islamic university of gazasite.iugaza.edu.ps/saish/files/ch3-1.doc · web viewhomework ch (3) use...

13
Lectures notes: Foundation Engineering Bearing Capacity of Shallow Foundations

Upload: others

Post on 30-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Islamic University of Gaza

Lectures notes: Foundation Engineering

Bearing Capacity of Shallow Foundations

· Ultimate bearing capacity (qu)

Shear failure أقل حمل مقسوم على المساحة يؤدي لحدوث

· Allowable bearing capacity (qall)

Shear failure حمل مقسوم على المساحة يمكن ان تتحمله التربة بدون حدوث

qall should be adequate to prevent excessive settlement and shear failure

· Types of shear failure:

1- General shear failure: For Dense sand.

2- Local shear failure: For Medium compaction soil.

3- Punching shear failure: For loose soil

Calculation of ultimate bearing capacity of shallow foundations without eccentricity:

1- Terzaghi’s theory:

Assumption for Terzaghi’s theory:

· The foundation is considered to be shallow if

(

)

B

D

f

£

, in recent studies the foundation is considered to be shallow if

(

)

4

/

£

B

D

f

. Other wise it is considered to be deep foundation.

· Foundation is considered to be strip if

(

)

00

.

0

/

®

L

B

.

· The soil from ground surface (سطح الأرض الطبيعية) to the bottom of the foundation (سطح التأسيس) is replaced by stress

f

D

q

g

=

.

For General shear failure:

Type of foundation

Ultimate bearing capacity qu

Strip Footing

g

g

BN

qN

cN

q

q

c

u

2

1

+

+

=

Square footing

g

g

BN

qN

cN

q

q

c

u

4

.

0

3

.

1

+

+

=

Circular footing

g

g

BN

qN

cN

q

q

c

u

3

.

0

3

.

1

+

+

=

c: Cohesive.

f

D

q

g

=

B: Foundation width (Diameter if circular).

g

N

N

N

q

c

,

,

: Bearing capacity factors given from table 3.1 P.158 as function of angle of friction .

For Local shear failure:

Type of foundation

Ultimate bearing capacity qu

Strip Footing

'

'

'

2

1

3

2

g

g

BN

qN

cN

q

q

c

u

+

+

=

Square footing

'

'

'

4

.

0

867

.

0

g

g

BN

qN

cN

q

q

c

u

+

+

=

Circular footing

'

'

'

3

.

0

867

.

0

g

g

BN

qN

cN

q

q

c

u

+

+

=

'

'

'

,

,

g

N

N

N

q

c

: Factors for bearing capacity given from table 3.2 P.160

Or from table 3.1 P158 but replace

'

F

by

F

:

÷

ø

ö

ç

è

æ

F

=

F

-

tan

3

2

tan

1

'

2- Meyerhof’s equations (General bearing capacity equation):

Terzagi equations neglect:

· Rectangular footings.

· Inclination of loads.

· Shear strength of soil above the foundation.

Meyerhof’s equation takes in consideration theses variables:

i

d

s

qi

qd

qs

q

ci

cd

cs

c

u

F

F

F

BN

F

F

F

qN

F

F

F

cN

q

g

g

g

g

g

5

.

0

+

+

=

g

N

N

N

q

c

,

,

: Table 3.4 P.168

P.169

3.5

Table

factors.

n

Inclinatio

,

,

factors.

Depth

,

,

factors.

Shape

,

,

Þ

ú

ú

ú

û

ù

ê

ê

ê

ë

é

Þ

Þ

Þ

i

qi

ci

d

qd

cd

s

qs

cs

F

F

F

F

F

F

F

F

F

g

g

g

3- Skempton’s equation for clay without inclination:

÷

ø

ö

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

=

L

B

B

D

c

q

f

u

2

.

0

1

2

.

