:1.291: (a) Top view = is very-2 small. Supposeinternal pressure is P then. F = P(area) = P (R) lAnd this force is balanced by tensile force T. Then2T Sin /2 = F T = RPl T = PRl ---- (i).If breaking strength is m then T = (lr) m

    lPRRr:)i(from m

    Here R = r

    (b) Take a cone of apex angle . 4rP2/sinrPF

    22

    . And this force

    is balance by T : 4rP

    2T

    4rPT

    2Sin 22

    4rPT

    ----

    --(i). Now rrrrSin2T m2m ----(ii) From (i) and (ii) :

    rr2P

    4rPrr m

    2

    m

    Ans

    Q:1.292: rod ruptures where pressure is maximum and this point is P. To find force at point P :

    F.B.D. of half of rod : Contrifugal force = 2w

    42m

    l

    2w4

    A2

    ll. Then

    8wAF

    22l

    m

    22

    8w

    AFStress l

    l

    /22

    w m l

    /222 m

    l

    /2 m Ans. where m

    = Braking strength of rod = Volume density of rod

    1.6 Elastic deformation of solid body AF

    A

    Fl

    l

    /2T

    F

    T

    R l

    r

    T

    2

    T

    F

    T

    P

    r

    l

    w

    A AP

    2w4lA

    2l

    F

  • Compact ISC Physics (XII)122

    Q:1.293: F.B.D. of arch making angle at centre. Here is very-2 small. m =mass of differential element = volume = (A) (r) where A = area of cross

    section of wire 22 mrwTSin2 rw)Ar(T22

    2 22 wArT

    2rATw

    AT

    r1w 2

    wireofstrengthBreakingwherer1w

    2

    r

    n2

    r2

    1r2

    12 Ans

    Q:1.294: 2dR where R = radius of wire. Here 2T Cos

    = mg -----------(i) Again we know Stress/strain = young

    moldules = E )1ec(cos22

    4dET

    2

    =

    )1ec(cos4dE 2

    ----(ii) from (i) :

    cos2mgT ---(iii) from

    (ii) and (iii)

    1

    sin1

    4dE

    cos2mg 2

    -----(iv). Here

    cot2

    h l ----(v) from (iv) and (v) which calculation is difficult: Ed2mg

    23h l Ans

    Q:1.295: Area of cross section = s young modules = E mF0a .

    Since plank is accelerating and at each cross-section force willbe different. So stress will be different then. Now force

    mFxmamF 0x l

    lxFF 0 Now

    dx)x(dEStrain

    Stress sF

    dxEsxFdx

    ESF)x(d 0

    l

    l

    l 00 xdxsE

    F)x(d ES2

    Fx 0l AnsAns

    w

    r22

    m

    T2

    2T

    lA A

    P

    mg

    Th

    l

    T

    mg

    lF0m

    S

    dx

    F

    x

  • 123

    Q:1.296: Area of cross section = s. F.B.D. of dr part : - df (dm)

    rw2

    r2

    F

    0rwdrmdF

    l l

    r22 rw2mF

    ll

    2

    2r2

    12

    mwFl

    l Now E

    dr)r(dE

    SF

    StrainStress

    ll

    l0 22

    SE2mw drr1dr

    SEF)r(d

    2

    Ew

    31r

    32l where ls

    m AnsAns

    Q:1.297: We know ES

    F

    ll Vold = Sl

    SEF

    SEF

    llll SE

    Fnew

    lllll

    SEFl ll

    Also D

    D

    ll SE

    RDD

    SEDFDD

    ll

    Now

    l

    4DV

    2

    old

    lllll

    222

    new DD1

    4D)(

    4)DD(V

    lll 1

    DD21

    4D2

    ll

    DD21Vold

    )21(SE

    FSSEF)21(V

    DD2VVVV oldoldnewold

    lll

    )21(EFV l Ans

    Q:1.298: (a) area of cross section = s. F.B.D. of part x : Now

    EStrainStress

    E

    dx)x(d

    ST

    where d (x) is elongation

    in part dx.

    l ll

    ll0

    22

    E2g

    SLm

    SE2mgx)x(dE

    smxgdx

    rl

    dr

    w m, l

    l

    l

    DD

    F = 1000N

    Cross Section = S

    dxTl

    x

    weight of part x

    gl

    mxT

    T

    x

    gl

    mx

  • Compact ISC Physics (XII)124

    Eg

    21xthen

    Smwhere

    2ll

    (b) This part is same as Q: 1.297. ;

    4DV

    2

    old

    )(4

    )DD(V2

    new ll

    lll 1

    DD21D

    42

    old

    oldnew

    old VVV

    VV

    = ll

    )21( . Then

    take value DD

    of using poissons ratio .

    Q:1.299: (a) Here we have to find decreasement ofvolume due to x dirn, y dirn and z dirn pressure and addall three which will be answer. where S is surface areaS = l1l2

    EP

    1EP

    EP

    3new

    33

    3

    33

    llll

    ll Also

    EP

    1

    1

    33

    11

    ll

    ll

    ll

    . Similary :

    E

    P11new

    1 ll

    E

    P12new

    2 ll

    2

    321new EP1

    EP1V

    lll

    EP21

    EP1321 lll

    EP

    EP21

    VV

    old

    new )12(EP1

    VV

    old

    new )12(EP

    VVV

    old

    oldnew

    )21(EP

    VV

    VVV

    old

    newold

    )21(

    EP

    VV

    This is only due to force from x.

    Similarly : )21(

    EP

    VV

    This is only due to force from y )21(

    EP

    VV

    This is only due

    to force from z Total decreasement of forces are applied by all direction : allofsumVV

    net

    )21(EP3

    Ans

    (b) Compresibility : dP1

    VdV

    dP

    dVV1

    dP = Applied pressure

    )21(EP3strainVolume

    dPdV

    PdP )21(PEP3

    . Then )21(E3

    AnsAns

    l3

    l2l1

    P

    P

    z x

    y

    0

    P

    l3

    l2l1

    P

  • 125

    (c) Compressibility can not zero if we applied forces from all direction. Then > 0 0)21(E3

    < 1/2

    Q:1.300: This is a cantilever and bending moment of cantiliver is given by : RIEM (At point (x,y) where

    radius is R). F.B.D. of cantiliver in dotted part b= width of cantiliver. Torque about point P :

    2)x(bhg21

    2)x1(mg l and I = Glometrical moment of inertia w.r.t. neurtal line See F.B.D. of cross

    section of rod :

    2

    h

    2h

    32

    12bhbdyyI . Then

    R12EbhM

    3 . This moment must be equal to torque of mg for

    rotational equal 0xat)x(bhg21

    R12Ebh 23 l

    g6EhR 2

    2

    l

    Q:1.301: (a) 22

    dxhdEI)x(N . F.B.D. of length of (l-x) : Now N(x) = No EI

    Ndx

    ydNdx

    ydEI 022

    02

    2

    1CxEINo

    dxdy

    0dxdy0xat as shown in figure. Then C1 = 0 EI

    xNdxdyNow o

    22

    o CEI2xNy . At x = 0 y = 0 C2 = 0 then EI2

    NyxAtEI2xNy

    20

    20 ll from Q: 1.300:

    12aIahbHereI

    4

    123bh

    y

    0

    (x, y)

    hl-x

    bhP

    M

    bhg)xl(mg

    y

    x

    h/2

    h/2 dy

    b

    y

    (x,y)

    y

    No

    xl-x

    No

    N(x)

  • Compact ISC Physics (XII)126

    (b) (x,y)F

    l, xP

    F.B.D. of length (l-x): Here F1 = F l, x

    F

    N(x)

    F1

    N(x) = F

    (l-x) )x(Fdx

    ydEI 22

    l )x(EIF

    dxyd2

    2 l

    dx)x(EIF

    dxdyd l 1

    2C

    EI2Fx

    EIFlx

    dxdy

    0C0dxdy0xat 1

    EI2Fx

    EIxF

    dxdy 2

    l

    132

    CEI6

    FxEI2xFy l at x = 0 y = 0

    C2 = 0 EI6Fx

    EI2xFy

    32

    l. Put x = l

    EI2xF

    EI6F

    EI2xFy

    333 lll

    EI3xFy

    3l AnsAns

    Q:1.302: By symmetry F1 = F2 = F/2. F.B.D. of half of length : Then F3 must be equal to F1 F3 = F1 = F/2. Now

    our question is as : Similar as Q: 1.301 : 203

    00 HereEI3

    Fy lll 2F0F 8EI23Fy

    3

    l

    EI48Fy

    3l

    Q:1.303: (a) F.B.D. of (l-x): 2

    )x(bhg)x(N2

    l

    22

    2)x(

    2bhg

    dxydEI l 22

    2)x(

    EI2bhg

    dxyd

    l

    21

    3CxC

    12)x(

    EI2bhg

    dxdy

    l

    EI6

    bhglC0dxdy0x

    3

    1

    . Again 12

    )x(EI2

    bhgy4

    l

    21 CxC at x = 0 y = 0 C2 = EI24bhg 4l

    at x = l y = C1 l + C2 EI8bhgl

    EI24bhgl

    EI6bhgl 444

    EI8bhg

    23y

    12bhIand

    43 l

    F1 F2F y

    x

    F3

    F1y

    x

    F/2y

    l l

    l

    (x,y)

    xl-x

    lN(x)

