issues with reliability of fuzzy logic

6
International Journ Internat ISSN No: 245 @ IJTSRD | Available Online @ www Issues wi ABSTRACT Since 1973, fuzzy logic has been r majority of linguists as a theory for vagueness in natural language. How engineers apply fuzzy vagueness in na to control system problems. A real wor automatic fan control has shown that: can be applied ii) probability theory can the control system iii) Boolean algebra processes can also be applied. In redundancy issue for fuzzy logic has bee Moreover, a number of inherent flaws from an engineering viewpoint have be i) fuzzy logic as probability ii) fuzzy c fuzzy disjunction iv) fuzzy inference en membership function. Fuzzy logic has be an approximate model of probabi when viewed as probability fuzzy logi of OR and AND provide incorrect res inference will also fail when fuzzy logi are applied. Some theorists have attempted to fix fuzzy logic in a system termed „Compe Logic, but the rules of CFL are ad hoc. the reliability and robustness conce systems, safety may be compromised. Keyword: fuzzy logic, control engin membership function, probability, reliab 1. INTRODUCTION Fuzzy logic is a form of many valued l the truth values of variables may be an between zero and one, whereby one is tr false and numbers in between are partia logic and controllers have been applied in a wide number of engineering appliances in recent years. These sy washing machines, cameras and vi nal of Trend in Scientific Research and De tional Open Access Journal | www.ijtsr 56 - 6470 | Volume - 2 | Issue – 6 | Sep w.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct ith Reliability of Fuzzy Logic Graeme Heald Australia rejected by a r dealing with wever, control atural language rld example of i) fuzzy logic n better model a with decision n addition, a en raised. of fuzzy logic een identified: conjunction iii) ngine v) fuzzy been found to ility, however, ical operations sponses. Fuzzy ical operations x the flaws of ensatory Fuzzy . As a result of erns in fuzzy neering, fuzzy bility, safety logic in which ny real number rue and zero is al truths. Fuzzy internationally systems and ystems include ideo cameras, autonomous car control sy unmanned air-vehicles, autom home security systems and ma However, inherent flaws in identified. According to Jaku Professor in the Institute for Computation at the Univers majority of linguists and philo are considerable problems w master theory for dealing wi language. The problems with language have been shown academics including Rescher 1973 [2], Fine in 1975 [3], Ka 1980 [5], Kamp and Partee in 1992 [7], Haack in 1996 [8] Sauerland in 2011 [10] and S Hence, academic consensu philosophers has concluded th apply correctly to vagueness in Susan Haack is Distinguis Humanities, Cooper Senior Sciences, Professor of Philos Law at the University of Miam [8] Deviant Logic, Fuzzy Formalism, Haack asserts methodologically extravaga incorrect. She analysed Zadeh that he relies on two main rea logic: a methodological and li that Zadeh was wrong on both Kamp [4] found that fuzzy lo principle of non-contradiction with a fuzzy truth value of ½ t = ½. This means that t contradiction can be app conjunction for fuzzy logic: evelopment (IJTSRD) rd.com p – Oct 2018 2018 Page: 829 ystems, auto-pilots for mated trains and braking, any more. fuzzy logic have been ub Szymanik, Associate r Logic, Language and sity of Amsterdam, the osophers hold that there with fuzzy logic as a ith vagueness in natural h fuzzy logic regarding n by a succession of in 1969 [1], Lakoff in amp in 1975 [4], Klein in 1995 [6], Williamson in ], Lassiter in 2009 [9], Szymanik in 2018 [11]. us by linguists and hat fuzzy logic does not n language. shed Professor in the Scholar in Arts and sophy and Professor of mi. In her book of 1996 y Logic: Beyond the that fuzzy logic is ant and linguistically hs motivations and finds asons for adopting fuzzy inguistic one. She found h counts. ogic has contradicted the n! For a proposition, A, the negation, ¬A = 1 - ½ the principle of non- plied to a minimum

Upload: ijtsrd

Post on 17-Aug-2019

0 views

Category:

Education


0 download

DESCRIPTION

Since 1973, fuzzy logic has been rejected by a majority of linguists as a theory for dealing with vagueness in natural language. However, control engineers apply fuzzy vagueness in natural language to control system problems. A real world example of automatic fan control has shown that i fuzzy logic can be applied ii probability theory can better model the control system iii Boolean algebra with decision processes can also be applied. In addition, a redundancy issue for fuzzy logic has been raised. Moreover, a number of inherent flaws of fuzzy logic from an engineering viewpoint have been identified i fuzzy logic as probability ii fuzzy conjunction iii fuzzy disjunction iv fuzzy inference engine v fuzzy membership function. Fuzzy logic has been found to be an approximate model of probability, however, when viewed as probability fuzzy logical operations of OR and AND provide incorrect responses. Fuzzy inference will also fail when fuzzy logical operations are applied. Some theorists have attempted to fix the flaws of fuzzy logic in a system termed „Compensatory Fuzzy Logic , but the rules of CFL are ad hoc. As a result of the reliability and robustness concerns in fuzzy systems, safety may be compromised. Graeme Heald "Issues with Reliability of Fuzzy Logic" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-6 , October 2018, URL: https://www.ijtsrd.com/papers/ijtsrd18573.pdf Paper URL: http://www.ijtsrd.com/engineering/computer-engineering/18573/issues-with-reliability-of-fuzzy-logic/graeme-heald

TRANSCRIPT

Page 1: Issues with Reliability of Fuzzy Logic

International Journal of Trend in

International Open Access Journal

ISSN No: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

Issues with Reliability of Fuzzy Logic

ABSTRACT Since 1973, fuzzy logic has been rejected by a majority of linguists as a theory for dealing with vagueness in natural language. However, control engineers apply fuzzy vagueness in natural language to control system problems. A real world example of automatic fan control has shown that: i) fuzzy logic can be applied ii) probability theory can better model the control system iii) Boolean algebra with decision processes can also be applied. In addition, a redundancy issue for fuzzy logic has been raised. Moreover, a number of inherent flaws of fuzzy logic from an engineering viewpoint have been identified: i) fuzzy logic as probability ii) fuzzy conjunction iii) fuzzy disjunction iv) fuzzy inference engine v) fuzzy membership function. Fuzzy logic has been found to be an approximate model of probability, however, when viewed as probability fuzzy logical operations of OR and AND provide incorrect responses. Fuzzy inference will also fail when fuzzy logical operations are applied. Some theorists have attempted to fix the flaws of fuzzy logic in a system termed „Compensatory Fuzzy Logic‟, but the rules of CFL are ad hoc. As a result of the reliability and robustness concerns in fuzzy systems, safety may be compromised. Keyword: fuzzy logic, control engineering, fuzzy membership function, probability, reliability, safety 1. INTRODUCTION Fuzzy logic is a form of many valued logic in which the truth values of variables may be any real number between zero and one, whereby one is true and zero is false and numbers in between are partial truths. Fuzzy logic and controllers have been applied in a wide number of engineering systems and appliances in recent years. These systems include washing machines, cameras and video cameras,

International Journal of Trend in Scientific Research and Development (IJTSRD)

International Open Access Journal | www.ijtsrd.com

ISSN No: 2456 - 6470 | Volume - 2 | Issue – 6 | Sep

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

with Reliability of Fuzzy Logic

Graeme Heald Australia

Since 1973, fuzzy logic has been rejected by a majority of linguists as a theory for dealing with

However, control engineers apply fuzzy vagueness in natural language to control system problems. A real world example of automatic fan control has shown that: i) fuzzy logic can be applied ii) probability theory can better model

lean algebra with decision processes can also be applied. In addition, a redundancy issue for fuzzy logic has been raised.

Moreover, a number of inherent flaws of fuzzy logic from an engineering viewpoint have been identified:

ii) fuzzy conjunction iii) fuzzy disjunction iv) fuzzy inference engine v) fuzzy membership function. Fuzzy logic has been found to be an approximate model of probability, however, when viewed as probability fuzzy logical operations

incorrect responses. Fuzzy inference will also fail when fuzzy logical operations

Some theorists have attempted to fix the flaws of fuzzy logic in a system termed „Compensatory Fuzzy

, but the rules of CFL are ad hoc. As a result of reliability and robustness concerns in fuzzy

fuzzy logic, control engineering, fuzzy membership function, probability, reliability, safety