0

1

5

4- Vesic’s equation (Consider compressibility of soil):

c

d

s

qc

qd

qs

q

cc

cd

cs

c

u

F

F

F

BN

F

F

F

qN

F

F

F

cN

q

g

g

g

g

g

5

.

0

+

+

=

g

N

N

N

q

c

,

,

: Table 3.4 P.168

Þ

c

qc

cc

F

F

F

g

,

,

Soil Compressibility factors.

Effect of water table in bearing capacity equations:

Case I) Water table is located at depth D1 so that 0 ≤ D1 ≤ Df:

2

'

1

D

D

q

g

g

+

=

(الشق الثاني من المعادلة)

w

sat

g

g

g

g

-

=

=

'

(الحد الأخير من المعادلة)

Case II) Water table is located at depth d below the foundation so that 0 ≤ d ≤ B:

f

D

q

g

=

(الشق الثاني من المعادلة).

(

)

'

'

g

g

g

g

g

-

+

=

=

B

d

الحد الأخير من المعادلة) )

Case III) Water table is located at depth d below the foundation so that d > B:

No changes in equations.

Factor of safety:

Ultimate bearing capacity من خلال المعادلات السابقة حسبنا

و هذه القيمة تمثل الاجهاد الذي اذا أثر على التربة تنهار عنده، ولهذا لا يجب استخدامه عند التصميم بل نستخدم قيمة أقل منه وهذا من خلال قسمة هذه القيمة على معامل أمان.

(

)

(

)

(

)

load.

Ultimate

capacity

bearing

allowable

Net

capacity

bearing

allowable

Gross

capacity

bearing

ultimate

Net

capacity

bearing

ultimate

Gross

Gross

Q

q

q

q

q

q

q

u

net

all

all

u

net

u

u

Þ

Þ

Þ

Þ

-

=

Þ

(

)

(

)

FS

q

q

FS

q

q

FS

q

q

FS

q

q

all

u

net

u

net

all

u

all

-

=

-

=

=

Þ

=

Þ

FS = (3 – 4) for bearing capacity

Factor of safety with respect to shear:

Example 1)

Determine the size of square footings to carry gross allowable load (295 KN) given that:

00

.

0

.

35

.

/

15

.

18

00

.

1

3

3

=

=

F

=

=

=

C

m

KN

D

FS

f

o

g

Use Terzagi equations assuming general shear failure.

295KN

Df=1.00

B

C=0.00

F

=35

g

=18.15KN/m3

Solution

92cm

B

:

error

and

By trial

684

.

2

2814

.

2

41

.

45

15

.

18

4

.

0

44

.

41

1

15

.

18

0

885

41

.

45

,

44

.

41

,

75

.

57

35

At

4

.

0

3

.

1

:

footing

square

For

.

885

3

295

.

295

2

3

2

2

2

2

=

=

+

Þ

´

´

´

+

´

´

+

=

=

=

=

Þ

=

F

+

+

=

=

´

=

´

=

=

=

´

=

B

B

B

B

N

N

N

BN

qN

cN

q

B

B

FS

q

q

B

A

Q

q

Area

q

Q

q

c

q

c

u

all

u

all

all

all

all

g

g

g

Example 2)

Determine the net allowable load that foundation can carry (no inclination), Use Meyerhof equation given that:

.

/

50

.

25

.

/

10

00

.

2

4

2

3

m

KN

C

m

KN

D

FS

w

f

=

=

F

=

=

=

o

g

Solution

i

d

s

qi

qd

qs

q

ci

cd

cs

c

u

F

F

F

BN

F

F

F

qN

F

F

F

cN

q

g

g

g

g

g

5

.

0

+

+

=

88

.

10

,

66

.

10

,

72

.

20

25

At

=

=

=

Þ

=

F

g

N

N

N

q

c

The water table is at depth = 1m

.

/

4

.

9

10

4

.

19

.

/

2

.

26

1

)

10

4

.

19

(

1

8

.