    2)xl(

    2)xl(

    bhg)xl(

  • 127

    (b) Here F1 = mg/2 F.B.D. of half of portions Similar as part (a) 24

    Ehg

    25 l

    Ans

    Q:1.304: Torque about origin : )x(h31dxxh)x(N 33

    x

    2 llll

    ----(i). Now we know 2

    2

    dxhdEI)x(N

    and 2233

    dxhd

    12hE)x(Nthen

    12hI ll ------(ii) from (i) and (ii): )x(h3

    1dx

    yd12hE 332

    23 lll

    14

    32 C4

    xxEh4

    dxdy

    l 0C0dx

    dy0xat 1 . Now 2523

    2 C20x

    2x

    Eh4y

    l at x = 0

    y = 0 C2 = 0

    20x

    2xl

    Eh4y

    523

    2

    put x = l

    2

    5

    Eh59y l Ans

    Q:1.305: (a) Here 1 = shear strain. Take a differential length (ds) on circumference. If we rotate this element

    by a angle then will be shear strain like above figure. Then 11

    StressStress

    1ds)r(F

    ds)r(dF 1 . Then rdsrrdFd 1 Net torque = N then

    rr2dsrrN 21r2

    01

    also we know

    lll rr

    r 111

    lrrr2N 2

    rr2N 3

    l = Torsion angle

    (b) Take differential ring at radius x. then dxxx2dN 2l

    from part(a)

    r

    0

    32 dxxx2dNl l4

    r2N4

    Nr2

    4

    l

    F1 F1

    mg

    F1 l/2

    F = mg/2

    Because F + F1 = 0

    x0

    dx

    )x()dxlh(a)dm(dF =

    volumemaes

    1

    dFds

    r

    = = Torsion Angle = Shear coefficient

    dxx

  • Compact ISC Physics (XII)128

    Q:1.306: from Q.No. 1.305:

    2

    2d

    21d

    dxx2dN 3l

    16dd

    42N

    41

    42

    l

    4142 dd322N

    l Here = G then 4142 dd8x4

    GN l

    l32

    ddGN4

    14

    2 AnsAns

    Q:1.307: from Q.No. 1.305: l

    4rN w.torquePower w.N

    NW)Power( max l2wr4

    GHere l2

    wrG)Power(4

    max

    Q:1.308: dF on differential element of length dr : 2122t rrr)rdr2(mr)dm(a)dm(dF

    r

    2r

    32

    12

    2drr

    rr

    m2rdFd 2122

    42

    42

    14

    21

    22 rr2

    rrmrrrr4

    m2

    . Note in integration

    range take from r2 to r1 because elastic torque will be equal to torque of Pseudo force in region (r2-r)

    Q:1.309: we know strainxstress21

    volumeenergyelastic . Also we know stress = E strain

    2volume

    energyelastic )strain(E21

    2E21

    lAE21energyelastic 2

    pmE

    21 2

    .

    pmE

    21energyelastic 2 Ans

    Q:1.310:(a) g)x(rT 2 l g)x(rTStress 2

    l we know

    strainxstress21

    volumeenergyelastic E

    StressStrainEStrainStress

    dxrxE

    )stress(21energyelasticdU 2

    2 dxr

    Eg)xl(

    21U 2

    222

    dx)x(Erg

    21

    0

    2222

    l l

    l

    0

    3222

    3)x(

    E2gr

    l 3222 grE6

    1U l AnsAns

    r2

    r1

    m

    drr

    dF

    r

    l

    m A

    l

    r x

    T

    dx

  • 129

    (b) EStrainStress

    dx)dx(dStrain

    Eg)x(

    l

    0

    0 Edx)x()dx(d

    l

    l l

    02

    2)x(

    Eg

    l

    ll

    E2

    g 2ll E2

    g 2lll

    from (a) : 2

    2g

    E6lrU l

    22E2

    E6r

    lll

    22

    E3r2U

    lll Ans.Ans.

    Q:1.311: (a) Make F.B.D. of bending: If radius is R then

    2

    Rr2 ll increase in length of AA = x

    + x length of neutral surface = R2 Rx

    2Rx2strain

    )dx()2R(Volume

    )dx()2R()strain(E21dU 2

    2

    2R12

    hEdx2RRxEU

    32

    . Now : for complete circle : 2 =

    2 = = R = l/2 put then l/Eh61U 32

    lm h

    l Sh

    R

    A'

    Neutral Surface

    xdx

    Here is very-very small

    Q:1.312: l2r)strainxstress(21dE and

    l

    GrGStress and this

    stress will be constant in next d rotation then. drGr21dE 2

    l

    drrGr

    21 2

    l

    d2

    rGE2

    l l4rGE

    24 AnsAns

    Q:1.313: from Q: 1.312: l4

    rGE24

    l4rG4

    drdE 24

    drrGdE24

    l

    )rdr2(drrG

    volumeEnergy

    )rdr2(dE 24

    ll

    2

    22 rG21

    dVdE

    l Ans

    d

    d

    r

    l d

    lrrrd

    d

    R

    drr

  • Compact ISC Physics (XII)130

    Q:1.314: We know dPdV

    V1

    . Here dP is pressure at depth x due to weight of water or hydrostatic

    pressure then. then ]gx[VdV l . Also we know : strain)stress(2

    1V

    dV when B= Bulk modulus =

    1

    2)strain(B21

    2)gx(1

    21

    2)gx(21

    dVdE

    . If x = h

    then 2)gh(21

    dVdE

    Ans

    1.7 Hydrodynamics

    Q:1.315: Make F.B.D. of AA'BB'CC' : AA' 0

    F1 CentreR

    F2 . Since system is in circular

    motion, (F1-F2) will provide required centripitalforce. And hence 2121 PPFF because F1and F2 will only arised due to pressure difference.Now, if we study motion of all particle in this differ-ential region then.With whatever mechanism, if particle at A go toward A its kinetic energy will be increased because of workdone 12A'A21 VVVVHenceFofthatthangreaterisF . Since velocity is increased, density ofstream line will be increased.

    Streamline density variation analysics : Here P3 = P4 = P5 = P6 V3 = V4 =V5 = V6 . And hence density of stream line (Distance b/w two streamline) atline joining (3-4) and (5-6), at each point will be same. Now P1 > P2 V2 > V1.And density of streamline will be increased if we are going from (1) to (2).Using continutity equation at (1) and (3) V1 > V3 and continuty equation at (2)and (4): V2 > V4. Now if we take force concept alongle 2-4 then P2 > P4 and P1> P3

    Q:1.316: Using bernaullis equation at S1 and S2 :

    222

    211 V2

    1PV21P -------(i) Using continuity

    equation : S1V1 = S2V2 122

    1 SVSV . Put in (i)

    2222

    1

    22

    22

    1 V21P

    SVS

    21P 122

    1

    222

    2 PP1SSV

    21

    1SS

    PP2V

    21

    22

    1222

    l

    r

    Cross Section = Sdx

    x

    0Centre

    A

    A'

    C'C

    B B' A A'

    (5)

    (4)

    (6)

    (3)

    (2)

    (1)

    P2S2P1S1

    x1x1

    V2

    h

    V1

  • 131

    1SS

    hg2

    1SS

    hg2V

    21

    22

    21

    22

    2

    . 101 gxPP )hx(gPP 102 hgPP 12 . Volume flow

    rate 21

    22

    1122SS

    hg2SSVSdtd

    where dt

    dQ s/volume 21

    22

    12SS

    hg2SSdtdQ

    Q:1.317: At point (1) point (2) pressure difference is only arised dueto dynamic pressure. Now bernaullis equation at (1) and (2) :

    0PV21P 2

    211

    2112 V2

    1PP ----(i). At line M-M pres-

    sure will be same. Then)xx(gPhg)xx(gP 2120211 hgPP 012 .

    Now put in (i) : 210 V21hg

    hg2V 01 .

    hg2SSVdtdrateflowVolume 01

    Ans

    Q:1.318: P0 = atmospheric pressure Bernaullis equation between (1) and

    (2): 0V21PghV

    21P 21011

    2111 . Here V1

  • Compact ISC Physics (XII)132

    )xhx(4R 22 for 0dt)R(dThen:maxRmaxR

    22 . Then 2

    hx0x2h

    22

    max h4h

    2hh4R

    hR max h= 50 cm

    Q:1.320: Bernaullis equation at point (1) and (2) along stream line

    )xhh(gOPV21P 00

    21 -----(i) Here gxPP 01

    in (i) gx)hoh(gPv21gxP 0

    20 0

    2h

    g2Vh

    Q:1.321: Bernaullis equation between (1) and (2) : 232

    1 V21Pgh)0(

    21P

    230 V2

    1ghPP ---(i) Now continutity equation between (3) and (2) AA2V2 = A3V3

    321 Vr2VR2 rgh2R

    rVRV 1213 put in (i) : 2

    21

    0r

    gh2R21ghPP

    2

    21

    0r

    R1ghPP Ans

    h

    h0

    xV

    free water surface

    (2)

    (1)

    Q:1.322: Method 1: Here we know Wall forces = K.E. WF + Watmosphere = K.E. Here work done by atmo-

    sphere = 0 Because Power due to atomosphere : e010 sVPSVPdtdwPower from continuity equation :

    R1

    (3)

    r

    R2

    (1)

    h

    (3) (2)

    = Thickness of orfficer R1

    V1 Ve(2)

    S

    F(1)

    s A

    V1P0s

    P0S

    Ve

  • 133

    SV1 = sVe Power of atmosphere = 0 then WF = K.E. Bernaullis equation between (1) and (2)

    along streamline. 202

    11 Ve21P)V(

    21P and

    20101 Ve

    PP2s/FPP

    )s/F(2PP2Ve 01

    Since F = constant Ve = Constant

    )s/F(2

    -----(i) . Now work done

    in differential term : 2F Ve)dm(21dW 22F MVe2

    1Ve)dm(W 2

    F VeV21W -------(ii)

    Also, using volume conservation : )s()tV(V e stVVe . Put in (i) :

    22

    3

    Fts

    V21W AnsAns

    Method 2 : Work done by F : WF = F (displacement) = F (V1t) SFV)tSV(

    SF

    1 . Also from (i)

    in method (2) 22

    SF

    stV

    22Ve

    22

    2

    22

    2

    Fts

    V2

    1Vts

    V2

    W Ans

    Q:1.323: Suppose at time t, x length of water is inside tube then. gx2Ve .