Fuzzy logic is a form of many valued logic in which of variables may be any real number

between zero and one, whereby one is true and zero is false and numbers in between are partial truths. Fuzzy logic and controllers have been applied internationally in a wide number of engineering systems and appliances in recent years. These systems include washing machines, cameras and video cameras,

autonomous car control systems, autounmanned air-vehicles, automated trains and home security systems and many more. However, inherent flaws in fuzzy logic have been identified. According to Jakub Szymanik, Associate Professor in the Institute for Logic, Language and Computation at the University of Amsterdammajority of linguists and philosophers hold that there are considerable problems with fuzzy logic as a master theory for dealing with vagueness in natural language. The problems with fuzzy logic regarding language have been shown by a succession of academics including Rescher in 1969 [1], Lakoff in 1973 [2], Fine in 1975 [3], Kamp in 1975 [4], Klein in 1980 [5], Kamp and Partee in 1995 [6], Williamson in 1992 [7], Haack in 1996 [8], Lassiter in 2009 [9], Sauerland in 2011 [10] and Szymanik in 2018 [11]. Hence, academic consensus by linguists and philosophers has concluded that fuzzy logic does not apply correctly to vagueness in language. Susan Haack is DistinguisHumanities, Cooper Senior Scholar in Arts and Sciences, Professor of Philosophy and Professor of Law at the University of Miami. In her book of 1996 [8] Deviant Logic, Fuzzy Logic: Beyond the Formalism, Haack asserts that fuzzy logic imethodologically extravagant andincorrect. She analysed Zadehthat he relies on two main reasons for adopting fuzzy logic: a methodological and linguistic one. She found that Zadeh was wrong on both counts. Kamp [4] found that fuzzy logic has contradicted the principle of non-contradiction! For a proposition, A, with a fuzzy truth value of ½ the negation, = ½. This means that the principle of noncontradiction can be applied to a minimum conjunction for fuzzy logic:

Research and Development (IJTSRD)

www.ijtsrd.com

6 | Sep – Oct 2018

Oct 2018 Page: 829

autonomous car control systems, auto-pilots for vehicles, automated trains and braking,

home security systems and many more.

However, inherent flaws in fuzzy logic have been identified. According to Jakub Szymanik, Associate

Institute for Logic, Language and University of Amsterdam, the

majority of linguists and philosophers hold that there are considerable problems with fuzzy logic as a master theory for dealing with vagueness in natural

ge. The problems with fuzzy logic regarding language have been shown by a succession of academics including Rescher in 1969 [1], Lakoff in 1973 [2], Fine in 1975 [3], Kamp in 1975 [4], Klein in 1980 [5], Kamp and Partee in 1995 [6], Williamson in

Haack in 1996 [8], Lassiter in 2009 [9], Sauerland in 2011 [10] and Szymanik in 2018 [11]. Hence, academic consensus by linguists and philosophers has concluded that fuzzy logic does not apply correctly to vagueness in language.

Susan Haack is Distinguished Professor in the Humanities, Cooper Senior Scholar in Arts and Sciences, Professor of Philosophy and Professor of Law at the University of Miami. In her book of 1996

Logic, Fuzzy Logic: Beyond the Haack asserts that fuzzy logic is

methodologically extravagant and linguistically incorrect. She analysed Zadeh‟s motivations and finds that he relies on two main reasons for adopting fuzzy logic: a methodological and linguistic one. She found that Zadeh was wrong on both counts.

4] found that fuzzy logic has contradicted the contradiction! For a proposition, A,

with a fuzzy truth value of ½ the negation, ¬A = 1 - ½ This means that the principle of non-

contradiction can be applied to a minimum

Page 2: Issues with Reliability of Fuzzy Logic

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

min (A ∩ ¬A) = ½ The outcome for the principle of non-contradiction (∩ ¬A = ∅) means that it has been contradicted for fuzzy logic. Kamp asks: “How could a logical contradiction be true to any degree?” and concludes that the result is absurd. Uli Sauerland, a linguistic scholar of the LeibnizCentre General Linguistics (ZAS), write[10]: “ When I started interacting with logicians, I was surprised to learn that fuzzy logic is still a big and active field of basic research. This surprise stemmed from my experience with fuzzy logic in my own field, linguistic semantics: In semantics, fuzzy logic was explored in the analysis of vagueness in the early seventies by Lakoff [10], but has been regarded as unsuitable for the analysis of language meaning at least since the influential work of Kamp in 1975 [8], which I summarize below. Therefore, I held the belief that fuzzy logic, though it has been useful in technical applications—I once possessed a Japanese ricecooker that was advertised to use fuzzy logicnot useful for the analysis of vagueness.” 2. A Real World Control Problem Does the fact that fuzzy logic not apply to linguistics mean that a fuzzy controller might not work properly? 2.1 Fuzzy Automatic Fan Control Consider an example of the fuzzy „if-thenan automatic ceiling fan control:

i. If temperature is „cold‟ then fan_speed is stop.ii. If temperature is „less warm‟ then fan_speed

is slow. iii. If temperature is „warm‟ then fan_speed is

moderate. iv. If temperature is „hot‟ then fan_speed is high.