16

3

'

2

m

KN

m

KN

q

=

-

=

=

=

´

-

+

´

=

g

g

· Shape factors:

(

)

733

.

0

3

2

4

.

0

1

4

.

0

1

311

.

1

25

tan

3

2

1

tan

1

343

.

1

72

.

20

66

.

10

3

2

1

1

=

÷

ø

ö

ç

è

æ

-

=

-

=

=

+

=

F

+

=

=

´

+

=

÷

÷

ø

ö

ç

ç

è

æ

+

=

L

B

F

L

B

F

N

N

L

B

F

s

qs

c

q

cs

g

· Depth factors:

(

)

(

)

1

313

.

1

2

2

25

sin

1

25

tan

2

1

4

.

1

2

2

4

.

0

1

1

2

/

2

/

2

=

=

´

-

+

=

=

÷

ø

ö

ç

è

æ

+

=

=

=

d

qd

cd

f

F

F

F

B

D

g

· Inclination factors:

Due to absence of inclined load, the inclination factor is 1 every where.

(

)

(

)

(

)

(

)

(

)

KN

A

q

Q

m

KN

FS

q

q

m

KN

q

q

q

m

KN

q

q

net

all

net

all

net

u

net

all

u

net

u

u

u

1

.

3716

6

35

.

619

/

35

.

619

4

4

.

2477

/

4

.

2477

2

.

26

6

.

2503

.

/

6

.

2503

1

1

733

.

0

88

.

10

2

4

.

9

5

.

0

1

313

.

1

311

.

1

66

.

10

2

.

26

1

4

.

1

343

.

1

72

.

20

50

2

2

2

=

´

=

´

=

=

=

=

=

-

=

-

=

=

´

´

´

´

´

´

+

´

´

´

´

+

´

´

´

´

=

HOMEWORK CH (3)

Use

3

3

/

4

.

62

/

10

ft

Ib

m

KN

w

=

=

g

Q.1) Find the ultimate bearing capacity of square footing ( 2.5m x 2.5m) which is placed 2.5m below the ground surface of soil having the shown properties:

2.5 m

2.5 m

g

d=18KN/m3

C=0.00

F

=30

h

The water table is located at distance (h) below the ground surface; if sat=19KN/m2

Find the ultimate bearing capacity using Terzagi equation for the following cases:

· h = 7m.

· h = 4m.

· h = 1m.

· h = 0m.

Comment on the results.

Q.2) For the square foundation shown in the

Figure, find the gross allowable load that

Foundation can carry for the following cases:

A- No water table is observed.

B- Water table at depth 0.5m below the

Bottom of the foundation.

Use FS = 3 with Meyerhof equation.

Q.3) for the shown square footing (2.5m x 2.5m) if the allowable load P=800 KN, use FS=6 to determine the allowable resisting moment (M). Use Terzagi equations (=35o)

HW …..3.4 , 3.5 , 3.8 , 3.11

_1282123590.unknown
_1282126738.unknown
_1282255366.dwg

elastal

_1282409731.unknown
_1282692220.unknown
_1283503284.unknown
_1284923966.unknown
_1283249816.dwg
_1282410079.unknown
_1282409272.unknown
_1282409612.unknown
_1282408739.unknown
_1282129881.unknown
_1282131384.unknown
_1282254382.unknown
_1282131276.unknown
_1282129710.unknown
_1282129835.unknown
_1282129658.unknown
_1282126377.unknown
_1282126575.unknown
_1282126711.unknown
_1282126014.unknown
_1282126080.unknown
_1282118886.unknown
_1282123308.unknown
_1282123561.unknown
_1282123577.unknown
_1282123427.unknown
_1282123173.unknown
_1282123189.unknown
_1282123123.unknown
_1282117141.unknown
_1282118730.unknown
_1282118862.unknown
_1282117185.unknown
_1282117324.unknown
_1282117077.unknown