    Now using continuity equation: VesSV1 gx2SsV1

    Again

    0

    dtg2Ss

    dtdx

    0

    21

    0dtg2

    Ssx)dx(

    g2Ssx2

    0

    h

    21

    g2Ssh2 g2S

    s AnsAns

    Q:1.324: Method : 1. Bernaullis equation w.r.t. rotatory axis :

    .constgz)rw(21V

    21P 22r equation b/w point (1) and (2):

    0w21V

    21P0w)h(

    21V

    21P 22220

    22210 ll here

    0V21 2

    1 then 22222

    2 w)h(21w

    21V

    21

    ll

    22222 )h(wV ll )h2h(w 2222 lll =

    1h2hw 22 l 1

    h2whV2

    l AnsAns

    Ve

    h

    x

    Ss

    V1

    s

  • Compact ISC Physics (XII)134

    Method: 2 Bernaullis equation between (2) and (3): 0V21P0)0(

    21P 230

    22

    2302 V2

    1PP -------(i) Calculation P2-P0 : dF = (dm) xw2 2xw)dxS(S)dP(

    h

    2P

    PxdxwdP

    2

    0 l 22202 )h(2

    wPP ll )h2h(2w 22 l put in (1)

    23

    22V

    211

    n2

    2hw

    l 1

    h2whV3

    l Ans

    Q:1.325: At differential element : dsdPgCos

    dtdV

    dPds)(cosgvdv

    dPcos)ds(g

    2

    1

    2

    1

    2

    1

    P

    P

    z

    z

    V

    VdPdhgvdv

    1212

    21

    22 PPgzgz

    2V

    2V

    22

    2212

    11 gzV21PgzV

    21P Ans

    Q:1.326: We know force 2AVF

    Then sgh2gh2SSVF 211

    )hh(sg2))hh(g2(SF2 Fnet = F1-

    F2 hsg2Fnet Ans

    lh

    B

    w

    (1) (2)

    (3)A

    w

    x

    dx

    V2Z2

    dh

    g

    Z1

    V1

    (1)

    s

    (2)

    Pdtdv

    dsdP

    dtdv

    dsdh

    ds

    )hh(g2V2 h

    gh2V1

    h

    F1F2

  • 135

    Q:1.327: Here gx2V1 Now force is : 2AVdV gx2)dxb(

    l

    lhxdxgh2dF )h2(gbF ll Ans

    Q:1.328: Using continuity equation : AQVAVQ 11 . F.B.D. of tube : A = r2 = Area of cross-

    section 222

    1 AVFalsoAVF . 222

    21rQ

    AQFFThen

    Torque about O : 2

    2

    0r

    Q

    l

    l

    x

    dxV1

    b

    h

    Q:1.329: F.B.D. of water inside tube : where F = force due to change in momentum Fnet on tube

    water : F)sS(PsPSghPF 000net FghsFnet -----(i) Calculation of F :

    2121 VVQVVdtdm

    dtdPF ----(ii) where Q = volume flow in one second. Here

    sQV;

    SQVAndgh2V 212 Put in (ii) :

    sSsSQ

    sQ

    sQQ

    dtdP 2

    And

    FsS

    sSgh2sdtdPgh2ssVQ 22

    Then S

    )sS(ghsS

    sSgh2sghSF2

    2net

    S)sS(ghF2

    net

    Fs)ghP( 0

    )sS(P0 sP0

    h S

    V2

    sV1 dm

    V2

    V1

    dm

    l

    V10

    V1

    r

    F1

    F2

    0

  • Compact ISC Physics (XII)136

    Q:1.330: Method : 1 (a) Dotted line express isobaric surface. Then F.B.D. of one of the dotted line.Bernaullis equation between point (1) and (2) from rotatory reference frame.

    200 )xw(2

    1gh0P00P . Then 22wx21gh . Here x = r then g2

    wxy22

    2

    2r

    g2wy

    (b) Bernallis between (1) and (3): 200 )xw(210P00P 20 )xw(2

    10PP Ans

    Method : 2 Pressure equation from rotatory

    frame : 12

    0 P)xw(21P 2

    20 P)xw(2

    1P

    (a) gy)xw(21PP 212 . Here P1 = P2 = P0

    22

    xg2

    wy

    Ans (b) 213 )xw(2

    1PP 203 )xw(21PP

    Q:1.331: Top view Viscous force at (dx) element at lower surface : hxw)dxx2(

    dzdVAdF

    Net viscous force at (dx) element from both lower and upper surface: dxxh

    w4dF2dF 2net

    . Torque

    due to this force : dxhwx4xdFd

    3

    net

    Power due to this torque dxhwx4wddP

    3

    R

    0

    32

    net dxxhwx4)Power(

    hRwx)Power(

    42

    net

    x

    y

    w

    0

    y

    x(1)

    (2)

    x

    y

    w

    P0(1) (2)

    x1

    x2

    (1)

    (2)

    y

    x (3)

    R

    dx

    h

    h

    w

    x

    w

    dF

    dxx

  • 137

    Q:1.332: Cross-sectional view viscous force on this differential

    element: drdvrdx2dF where 2rdr = curve cross-sectional area.

    Now drdvr2

    dxdF

    in laminor flow CttanconsdxdF

    then

    CdrdVr2 r

    drcdV2 1CrlnCV2 ----(i). Using

    boundary condition : 01 VVRr then 110 CRlnCV2

    ------(ii) and 2Rr 21 RlnCCthen0V from (ii) and (iii):

    21R

    R0 RlnCCand

    lnV2C

    21

    put in (i) 22R

    1R0

    Rrln

    ln

    VV

    Q:1.333: (a) rdx2drdwrdF

    . Torque due to this force :

    rdx2drdwrrdFd 2

    drdwr2

    dxd 3

    . For laminor

    flow this torque is constant then Cdxd

    now dw2rdrc

    drdwr2C 3

    3

    12 CrCw2 ----(i). To find C, C1 use boundary condition: (i) 21 wwRr

    (ii) 0wRr 2 then 121

    2 CRCw2 -----(ii) 12

    2C

    RC02 ---(iii) from (ii) and (iii) find

    C1 and C2 and put in (i):

    22

    12

    12

    1

    22

    21

    2 r1

    R

    1

    RR

    RRww Ans

    Q:1.334: (a)

    2

    2

    0 Rr1vv

    2

    2

    0 Rr1V)rdr2(v)rdr2(dQ

    drRrrV2dQ

    R

    02

    3

    0

    2

    42

    0R4

    R2

    RV2Q 2

    RVQ

    20 AnsAns

    R2

    R1

    V0

    dxdr

    r

    x dr

    dx

    R2

    R1dx

    dr

    rw2

    r

    dr

  • Compact ISC Physics (XII)138

    (b)

    drdwr2

    dxd 3

    22

    12

    12

    2

    22

    21

    2r1

    R1

    RRRR

    ww

    32

    12

    2

    22

    212

    r2

    RRRRw

    drdw

    3

    12

    12

    2

    22

    212

    Rrdrdw

    R2

    RRRRw

    1 2122212

    22

    RRR

    Rw2

    . Then

    2

    12

    21

    2223

    1 RRR

    Rw2R2

    dxd

    21

    22

    22

    212

    RR

    RRw4dxd

    (c) from option (a) : 20RV21Q ---- (i) And from poiseuilles law :

    l

    8

    PPRQ 214

    . Comparing

    (i) and (ii) :

    l

    8

    PPRRV21 21

    42

    0 20

    21R

    V4PP

    l Ans

    Q:1.335: If we see carefully, we get that heights aredifferent in pipe (1) and (2). While velocity of flow atbottom of both pipes are same because cross-sectionarea of horizontal pipe is same at each point, then usingcontinuity equation, we can say that velocity of flowis same at each cross-section of horizontal pipe. Thisis because of friction loss and bent loss in pipes stillwe can say that dotted line show isobaric surface. Height

    above isobaric surface provide, velocity at efflux. Then )hh(g2)AC(g2V 3e . Calculation

    of h : Using similar tringle properties. cm3020x23

    2h3h

    23

    hh 22

    ll

    h3-h = 35 cm - 30 cm

    = 5 cm s/m1105g2V 2e 2v)dm(

    21dk

    2

    2

    20

    Rr1V)rdr2(

    21

    l

    drRr1rVK

    2R

    02

    220

    l 20

    2 VR61K l Ans

    R

    l

    vr

    ,r dr

    l l l

    h1

    h3h2

    pipe (2) pipe (1)c

    h

    B Vc

  • 139

    Q:1.336: We know Reynolds no. for circular cross-section is

    defined as

    lvRe where l = length of charactersitic and for

    circular tube with full of water. D = 2R l = D

    vDRe

    22

    11

    21

    11

    2

    1RvRv

    DVDV

    ReRe

    ------(i) Also we know :

    222

    211 RVRVQ put in (i) : 2

    1

    22

    2

    1V

    R

    RV

    )0(0

    x0

    1

    2

    2

    12

    1

    22

    2

    1er

    er

    R

    R

    R

    R

    R

    R

    Re

    Re

    x

    2

    1 eReRe Ans

    Q:1.337: Maximum on value of Reynolds no. for glycerin for laminor flow :

    DVR maxg

    1

    111g r2vR

    . Reynold no. for water :

    2

    122w r2vR

    We know : Reynolds no. for turbulent flow

    > that of laminor 1

    111

    2

    122 r2vr2v

    122

    22112 r

    rvv

    122

    22112 r

    rvv AnsAns

    Q:1.338: F.B.D. of sphere : = density of glycerin at maximum velocity, terminal velocity will be

    attained then. gR34gR

    34rV60F 33net

    2lmax gr92V

    Rynold no. :

    DVR max 2l grP9

    2r2x215.0

    2l2 grr89 ----(i). Put density of

    33363 m/kg1026.1m101026.1 l 33lead m/kg103.11 put in (i) : get mm25r

    D = 5 mm

    R

    R1

    v1

    R2

    v2

    x0

    D

    r

    gR34 3

    maxrV6

    mg

  • Compact ISC Physics (XII)140

    Q:1.339: Where 0 = density of olive oil. Since 0gR34

    03 Because mm10

    23R 3 which is

    very-2 small Then rv6mgFnet we know rv6mgdtdvmFnet

    dt)rv6mg(mdV

    1max t

    0

    1001V

    0dt

    rV6mgmdV

    1

    max

    t0

    100V

    )rV6mg(r6

    lnm

    1max t

    mg100rV6mg

    lnr6

    m

    .