It is clear that fuzzy logic can offer a viable solution when applied to the fan control example. The temperatures can be given a range and the fan speed parameters can be given a single value (but variable) when both parameters are considered „fuzzyterms „temperature‟ and „fan_speed‟ are engineering terms allowing „crisp‟ decisions and control. Fuzzy logic will work in this case. The assignment of numbers between zero and one [01] to fuzzy variables is necessary for the logical

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

contradiction (A means that it has been contradicted for

fuzzy logic. Kamp asks: “How could a logical contradiction be true to any degree?” and concludes

Uli Sauerland, a linguistic scholar of the Leibniz-Centre General Linguistics (ZAS), writes in 2011

When I started interacting with logicians, I was surprised to learn that fuzzy logic is still a big and active field of basic research. This surprise stemmed from my experience with fuzzy logic in my own field,

mantics, fuzzy logic was explored in the analysis of vagueness in the early seventies by Lakoff [10], but has been regarded as unsuitable for the analysis of language meaning at least since the influential work of Kamp in 1975 [8],

Therefore, I held the belief that fuzzy logic, though it has been useful in technical

I once possessed a Japanese rice-cooker that was advertised to use fuzzy logic—, was

Does the fact that fuzzy logic not apply to linguistics mean that a fuzzy controller might not work properly?

then‟ rules for

then fan_speed is stop. ‟ then fan_speed

then fan_speed is

then fan_speed is high.

It is clear that fuzzy logic can offer a viable solution the fan control example. The

temperatures can be given a range and the fan speed parameters can be given a single value (but variable) when both parameters are considered „fuzzy‟. The

‟ are engineering decisions and control. Fuzzy

The assignment of numbers between zero and one [0, ] to fuzzy variables is necessary for the logical

operations of AND, OR and NOT. The fuzzy logic operations are defined as: A AND B = min (A, B) A OR B = max (A, B) NOT (A) = ¬A = 1 - A 2.2 Probabilistic Automatic Fan ControlHowever, linguists have found that a natural language term is not a sliding scale between zero and one. For example, the temperature terms „hot„cold‟ cannot be assigned sliding scales between one and zero. This is because fuzzy logic holds that there are an infinite number of truth values that range between zero and one for a single term. The fuzzy truth values [0,1] cannot be applied to natural language terms. The fan control problem can be solved with probability [9]. The input temperature „hotdefined as a probability between zero and one, where P(hot) = 1.0 when above 25below 16° C, the input temperatures „hot„less warm‟ or „cold‟ can each be modelled as a sliding scale [0,1]. Similarly, the output „fan_speedcould be assigned a probability where 1.0 for fan speed at 210 rpm and fan-speed at 0 rpm. The ceiling fan control coprobabilistic decision process:

I. If the temperature is, temperatures, T: T ≤ 16P(fan_speed) = 0, is stopped.

II. If the temperature is, assigned to temperatures, T: then the fan speed, P(fan_speed) = 0.3, is set to 80 rpm.

III. If the temperature is, P(„warmtemperatures, T: 20° C speed, P(fan_speed) = 0.6, is set to 140 rpm.

IV. If the temperature is „hottemperatures, T: T > 25the fan speed, P(fan_speed) = 1, is set to 210 rpm.

It is suggested that this result, as an approximate model of probability, is the key to the „paradoxical success of fuzzy logic‟ [12]. This will be discussed in more detail in section three.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 830

operations of AND, OR and NOT. The fuzzy logic

Probabilistic Automatic Fan Control However, linguists have found that a natural language term is not a sliding scale between zero and one. For example, the temperature terms „hot‟, „warm‟ or

t be assigned sliding scales between one and zero. This is because fuzzy logic holds that there are an infinite number of truth values that range between zero and one for a single term. The fuzzy truth values [0,1] cannot be applied to natural