    Calculation of Vmax : At time of 0rV6mg0F maxnet r6mgVmax put in (i)

    nln18

    dt2

    Ans

    1.8 Relativistic Mechanics

    Q:1.340: We know 22

    cv0 1 ll

    21

    2

    2

    00cv11l lll

    21

    2

    2

    0 cv11

    l

    l

    0llll

    Here1

    cv1

    2

    02

    2

    02

    2 21cv1

    ll

    , 0

    22 c2V

    ll

    ----(i )

    1005.05.0100

    0

    ll

    ll

    , put in (i) : 22 c

    1005.02V

    V = 0.1C

    Q:1.341: (a) Here 2

    3a60sina1 l length l appeared from reference frame (x-y): 22

    cv11app ll

    22app cv123a

    l Now app22

    0 2a ll

    2222 cv1

    4a3

    4a

    2

    2

    cv34

    2a

    rV6gR34 3 0

    mg

    l0V

    a

    acB

    A

    al1

    x

    v

    y

    600

    a/2c B

    A

    lappl0l0

  • 141

    Perimeter (P) = 22

    cv00 34aaa ll

    2c

    2v341aP Ans

    a3)21(aPcvfor

    (b) Length AC : 22AC c/v1a l . There will no change of length of BD while there is change

    in length of AD: 22

    cvAD 12

    al . Now appeared length AB : 2

    2

    cv2AD

    2AD 42

    a43a ll

    Now perimeler (P) : 22

    22

    cv

    cvAB 4a4aAC2 l

    2c

    2v2c

    2v 14aP Ans

    v

  • Compact ISC Physics (XII)142

    Q:1.343: (a) BD = radius of cone = r0 length of AD = height of cone = l0 00rtan

    l . Then

    lateral surface area secrS 000 l from this reference frame length along x axis doest not appear

    to change. Hence from this reference frame : BD = r0 And length l0 will be appear as l : 2c

    cv0 1 ll

    220

    00

    cv1

    rr'tan

    ll

    put value of and v in above function : 1 = 590

    A

    BC

    D

    r0

    l0

    C54v

    m4S45 200

    (b) A1B1 = l sec 1 Lateral surface area : 10 secr l 21122200 tan1cv1r l2

    1

    22

    222

    00cv1

    tan1cv1r

    l

    21

    22

    222220

    cv1cvSeccv1

    SecS

    21

    2122

    222220

    cv1

    cvSeccv1SecS

    21

    2

    22

    0 ccosv1SS

    . Put value of v and and

    S0 S = 3.3 m2

    Q:1.344: Time measured by moving dock : t; Actual time of moving clock : t-t

    we know 22 cv1

    ttt

    22 cv1ttt

    222

    cv1t

    tt

    22

    2222

    tt)tt2(

    t)tt(tcv t

    ttt2cv

    v = 0.6 108 m/s

    Q:1.345: l0

    v

    v1 = 0 v

    t l ------(i) tv

    l Now . Proper length = l0 =

    length of rod appeared by that frame from which rod will be appear to stationary. Then

    y

    x

    v

    0

    A'

    B' C'

    '

    r0

    l

    D'

    221

    cv1

    tantan

  • 143

    22022

    0cv1

    cv1

    llll now 22

    01

    cv1vvt

    ll Then

    2

    22

    2

    22

    21

    'tt

    tc1

    tc1

    tt

    l

    l

    2

    222'tt1tcl

    2

    'tt1tc

    l

    l0

    v

    v1 = 0

    y

    x

    v

    y

    x

    Q:1.346: Assume velocity of particle w.r.t laboratory frame is v then 220

    cv1

    tt

    2022t

    tcv1

    20

    2

    2

    t

    t1

    cv

    20t

    t1tcv

    . Distance travel in laboratory

    frame is : 2

    0t

    t1tCcetanDis

    Ans

    Q:1.347: (a) We know 220

    cv1

    tt

    2022t

    tcv1

    22220 cv1tt 220 cv1tt 220 cv1Vt l

    (b) Actual distance travel is : distance = Actual velocity x proper time = 220 cv1tv l Ans

    Q:1.348: tC43

    l -----(i) We know 220 cv1 ll 220

    cv1

    ll

    2222 cv1

    tv

    cv1

    tC4/3

    220 cv1

    tv

    l

    Ans

    Q:1.349: We know proper length of rod does not change w.r.t. reference frame then 212201 cv1x l

    y

    xk

    l

    v = 0.99c

    vl

    c99.0lt

    3/4 C 3/4 C

    l

    TARGET

  • Compact ISC Physics (XII)144

    -------(i) 212202 cv1/x l -------(ii) dividing both : 22

    2

    1 cv1xx

    2

    122xx

    1cv

    2

    1xx

    1cv put in (i) : 210 xx l Ans

    Q:1.350: Time to move from A to 0: r

    2200

    Vcvr1

    t

    ll

    2

    22

    02

    0rc

    Vr1tV ll

    22

    20

    0r

    tc1

    t2V

    l

    l

    Ans

    Q:1.351: )vc(2tVtCt A2AA

    ll

    )vc(2tVtCt B2BB

    ll Here tA < tB means later count occur first. AB ttt

    )vc(2)vc(2

    ll 2222 vc

    Vvc

    vcvc2

    ll )cv1(C

    t 22c

    v

    l. Assume v/c

    )1(Ct 2

    l Ans

    Q:1.352: (a) Since rod is moving with speed V with respectto this frame it length will be appear less than proper length

    Then xA - l = VtA )tt(VxxVtx

    BABA

    BB

    l

    )tt(V)xx( BABA l now proper length : 22 cv10 ll

    22

    BABA0

    cv1

    ttVxx

    l

    AnsAns

    v

    0 1 2 3 4

    x1

    y

    x

    vx2 y'

    x'v

    l0 l0

    l0

    2

    2r

    0 c

    v1l

    Ax

    y

    0

    Vr

    l/2 l/2

    0restv v

    BA

    x(0,0,0)

    y

    BV

    ( , 0, 0)lA

  • 145

    (b) Here 0BA xx l 0BA xx l 0BA xx l Then

    23BA0

    0cv1

    ttV

    ll

    220BA cv11V

    tt l or

    23BA0

    0cv1

    ttV

    ll

    220BA cv11V

    tt l AnsAns

    Q:1.353: (a) Reading of clock at B: 220 cv1VV)B('t

    ll

    (b) Appeanent length of AA from A: 220'AA cv1 ll 220 cv1

    V)A(t l . When B will be

    at B then distance traul by point A in frame of rod AB will do Then V)'A(t 0l Ans

    Q:1.354: Lorentz transformation of time 22

    2

    cv1

    cxVt't

    .

    If take t =0 for k frame then 22

    2

    cv1

    cxV't

    . 0't0xIf 0't0xIf

    Q:1.355: Since both show zero reading at origin. If clock (k) reads time t and clock (k) reads time

    t then. according to lorentz transformation. 22

    2

    cv1

    cxVt't

    according to queation : t = t. Then

    tcv1

    cxVt't22

    2

    differentiate w.r.f. time 1

    cv1

    cVVxt

    22

    2

    22

    2

    x cv11VcV we know cv

    2x 11

    cV Ans

    Q:1.356: Suppose a shot is made and it hit the target after time

    t then from k frame (mouing with V velocity) 22

    2

    cv1

    cvxt't

    22

    2

    cv1

    cVdt't

    . If means target is hitted before shot is fired then. 0cdV't0't 2

    A' l0 B'V

    A

    l0Bl0

    x

    VK'

    K

    target

    x = 0t = 0

    x = dt = t

    K frame (stationary)

  • Compact ISC Physics (XII)146

    2cdV't tcdV 2 x2 V

    tdifcV

    td

    . Then

    2x cVV . It is possible only of

    one of the Vx > C or V > c which is not possible. It prove that target will be after shot made.

    Q:1.357: (a) We know in variant formula : 212212

    212'12

    '12

    2 ttcxtc in frame k both events occure

    at same point then 0x '12 then 21221222122122122 xxttcxxtc'tc =

    212212 xxctct = 162516 22 282'

    12103

    16t

    ns13s103.1103

    4t 88112

    (b) in frame k if both occure simultaneously then 0t112 16xtct212

    212

    22'12 m4t

    112

    Q:1.358: We know 2

    x

    x'x

    c

    VV1

    VVV

    2x

    22y

    y

    cVV1

    cv1V'V

    Then net velocity appear from k

    frame : 22net y'Vx'VV

    2

    2222x

    net cVVx1

    cV1VyVVV

    Ans

    x

    y

    K

    Vy

    Vx

    x'

    y'

    K'

    V

    Q:1.359: v1 = 0.5C v2

    v2 = 0.75C Velocity of approach is taken from laboratory frame hence

    Velocity of approach = V1 + V2 = 0.5C + 0.75C = 1.25C Ans

    Relative velocity : (Vr) : V1 V2

    K'

    221

    21x

    c

    VV1

    VV'V

    221

    21x cVV1

    VV'V

    Q:1.360: 2222c

    )V(rel 1

    V2

    cV1

    V2)V(1

    )V(VV

    now l0 l0V

    V

  • 147

    apparent length is : 22

    0c

    relV1 ll

    2222

    0c1

    V21

    ll 222

    01

    41

    ll

    2

    2

    011

    ll Ans

    Q:1.361: 2By

    Bx

    Ay

    1AxVV0V

    0VVV

    From reference frame A : velocity

    components are as shown : 121

    1'Bx VcVo1

    V0V

    22122

    1

    2212'

    By cV1VcV01

    cV1VV

    Then

    2By

    2Bxnet 'V'VV 2212221net cV1VVV

    2212

    22

    1net cVV

    VVV

    AnsAns

    Q:1.362: To find velocity of particle in k frame assumecomponents of velocity in k frame is Vx and Vythen using lorenz transformation :

    2x

    22

    y2x

    xx cVV1

    cV1Vy'V;

    cVV1

    VV'V

    Then

    from k : VVcVV1

    VV0 x2

    x

    x

    22y2

    22cV1'VV

    cVV1

    cV1Vy'V

    . Now

    2

    22222222

    net c'VV'VV)cV1('VVV . Hence we say that Vnet is velocity from k frame

    then. For proper time t0, we have to choose another frame k which is attached with particle. ThenReference frame k will be appear to move with Vnet speed then time internal will be appear to increase

    frame this frame (k) then. 220

    c/netV1

    tt

    . Distance travel in k frame :

    V1A B

    V2y

    x0

    V' y

    x

    K

    y

    xV

    K'

    V'

    'V'V

    0'V

    y

    x

    y

    x

    K

    2

    1212

    netC

    VVV-VV2

    2

    netV

    K

    x

  • Compact ISC Physics (XII)148

    2net20

    netnetc/V1

    tVtVDist

    2

    21212

    0c

    V212

    cc/VVvV1

    tVVv222

    212

    Distance = )c/v1()c/v1(

    )c/v1(VVt2222

    22120

    2

    Q:1.363:

    22x

    x

    cV)cosv(1

    VcosV

    c

    VV1

    VVx'V

    ----(i) 22

    2x

    22y

    y c/v1VcosVsinV

    c

    VV1

    c/v1V'V

    22 c/v1VcosV

    sinV'Vx'Vy'tan

    Ans

    Q:1.364: Here in k frame length of rod will be contracted because

    it is moving with V velocity then 220 c/v1 ll Velocity of

    rod : Vx = V 2

    2

    21

    21

    c/ov1

    )c/v(1'v

    c/VVx1

    )c/V(1VyVy

    22y c/v1'vV . Time difference of measuring for A and B:

    2

    21

    c/v1

    c/vx'tt

    20y2

    20 c/'vVtVyVy

    c/v1

    c/vt ll

    220

    20

    c/v1

    c/'vVytan

    l

    ll 222 c/v1c

    'vVtan

    Ans

    y'

    x'

    V

    y

    x

    v

    Vy'

    Vx'

    V'

    '

    K'

    x'

    y'

    AK'

    B

    l

    V

    v'

    (0,0,0,0) ( ,0,0,0)l

    O'

    x

    y

    V=VxAK

    B Vyl

    B

    A Dl

    y

  • 149

    Q:1.365: (a) We know 2x

    xc/VV1

    VV'Vx

    now differential

    equation :

    2

    22

    c/VVx1

    c/V)dVx(VVxdVxc/VVx1'dVx

    22222 c/VVx1c/Vc/VVxc/VVx1dVx

    2222 )c/VVx1()c/V1(

    'dt)dVx(

    'dt'dVx

    ------(i) Also we know 22

    2

    c/V1

    c/xVt't

    22

    2

    c/V1

    c/V)dx(dt'dt

    2

    22

    2/322

    222

    2222

    cVxV1

    cVxV1

    c/V1dt

    dVx

    )c/VVx1()c/Vdt(

    )c/V1(c/V1)dVx('dt'dVx

    vVx

    c/VVx1

    c/V1w'w 322

    2/322

    Ans

    Q:1.366: Co-moving frame(k) is that frame in which particle is appear toinstanteously rest. But its accn of particle in this frame may or may not

    zero. now we know : 2/322

    2/322

    cV1

    cV1w'w

    from Q:1.365 Here Vx = V then

    2/3222/322

    2/322cV1w

    cV1

    cV1w'w

    2/322 cV1'ww

    dtcV1'wdv 2/322 t

    0

    x

    02/322

    dt'w)cV1(

    dv

    2

    ct'w1

    t'wV

    Ans

    t

    02/12

    x

    0 )c/t'w(1

    dtt'wdx

    1

    ct'w1

    'wcx

    22

    2

    t'wc

    21

    cvc

    x

    y

    K

    v wx'

    Vk'

    y'

    x

    VK

    y

    Vx' = 0 earth

    y'

    w'Vx' = 0

  • Compact ISC Physics (XII)150

    Q: 1.365 (b) we know 2cVVx1VVx'Vx

    0aV01

    V0'Vx 'x

    2

    22

    cVVx1

    cV1Vy'Vy

    22

    2

    22cV1Vy

    cVVx1

    cV1Vy'Vy

    22 cV1'dt

    dVy'dt'dVy

    from option (a) :

    22

    2

    cV1

    cV)dx(dt'dt

    222 cV1cV)dx(dt

    dVy'dt'dVy

    222222

    cV1cVVx1

    w

    cVdtdx1

    )cV1()dt/dVy(

    22 cV1w'w . Here Vx = 0

    Q:1.367:

    0

    20 dt)c/v(1 -----(i) from Q: 1.366

    2

    ct'w1

    t'wV

    put in (i)

    0 2

    2

    0 dtc

    ct'w1

    )w(1

    022

    2dt

    )t'w(c

    )w(1

    022

    2dt

    t'wc

    c

    2

    020 c

    'w1C

    c'wln'w

    c

    ct'w1

    dt

    2

    0 c'w1

    c'wln

    'wc

    Ans

    Q:1.368: We know 2c

    2v

    0

    1

    mm

    Here cv 20

    1

    mm

    )1()1(

    m0

    C

    C100

    01.0C

    cv

    10001.1 )1(2

    mm 0

    1 + = 2 70)1(2

    1mm

    0

    AnsAns

    Q:1.369: Density is defined as volumem

    volumemaesrest 0

    321

    0mlll

    -----(i) '''m

    321

    0lll

    'Here 22 ll '33 ll 22

    cv11 1' ll

    22

    cv321

    0

    1

    m

    lll ---- (ii) from (i)/(ii):

    x

    y

    K

    v w

    x'

    Vk'

    y'

  • 151

    22

    cv0 1

    Here

    1

    1)1( 00 Then 22

    cv1

    11

    )2()1(

    CV

    Ans

    Q:1.370: Assume mass of proton is m0 then P = mv where v = velocity of proton

    2c

    2v

    0

    1

    vmP

    Squaring both side : 2

    220

    2220

    2

    220

    P

    Cm1

    C

    PCm

    PC

    CPm

    Pv

    Now

    2

    220P

    Cm1

    11CV1

    CVC

    21

    2

    220

    P

    Cm11

    CVC

    Ans

    Q:1.371: We know Newtonium momentum : P = m0V -----(i) Reletivistic momentum:

    V1

    mP2

    2c

    2v

    0

    ------(ii) 2c2v

    )ii()i( 1

    21: 2c

    2v141

    C23

    cv

    2

    2 C

    23v

    Q:1.372: Classical mechanics : if KKw = 22

    022

    0 c)6.0(m21c)8.0(m

    21

    = 20 c)36.64(.2

    m

    20 c28.0x2

    m 20cm14.0w . Relativistic mechanics :

    2ii

    2ff cmcmw

    222

    0220 c6.06.01

    mc8.0

    082.1

    m

    = m0 0.42 c2 w = 0.42c2

    Q:1.373: m0c2 = Rest mass energy mc2 = Total energy Kinetic energy = mc2 - m0c

    2 according

    to question : m0c2 = mc2 - m0c

    2 m = 2m0 0

    2c

    2v

    0 m21

    m

    411 2c

    2v 43

    2c

    2v

    c23v Ans

    x'V

    y' y'

    V = 0

    l2

    l2l3

  • Compact ISC Physics (XII)152

    Q:1.374: Using classical mechanics : 2c0vm21T where Vc = velocity calculated by chassical mechanics