The fan control problem can be solved with probability [9]. The input temperature „hot‟ can be defined as a probability between zero and one, where

25°C and P(cold) = 1, is C, the input temperatures „hot‟, „warm‟,

can each be modelled as a sliding scale [0,1]. Similarly, the output „fan_speed‟ could be assigned a probability where P (fan_speed) =

at 210 rpm and P (fan_speed) = 0 for

The ceiling fan control could be applied to a probabilistic decision process:

If the temperature is, P (cold), is assigned to 16° C, then the fan speed,

P(fan_speed) = 0, is stopped. If the temperature is, P („less warm‟), assigned to temperatures, T: 16° C ≤ T < 20° C, then the fan speed, P(fan_speed) = 0.3, is set

If the temperature is, P(„warm‟) , assigned to C ≤ T ≤ 25 ° C, then the fan

speed, P(fan_speed) = 0.6, is set to 140 rpm. If the temperature is „hot‟ assigned to

> 25° C, If P(hot) = 1.0 then the fan speed, P(fan_speed) = 1, is set to 210

It is suggested that this result, as an approximate model of probability, is the key to the „paradoxical

[12]. This will be discussed in

Page 3: Issues with Reliability of Fuzzy Logic

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

2.3 Boolean Automatic Fan Control The problem is that the ceiling fan control can also be equally applied to Boolean algebra with an exact decision process:

I. If the temperature is „cold‟ assigned to temperatures less than or equal to the fan speed is stop.

II. If the temperature is „less warmtemperatures less than 20° C and greater than or equal to 16° C, then the fan speed is set to 80 rpm.

III. If the temperature is „warm‟temperatures greater than or equal to less than or equal to 25 ° C, then the fan speed is set to 140 rpm.

IV. If the temperature is „hot‟ assigned to temperatures greater than 25° C, then the fan speed is set to 210 rpm.

2.4 Summary The control problem of the automatic fan is only one of many instances in which fuzzy logic could be applied, but equally well Boolean algebra with a decision process and probabilistic approach could be better applied. A redundancy issue for fuzzy logic has been raised. This result would support Susan Haackchapter in her book on fuzzy logic „Do we need fuzzy logic? ‟ [13]. The methodological extravagances of fuzzy logic are listed: a. Fuzzy logic does not avoid

introduced by regimentation. b. Fuzzy logic introduces enormous complexities.c. Fuzzy logic still imposes artificial precision. 3. Flaws in Fuzzy Control MethodologyThe reliability of fuzzy logic controllers can be questioned in relation to four aspects: i. Fuzzy Logic as Approximate ProbabilityFuzzy engineer, Bart Kosko, in the paper vs. Probability‟ [14] claims that probability theory is a sub-theory of fuzzy logic, even though manylogic and probability are independent theories. Probability should not be a sub-theory of fuzzy logic. Instead, the author has shown that fuzzy logic is based upon probability [15]. It has also been shown that probability can model vague control system variables and that the „success of fuzzy logic‟upon this.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

The problem is that the ceiling fan control can also be equally applied to Boolean algebra with an exact

‟ assigned to temperatures less than or equal to 16° C, then

If the temperature is „less warm‟ assigned to C and greater than

, then the fan speed is set to

‟ assigned to temperatures greater than or equal to 20° C and

C, then the fan speed

‟ assigned to C, then the fan

The control problem of the automatic fan is only one of many instances in which fuzzy logic could be applied, but equally well Boolean algebra with a decision process and probabilistic approach could be

redundancy issue for fuzzy logic has

This result would support Susan Haack‟s title of a Do we need fuzzy

The methodological extravagances of fuzzy

Fuzzy logic does not avoid complexities

Fuzzy logic introduces enormous complexities. Fuzzy logic still imposes artificial precision.

Flaws in Fuzzy Control Methodology The reliability of fuzzy logic controllers can be

Fuzzy Logic as Approximate Probability in the paper „Fuzziness

[14] claims that probability theory is theory of fuzzy logic, even though many-valued

logic and probability are independent theories. theory of fuzzy logic.