    0c m

    T2V . Relativistic mechanics : T = mc2 - m0c2

    20

    2c

    2v

    20 cm

    1

    cmT

    1cv

    2)12/1()2/1(

    c2v111

    cmT

    4

    4

    2

    221

    2c

    2v2

    0

    1cv

    83

    c2v1

    cmT

    4

    2

    2

    2

    20

    =

    22

    cv

    2

    2

    431

    c2v

    approximately 20

    2

    2

    cmT

    c2v

    then

    2

    02

    2

    20 cm

    T231

    c2v

    cmT

    1

    20

    20

    2

    2

    cmT

    431

    cmT2

    cv

    2

    02

    0 cmT

    231

    cmT2

    2

    00m

    Tcm

    T2312V Now

    0

    02

    04

    30m

    T

    c

    c

    mT2

    mT2

    cmT1

    VVV 3

    4cm

    T2

    0 at max Ans

    Q:1.375: We know 224202 cPcmE -----(i). Let us kinetic energy is T then. TcmE 20 put

    in (i) 222022

    0 cPcmTcm 2242

    02

    02

    4c

    2c0m cPcmTcm2T 2022 cm2TTcP

    20cm2TTc1P Ans

    Q:1.376: From question no. 1.375 : 20cm2TTc1P of no. of particle collide per second is

    n then ne = I eI

    momentum transfer per second is : 20cm2TTCeIp

    dtdPF . Power

    = Energy radiate or absorb persecond Power = n (kinetic energy of one particle) = T TeIPower

  • 153

    Q:1.377: Sphere Reference frame Velocity of gas particle in frame of sphere 2c

    vx

    xx V1

    VV'V

    Here

    Vx = 0 Vx = -v V = v . Momentum transfer in one collision :

    222222 cv1

    mv2

    cv1

    )mv(

    cv1

    )v(mdP

    . Since volume will be decreased by a factor of 22 cv1

    But actually no. of particles of gas does not change but its occupied volume is decreased and hence

    apparent no. of particles per unit volume is increased 22app cv1

    . no. of particles collides

    per second : 2

    22app)dA(

    cv1N

    V)dA(

    cv1cv1

    mv2dtdPdF

    2222

    .

    22

    2

    22

    2

    cv1mv2

    cv1mv2

    dAdFessurePr

    Gas Refrence frame : We know 2x

    xc'VVx1'VV'V

    v'Vx (velocity of sphere w.r.t. gas frame after

    collision) 2c'Vv1

    'Vvv

    vVx (velocity of sphere after collision which does not change)

    'vv2'vVc

    'vv2c

    'vv1V 2224

    222

    v2c

    v21cv'V 2

    3

    4

    4

    2

    2

    3

    cv1

    v2'V

    V = v

    Before collision

    mmV'=

    After collision

    V = vm V'

    v

    V = v

    Before collision

    After collision

    v

    vv

    dA dA

  • Compact ISC Physics (XII)154

    momentum transfer in one collision = 2c

    2v2

    1

    Vm

    222

    22 cv1mv2PV

    cv1mV2

    dAdF

    Ans

    Since in gas frame mass of gas particle and its density does not change

    Q:1.378: At time t, letus velocity of sphere is V then F = ma dtdV

    cv1

    m

    220

    dvcv1dtmF t

    0

    22t

    00 2222

    0 tFcm

    Fctv

    Also

    22220 tFcm

    Fctdtdsv

    t

    0 2t2F2c20m

    dtts

    0FCds

    F

    cmtcFcmS

    202222

    0 AnsAns

    Q:1.379: Given 222 tcax 22222

    2222222

    2

    tca)tc2(tcc)tca(

    dtdV

    tcatc

    dtdxv

    222

    222

    tcatca

    dtdV

    Momentum : P = mv v

    1

    m

    2c

    2v

    0

    2c

    2v

    2c

    2v002c

    2v

    1

    1dtdvm

    dtdVm1

    FdtdP

    put value of dv/dt : a

    cmF

    20 Ans

    Q:1.380: (a) and (b) : we know

    2/1

    2c

    2v0

    2c

    2v

    0 1Vdtdm

    1

    Vm

    dtd

    dtPdF

    dtdv

    cV21V

    21

    dtVd1mF 2

    2/3

    2c

    2v2/1

    2c

    2v0

    We know

    v.aadtdvand

    dtdva t

    Then

    v.aV1

    c

    V

    1

    amF 2c

    2v2

    2c

    2v0

    V

    F

    m

  • 155

    v.a

    cv1c

    V

    cv1

    amF 23222220

    If av.v.av||a

    then

    232222

    0

    22

    0

    23

    22

    0

    22

    0

    cv1

    acvm

    cv1

    am

    cv1

    vvam

    cv1

    amF

    22

    22

    22

    0

    cv1

    cv1

    cv1

    amF

    23220

    cv1

    amF

    Ans

    Q:1.381: Assume velocity of particle in K frame is Vx then we know

    2

    2

    20

    2

    20

    x

    cVx1

    cmEand

    cVx1

    mP

    22

    20

    220

    xVxc

    cmEandVxc

    VxcmP

    .

    Also we know from invarient theorem : (ds)2 = c2(dt)2 - (dx)2 = constant = c2(dt)2 - (Vxdt)2

    dtdsVxc)dt(Vxc)ds( 222222 constant in any inertial frame of references

    Then )ii(dsdtcmE)i(dt

    )ds(VxcmP 30

    0x

    Vxdt = dx Also

    22000

    xcv1

    vdtdxds

    cm'dxds

    cmds

    'dt'Vxcm'P

    220

    22x

    20

    20

    xVxc

    cm

    1

    V

    1

    P

    ds1

    cVdtmdsdx

    1

    cm'P

    2

    2cV

    222

    30

    2

    2c

    v

    2Px

    x1

    E

    1

    Px

    Vxc

    cm

    11'P

    2

    2cVPx

    x1

    E'P

    proved

    ds'dtcm'E 30

    2

    230

    1

    cV)dx(dtds

    cm 2

    230

    2

    30

    1

    cVdxds

    cmdsdt

    1

    cm'E

  • Compact ISC Physics (XII)156

    dsdx

    1

    CVm

    1

    E2

    02

    dsVxdt

    1

    CVm

    1

    E2

    02

    20

    2 1

    VdsCVxdtm

    1

    E

    22 1

    PxV

    1

    E'E

    21

    PxVE'E

    Ans

    Q:1.382: We know 420222 cmCPE For photon. rest mass m0 = 0 then 222 CPE E =

    PC From K frame : CPx c/Px form k frame = C'Px'

    C

    2

    2

    1

    cEVPx

    '

    2

    2

    2 1

    )1(

    1

    cV

    '

    11' Ans For

    11

    2' 5

    3cV

    AnsAns

    Q:1.383: From Q 1.381 We know dsdxcmP 0x

    dsdtcmE 30 ds

    dycmP 0y dsdzcmP 0z

    Then dsdzcmP 20x -----(i) ds

    dycmCP 20y -----(ii) dsdzcmCP 20z -----(iii). Squaring and add

    ((i)+(ii)+(iii)) : 222242

    022z

    2y

    2x dzdydx

    )ds(

    cmcPPP 2

    2

    42022 )dl(

    )ds(

    cmcP

    2

    242

    0

    262

    0222

    )ds()dl(cm

    dsdtcmCPE

    courcm

    dsdldtccmCPE 4202

    22242

    0222

    420

    222 cmCPE Ans

    Q:1.384: We know P = mV Vc

    mc2

    2 Also we know 2c

    EVP )cm2T(TPC 20 Now

    EPC

    CV

    For system : system

    systemcmE

    CPc

    V 2

    02

    0

    20

    20

    cmcm)cmT(

    C)cm20(0)cm2T(T

    cV

    20

    20

    20cm

    cwmTT

    cmT

    )cm2T(TCC

    V

    2

    0

    cm

    cm2T

    TCC

    V

    Ans

  • 157

    (a) Since maes of both particles are same hence magnitude of momentum of both particles from comframe will be same. Velocity of each particle from com frame = 0- Vcm = Vcm. Energy in com frame:

    )cm2T(cm2

    cmVc1

    cm2E 202

    0

    2

    2

    20

    . Using equation : 20cm2T~E~

    202020 cm2cm2Tcm2T~

    1

    cm2

    Tcm2cm2T~ 20

    20

    20

    cm22cm

    0cm22

    20 V

    cV1

    mVcv1

    cm2P~

    Q:1.385: m0 m0 m0 V We know 220222 CMiantvarInCPE . WeWe

    assume energy does not losses. 2202022020 Cmcm2TTcmTcm

    Tcm2m2Ccm 20020 Tcm2m2C1m 2000 Ans. Also we know from Q: 1.384

    2cEVP

    E)PC(

    EPCv

    22

    2

    0

    20

    cm2T

    cm2TTCv

    2

    0cm2T

    TCv

    AnsAns

    Q:1.386: Use invariant equation : 222 CPE Invariant

    0Tcm22cm2TTTcm2 22020112120 . Becausemomentum of system from com = 0.

    420

    20

    2201

    21

    420

    201

    21 cm4cTm8T4cmT2Tcm4cmT4T

    201

    20

    2 cmT2cTm8T4

    20

    20

    1cm2

    )cm2T(T4T

    2

    0

    201

    cm2

    cm2TT2T

    Ans

    Q:1.387: 20321 cmEEE 0PPP 321 . Take system of (m 2 + m3)

    2212120221232 cPEcmcPPEE Invariant 42322212120 cmmcPEcm .

    m0 m0 m0 m0=

    T1 TT

    Inertial K frame COM frame

  • Compact ISC Physics (XII)158

    Because this invariant is same in all frame of reference hence from com frame of (m2 + m3). In

    variant = 4232 cmm Now 423222112021420 c)mm(cPEcm2Ecm 42

    3212

    042

    142

    0 c)mm(Ecm2cmcm

    423242120120 cmmcmmEcm2

    20

    3221

    20

    1 cm2mmmmmaxE

    Ans

    Q:1.388: Suppose velocity of ejected mass is Vx from a frame having

    zero velocity then we know 2cvx

    xx V1

    VV'V

    2

    x2c

    vx

    x

    cuv1

    uVVV1

    VVu

    . Change in momentum of (dm) mass : dP = -(dm) V + dm Vx

    2

    2cv

    2 cuv1

    uudm

    cuv1

    uvvdm Here uc

    uv2 then

    2cuv1

    udt

    )dm(dtdP

    Force on

    gas particle then force on rocket : dtdvm

    cuv1

    udtdmF

    2

    v

    02c

    uvm

    0mdv1

    mdmu

    C

    u2

    0

    c/u20

    mm1

    mm1cv

    m0

    v = 0 = 0

    m1

    m3

    E3

    E1

    E2

    m2

    u dm

    vm

  • 159

    2.1 Equation of gas state processQ: 2.1: Suppose gas is at pressure P, volume V and tamp. T. Then we know PV=

    nRT. Also RTMmPV where m = mass of total gas M = molar mass. Now VV

    = const. and T = const M

    RT)dm(VdP . Then VRT

    )dP(Mdm ----(i). Calculation of M/RT : We Know

    RTMmPV RTPM

    P

    RTM

    . Given at NTP (normal tempreature and pressure) : T0 =

    00C = 273 K P = 1 atm = P0 = 1105 N/m2. Then

    0P

    RTM

    put in (i) PVP

    mV)dP(P

    dm 00

    Q: 2.2: Total no. of mole of gas is n and due to heating n mole

    of gas goes in other chamber. 1

    111 RT

    VPnnRTVP

    2

    222 RT

    VPnnTR)nn(VP ---(i) 22 nRTV)PP(

    2

    2RT

    V)PP(n put value of n and n in (i) : 2

    2

    2

    0

    1

    1RT

    VPRT

    V)PP(RT

    VP

    21

    1

    22 T

    PTP

    T11P

    21

    212 T

    PT2TPP . Increase of pressure of Vessel B :

    P

    TTP

    21

    2P

    T2TPPP

    1

    21

    1

    212

    Q: 2.3:V;m,t;P

    He;H2 Let mass of H2 gas is m1 and that of He is m2. no. of moles of H2 : n2 = m/

    2. no. of moles of He : n2 = m2/4. Also m1 + m2 = m ----(i). RtnnPV 21 Rt4m

    2mPV 21

    RtPV

    4m

    2m 21 Rt

    PV22

    mm 21 ----(ii) Now (i) - (ii) : RtPV2m

    2m2

    RtPV2m2m2

    put in (i) : mRtPV4mmm 21

    RtPV

    mm

    mm

    RtPV

    RtPV

    2m

    4m

    RtPV

    RtPV2m2

    mRtPV4

    mm

    1

    2

    2

    1

    Ans

    Part Two

    Thermodynamics and Molecular Physics

    P.V.T

    P1 P = 0t1

    n

    V

    (A) (B)Initial

    FinalP2

    t2n- n

    V

    P2- Pt2 n

    ValueV

  • Compact ISC Physics (XII)160

    Q: 2.4:)m(CO

    P;T)m(N

    22

    012 We know PM = RT----------(i) Where M = Molecular weight of mixture.

    = Density of mixture. Calculation of M : no. of mole of N2 : (n1) = m1/M1 no. of mole of CO2

    : (n2) = m2/M2 where M1 and M2 molecular weight of N2 and CO2. Then

    2

    2

    1

    121

    21

    2211

    Mm

    Mm

    mmnn

    MnMnM

    Put in (i) : RT

    Mm

    Mm

    mmP

    2

    2

    1

    1

    21

    2

    2

    1

    1

    210

    Mm

    MmRT

    mmP

    Ans

    Q: 2.5: (a) V, T1, v1, v2, v3. Suppose molar maes of O2, N2, CO2 are M1, M2 and M3. Then PV =

    nRT PV = (v1 + v2 + v3) RT VRTP 321 vvv Ans

    (b) Total maes of mixture: M = v1M1 + v2M2 + v3M3 molar mass of mixuture = moleof.nototalmassTotal

    321

    332211 MMMMvvv

    vvv

    Ans

    Q: 2.6: Here v)1('v)1'( ----(i) F.B.D. of piston : P2-P1 = mg/A Similar P21-P1

    1 = mg/A

    now 01 RTvP vRT

    P 01 V

    RTP 02

    11'v

    RT'P'P:Similar11V

    RTPP 120

    12

    Since A/mg'P'PPP 1212 then

    'n11

    'VRT

    n11

    VRT0

    'n)1'n()1'n(

    V)1(RT

    'n1'n

    'VRT

    n1n

    VRT0

    02

    2

    T1'n

    1n'nT

    Ans

    n = 1T0

    Tn = 1

    V

    T0n = 1

    Tn = 1

    V V'

    n' V'

    FinalInitial

    P1A

    P2A mgP2 = P + mg/A1

  • 161

    Q: 2.7: This question is based on operation of an engine. In this engine, first, piston pull right sideand during pulling piston, value is opened and gas is filled in vacent space. then value is closed andgas between value and piston is removed. And piston moves left way. After that piston is again pullright way and value is opened and gas comes with piston. This process continues.

    First stroke right PV = P1 (V + V) VVPVP1

    ------(i)

    First stroke left : P1, V

    Second stroke right )VV(PVP 21 22

    222

    )VV(

    PVP)VV(PVV

    PV

    -------(ii)

    In 3rd stroke : 33

    3)VV(

    PVP

    In n th stroke :

    P

    )VV(

    PVP n

    nn

    1

    )VV(

    Vn

    n

    ln

    )VV(Vlnn

    VV1ln

    ln

    VVVln

    lnn Ans

    Q: 2.8: Suppose at time t, pressure is P and in next dt timedP pressure is released. Then PV = (P+dP) (V-Cdt) PV =PV + VdP + CPdt + C(dP) (dt) -VdP = (CP + CdP) dt CP

    + CdP = CP -VdP = CPdt t

    0

    P

    0PP

    dP dtCV P + dP

    < P because P is decreasing function hence dP = (-) ive.

    tvcP/Pln 0

    v

    ct0ePP

    Ans

    V Piston

    Valve

    P, V

    V, P0

    Isothermal

    Value piston

  • Compact ISC Physics (XII)162

    Q: 2.9: from Q: 2.8: vct

    0 ePP

    v

    ct0

    0 ePP

    vctln

    ln

    cvt AnsAns

    Q: 2.10: Let assume pressure inside gas chamber is P F.B.D. of piston. Force

    equation : P0S+ P(S-S) + m0g + (m-m0) g = PS + P0(S-S) Smg

    0PP

    ----(i) . After increasing T of tempreature, final temp. is T + T. since from

    (i) pressure is constant, process will be isobaric. Then constTV

    TTVV

    TV

    VV1

    TTTT

    VVTT Vinitial = Sl1 + (S - S) l2

    Change in volume : Vinitial = Sl1 + (S -S) l2. If l2 increase, l2 decrease in

    same amount. Then l2 l l2 -l Then Vinitial = Sl = V. Then SlVTT

    ----(i) Also, PV = nRT . Here n =1 RTVSmgP0

    Now

    SmgP

    R1

    VT

    0 put in (i)

    SmgP

    R)S(T 0l

    R0 )SPmg(T l AnsAns

    Q: 2.11: (a) P = P0-V2 -------(i) No. of mole of gas = 1. We know PV = nRT V

    RTP put in

    (i) 20 VPVRT

    RV

    RVPT

    30 ------(iii). For T maximum, 0dV

    dT 0

    RV3

    RP0

    20

    RPV 0 put in (ii):

    3P

    3P

    RRP

    RP

    T 0000max

    3P

    3P2T 00max AnsAns

    (b) P = P0 e-V V0ePV

    RT V0 VeRP

    T -----(i). Now 0dVdT

    for maximum Temp. Calculate

    V and put in (i) ReP

    T 0max Ans

    Q: 2.12: 20 VTT ------(i) We know PV = nRT = RTT. If v is increasing, T will increase and hence

    P will increase. Hence calculation of Pmin: RPVT put in ----(i) 20 VTR

    PV ------------(ii)

    P0S

    l1

    m0

    l2

    P

    P0 S- S

    m-m0

    m0g

    (m-m0) g P )0 (S- S

    P ) (S- S

    PS

    P0 S

  • 163

    VVTRP 10 To 0

    dVdP:Pmin

    020

    TVVTR0 put in (ii)

    00

    00 T2

    TT

    TRP

    0

    T2R

    P

    0min TR2P

    Ans

    Q: 2.13: We know PM = RT (dP) M = R(dT) -(gdx) M

    = R dT RgM

    dxdT

    RMg

    dhdT

    dxdT

    Ans

    Q: 2.14: Here CconstPn

    n

    1

    CPP n

    Also PM =

    RT RTCPPM

    n1

    MRTCP n

    1n

    11

    Differentiate :

    dTMRc)dP(P1 n

    1n

    1

    n1

    -----(i) Also we know dP = - gdh put in

    (i) dTMR)gdh(cP

    n1n 21n/1

    MgcP

    n)1n(

    dhdT 2121

    MgCPn

    )1n( 2121

    n1

    n2

    1 PMgPn

    1n

    Mgn

    1n

    Mgn

    )1n(dhdT

    Ans

    Q: 2.15: We know gdzdPgdzdP Also PM = RT

    gdzdPRTPM In question dz = dh dPgdh

    RTPM

    h

    0

    P

    0PP

    dP dhRTMg

    RTMgh

    0ePP

    . Above earth surface :

    kg1078MK300C27T

    3.8Rs/m8.9gm105h

    3

    0

    2

    3

    . Put in above equation

    Atm5.0m/N105.0P 25

    N2 = const

    dx

    x

    g

    dx

    x

    s

    T = constM = constdh

    x

  • Compact ISC Physics (XII)164

    Below earthsurface : kg1078n

    K300C27T

    3.8Rs/m8.9gm105h

    3

    0

    2

    3

    put Atm2m/N102P 25

    Q: 2.16: RT)d(M)dP(RTPM ----------(i) Also we know

    : gdzdP ---------(ii) then from (i) and (ii): gdzM

    RT)d(

    0

    h

    0

    d dzRTMg

    hz

    dxdz

    RTMgh

    e0

    (a) e0 Then RT

    Mgh

    0 e0e

    RTMghee 1RT

    Mgh1

    Mg

    RTh1 AnsAns

    (b)