Instead, the author has shown that fuzzy logic is based probability [15]. It has also been shown that

probability can model vague control system variables ‟ may depend

a. The fuzzy logic definition (A appears derived from the full probability formulif events A and B are not mutually exclusive:P (A ∩ B) = P(A) + P(B) -Where P is probability and

b. The fuzzy logic definition, is correct in fuzzy logic and also probability but applies to variables A and B if and only if they intersect one another (dependent) and are not mutually exclusive.

c. If two events A and B are the probability of both, P union is: P(A ∪ B) = P(A) + P(B)

d. For independent variables A and B:P (A ∩ B) = P(A).P(B)

e. For conditional probability given B:P (A ∩ B) = P(A|B). P(B)

The fuzzy logic definition A ∩only if the variables are not mutually exclusive and dependent (intersect one another). If variables A and B and not mutually exclusive, partially or totally independent, mutually exclusive or conditionfuzzy logic will produce incorrect responses. However, input variables would typically be mutually exclusive and have a probability of zero, P 0. For independent variables, P Therefore, the fuzzy logic operation of ANDincorrect answers when applied as a probability. This is an intrinsic problem of fuzzy logic that has no remedy. ii. Fuzzy Conjunction ‘AND’Fuzzy logic does not pass elementary logic tests for conjunction. Kamp has noted that fuzzy logic contradicts the principle of nonmight be added that the principle of nonis also the definition of paradox in fuzzy logic: A = ¬A= 1/2! The author has also given an example to illustrate that fuzzy logic fails for traffic lightsamber light on (signalling stop) is interpreted by fuzzy logic to be amber, or proceed with caution or possibly stop. Fuzzy logic conjunction is incorrect and an intrinsic problem. iii. Fuzzy Disjunction ‘OR’For probability, the logical OR oppossibilities:

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 831

The fuzzy logic definition (A ∩ B = min (A, B)) appears derived from the full probability formula, if events A and B are not mutually exclusive:

- P(A ∪ B) Where P is probability and (A ∪ B) is union. The fuzzy logic definition, (A ∩ B) = min (A, B) is correct in fuzzy logic and also probability but applies to variables A and B if and only if they intersect one another (dependent) and are not

If two events A and B are mutually exclusive then the probability of both, P (A ∩ B), is zero and

independent variables A and B:

onditional probability given B:

∩ B = min (A, B) applies only if the variables are not mutually exclusive and dependent (intersect one another). If variables A and B and not mutually exclusive, partially or totally independent, mutually exclusive or conditional then fuzzy logic will produce incorrect responses. However, input variables would typically be mutually exclusive and have a probability of zero, P (A ∩ B) = 0. For independent variables, P (A ∩ B)= P(A).P(B). Therefore, the fuzzy logic operation of AND produces incorrect answers when applied as a probability. This is an intrinsic problem of fuzzy logic that has no

Fuzzy Conjunction ‘AND’ Fuzzy logic does not pass elementary logic tests for conjunction. Kamp has noted that fuzzy logic

s the principle of non-contradiction [4]. It might be added that the principle of non-contradiction is also the definition of paradox in fuzzy logic: A =

The author has also given an example to illustrate that fuzzy logic fails for traffic lights [16]. A red and amber light on (signalling stop) is interpreted by fuzzy logic to be amber, or proceed with caution or possibly stop. Fuzzy logic conjunction is incorrect and an

Fuzzy Disjunction ‘OR’ For probability, the logical OR operation has three

Page 4: Issues with Reliability of Fuzzy Logic

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

a. A OR B = max( A, B) (dependent but not mutually exclusive)

b. A OR B = A + B (mutually exclusive) c. A OR B = A + B - (A ∩ B) (not mutually

exclusive and independent) It should be noted that fuzzy logic OR has chosen only case (a). However, in the fan control example another input variable could be „humiditymutually exclusive to temperature. Other input variables would typically be independent that is case (c). The result is that the fuzzy logical OR operatiogives incorrect answers. iv. Fuzzy Inference Engine The fuzzy inference engine has a finite number of instances (if An then Bn) as the decision system of an expert system [17]. However, real world applications may go outside or beyond normal operating conditions and demand a different response to the preprogrammed inference engine, causing failure. While, increasing the number of inferences will improve the reliability of operation of the fuzzy controller, chaos theory shows that real world applications mayinfinite number of possibilities that would be impossible to encode in a fuzzy controller [18]. This is a problem, however, for all control systems. It is also clear that fuzzy inference may also fail when flawed fuzzy logic operations of OR and applied. The flaws in fuzzy logic conjunction and disjunction from the fuzzy inference can lead to an incorrect output. The incorrect output may cause the control system to respond to new stimulus incorrectly and fail or crash. It is suggested that inputs for fuzzy AND and OR operations could occur under non-standard operating conditions when it is most likely that the fuzzy system will respond incorrectly. There are, however, limitations placed on the response of the fuzzy control system. The centroid method that calculates a weighted average of the outputs will also effectively average out errors, reducing the effect of incorrect responses in the system [17]. The centroid method will effectively reduce the likelihood of a crash in the fuzzy control system, but will not balance all situations. v. Fuzzy Membership Function Contrary to a probability function that is restricted between (0, 1), the fuzzy membership function