    0

    0 )1(0 RT

    2Mgh

    e)1( 00

    MgRTh

    MgRT)1(ln

    MgRTh 22

    Q: 2.17: Suppose pressure at height x is P then in (dx) volumePV = nRT in differential volume Psdx = (dN) RT We Know

    MmN RTM

    dmdxPs

    -----(i)

    MdmdN . Also we known

    gdxdP Sdxdm

    dVdm

    dxgSxdmdP

    gSdPdm

    sdmgdP

    -----(ii) put i (i)

    P

    0PP

    dPx

    0dx

    RTMg

    gSdP

    MRTdxPS

    RTxMg

    0ePP

    from (ii) : P

    0Pg

    SdPm

    0dm

    RTxMg

    00 e1g

    SPPP

    gSm

    when x = h

    RTxMg

    0 e1gSP

    m Ans

    T = constgM = const = const

    dh

    h

    dxh

    s

    x

    M, T, g

    P0

  • 165

    Q: 2.18: We know

    dmxdm

    xcm . Also we know from Q: 1.215

    RTMgx0ePP

    And RTMdm)sdx(P

    dxePRTMSdxPS

    RTMdm RTMgx0

    dxe

    dxex

    e

    ex

    0

    RTMgx0

    RTMgx

    RTMgxRT

    0MSP

    RTMgxRT

    x0MSP

    cm

    MgRTxcm

    Q: 2.19: (a) T = T0 (1-ah) RTMdmPsdx -----(i) And also

    )dm(sgdxg

    sdxdmdxgdP

    )dp(g

    sdm -------(i)

    dP

    gs

    MRTdxPs ax1(TTAlso 0

    P

    0PP

    dPx

    0)ax1(0TR

    Mgdx 0

    x

    00P/Pln)ax1(ln

    )a(RTMg

    0

    0P/Pln)ax1(ln

    RTaMg

    P = P0 (1-ax) Assume : hxandnaRT/Mg 0 P = P0 (1-ah)n Ans

    (b) Similiar as above : n0

    )ah1(PP

    Ans

    Q: 2.20: Force equation of dr element 2rw)dm(dF 2rw

    Sdm

    SdPdP

    2rwS

    dmdP

    .

    dPrw

    sdm2

    also we know RTM

    dm)Sdr(P

    dPrw

    SMRT)dr(PS 2

    P

    0PP

    dPr

    0

    2 RTrdrMw

    0PP

    22lnRT

    2rMw

    RT22r2MW

    0 ePP Ans

    dx

    s

    M, T, g

    P0

    x

    dx

    s

    M, g

    P = P0 at h = 0

    x

    P0 r

    M, T

    s

    This end isopen in air

    dx

  • Compact ISC Physics (XII)166

    Q: 2.21: T,?P

    M = (12+32) 103 kg = 44 103 kg. Idial gas equation : 3333

    mkg

    m10kg500 500

    We know PM = RT atm2801044

    3002.8500MRTP 3

    Vanderwall equation : (for one

    mole gas) : RT)bV(V

    aP 2

    V

    M

    M2

    2 VRTbPM

    MaPP

    2

    2

    Ma

    bM

    RTP

    2

    2

    Ma

    bMRTP

    Ans

    Q: 2.22: (a) Using idial gas equation : VRTPRTPV 1 . Using vander wall

    equation : RT)bv(v

    aP 2

    22 V

    abV

    RTP

    . Here

    2

    21P

    PP

    )1(PP 21 )1(V

    abV

    RTV

    RT2

    2V

    a)1(bVR)1(

    VRT

    )vbVnV(RV

    V)bV(a)1(

    VR

    bVR1

    v/a)1(T 2

    2

    )bnv(VR

    )1)(bV(aT

    Ans

    (b) Put value of this temp in vanderwall equation. 22 V

    abV

    RTP

    Ans

    Q: 2.23: 2221 P,TP,T

    V1n

    121 RT)bV(V

    aP

    ----(i) 222 RT)bV(V

    aP

    -

    -----(ii) from (i) and (ii) : 1T2T1P2T2P1T2Va

    Ans 1P2P1T2TRVb Ans

    V

    n=1

  • 167

    Q: 2.24: We know bulk modulus of a gas is given by : V

    dvdPB . While compressibility is given

    by :

    dPdV

    V1

    dPV

    dv in vanderwall equation : RT)bv(

    v

    aP 2

    if process is

    isothermal: T = const. differentiate (i): 0)dV(V

    aP)bv(dVV

    adP 23

    0V

    aP)bV(V

    adVdP

    23

    )bV(V

    )bV(aaVPV

    Va

    )bV(

    P

    dVdP

    3

    3

    3

    2Va

    )Vb(a)aVPV()bV(V

    )bV(a)avPV()bV(V

    V1x 3

    2

    3

    3

    ----(ii) put value of P from (i) in (ii)

    ])bv(a2RTV[)bv(V

    23

    22

    Ans

    Q: 2.25: Using ideal gas : PV = RT; V= RT P-1 2PRTPV

    RTV

    PVRT1x 21 from Q :

    2.24: 23

    22

    )vV(a2RTV

    )bV(Vx

    According to equation : x > x1 RT

    V

    )vV(a2RTV

    )bV(V23

    22

    Rb

    aT

    2.2 The first law of thermodynamics, Heat capacityQ: 2.26: We know that room is an open thermodynamic system, in whichno. of molecules may change suppose no. of mole of gas is n. Then PV

    = nRT. Also we know Internal energy is given by: 1

    PV1

    nRTTnCU V

    vv .

    Here v

    pcC

    constant and room pressure and volume is also constant. The Internal energy also const.

    U = Const if P and V are const. And not depend on T because when T increase, no. of moles willbe decreased in room because PV = Const. Hence in room internal energy (U) = Const.

    VP

    U

    Win

    dow

  • Compact ISC Physics (XII)168

    Q: 2.27: Suppose no. of moles of gas = n. Directional kinetic energy of

    gas = 2V)nM(21

    . When Vessel sudden stop, then after long time this directional

    kinetic energy of gas is converted into randm kinetic energy when thermodynamic

    equililnium will be achieved and then TnCV)nM(21

    V2

    R)1(

    2MVT

    2

    v 2MVR2

    )1(T v

    Ans

    Q: 2.28: Method 1: When value is opened and thermodynamics equilibrium is attained then. no.

    of moles will be constant. Then

    RTVVP

    RTVP

    RTVP 21

    2

    22

    1

    11

    TVVP

    TVP

    TVP 21

    2

    22

    1

    11 ------(i). Also

    we know, in whole system : WU0Q 0Q Because vessell is insulated. And also. 0W Because gas does not work on atmosphere. Because vessel closed. Then U System

    = 0 then 22112v21v1 TnTnTCnTcn 0TTTVPTT

    TVP

    22

    221

    1

    11 ------(ii)

    122211

    112221TVPTVPVPVPTTT

    put in (i) Ans

    21

    2211VV

    VPVPP

    Ans

    Method : 2 From method : 1, we see that therewill be no change of internal inergy of system. HenceInitial Internal Energy = final internal energy.

    Also 1PVU

    v then

    1VVP

    1VP

    1VP 212211

    vvv 21

    2211VV

    VPVPP

    . Also we know PV = nRTT

    RTRT

    VPRT

    VPVVVV

    VPVP

    2

    22

    1

    1121

    21

    2211

    122211

    212211TVPTVPTTVPVPT

    Ans

    Q: 2.29: Method: 1: We know Suppose initial temp. is T1 and final is (T1-T) then.

    1rVPU;

    1VPU 2f1i

    v

    12 PP1rVU

    ----( i). 11 nRTVP VnRTP 11

    1

    1T

    VPnRalso VnRTP 22

    V

    nRTV

    nRT1rTVU 12 T1

    nR

    v

    M

    V

    PCC

    V

    Vessel (1) (2)

    Value111 T,P,V 222 T,P,V

    TP

    V,V 21

    111 T,P,V 222 T,P,V21 VV

    ,T,P

    Sealed vessel

    V T

  • 169

    0PHere)1(T

    TVPU 11

    1

    v TT1 = T0 )1(T

    TVPU0

    0

    v Ans U = Increase in P.E. Q = U

    + w Since vessel is realed then w = 0 )1(TTVPUQ

    0

    0

    v Ans

    Method : 2 T)1(RnTncU v

    v ----(i) Here P = P0 P0V = nR T0 V = v 0

    0T

    VPnR put

    in (i) )1(TTVPU

    0

    0

    v Ans Also Q = U + w w = 0 then )1(T

    TVPUQ

    0

    0

    Ans

    Q: 2.30: We know : Q = U + W = A1VP

    v . Also W = PU + AA

    A1AQ

    v

    1AQ

    vv

    Q: 2.31: Isobaric process: We know Q =