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

A OR B = max( A, B) (dependent but not

A OR B = A + B (mutually exclusive) B) (not mutually

It should be noted that fuzzy logic OR has chosen case (a). However, in the fan control example

another input variable could be „humidity‟, that is not mutually exclusive to temperature. Other input variables would typically be independent that is case (c). The result is that the fuzzy logical OR operation

The fuzzy inference engine has a finite number of ) as the decision system of an

expert system [17]. However, real world applications may go outside or beyond normal operating

tions and demand a different response to the pre-programmed inference engine, causing failure. While, increasing the number of inferences will improve the reliability of operation of the fuzzy controller, chaos theory shows that real world applications may have an infinite number of possibilities that would be impossible to encode in a fuzzy controller [18]. This is a problem, however, for all control systems.

It is also clear that fuzzy inference may also fail when flawed fuzzy logic operations of OR and AND are applied. The flaws in fuzzy logic conjunction and disjunction from the fuzzy inference can lead to an incorrect output. The incorrect output may cause the control system to respond to new stimulus incorrectly

unplanned for inputs for fuzzy AND and OR operations could occur

standard operating conditions when it is most likely that the fuzzy system will respond

There are, however, limitations placed on the system. The centroid

method that calculates a weighted average of the outputs will also effectively average out errors, reducing the effect of incorrect responses in the system [17]. The centroid method will effectively

the fuzzy control system, but will not balance all situations.

Contrary to a probability function that is restricted between (0, 1), the fuzzy membership function

employed in the fuzzy inference engine is not necessarily restricted between (0, 1) [15] [19]. If not restricted between zero and one, the fuzzy membership function may cause glitches or failures. In this case, a remedy is possible by restricting fuzzy membership functions between one and zero, and making the probabilities (fuzzy logic variables) add up to one in all cases.

Figure1. Fuzzy Membership Function adding to one 4. Have Theorists tried to Compensate for Fuzzy

Logic Flaws? It would appear that theorists have also recognised flaws or limitations in fuzzy conjunction and disjunction and offered improvements in a system termed „Compensatory fuzzy logic‟ (CFL) [20][21]. The ad hoc rules of CFL, however, support the view that it is trying to fix the unfixable. The quote is from Wikipedia d „Compensatory fuzzy logic is a branch of fuzzy logic with modified rules for conjunction and disjunction. When the truth value of one component of a conjunction or disjunction is increased or decreased, the other component is decreased compensate. This increase or decrease in truth value may be offset by the increase or decrease in another component. An offset may be blocked when certain thresholds are met. Proponents claim that CFL allows for better computational semantimimic natural language. Compensatory fuzzy logic consists of four continuous operators: conjunction (c); disjunction (d); fuzzy strict order (or); and negation (n). The conjunction is the geometric mean and its dual as conjunctive and disjoperators.”

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 832

employed in the fuzzy inference engine is not restricted between (0, 1) [15] [19]. If not

restricted between zero and one, the fuzzy membership function may cause glitches or failures. In this case, a remedy is possible by restricting fuzzy membership functions between one and zero, and

babilities (fuzzy logic variables) add

Fuzzy Membership Function adding to one

Have Theorists tried to Compensate for Fuzzy

It would appear that theorists have also recognised flaws or limitations in fuzzy logic operations of conjunction and disjunction and offered improvements in a system termed „Compensatory

(CFL) [20][21]. The ad hoc rules of CFL, however, support the view that it is trying to fix the

The quote is from Wikipedia dated 10 July 2018:

Compensatory fuzzy logic is a branch of fuzzy logic with modified rules for conjunction and disjunction.

the truth value of one component of a conjunction or disjunction is increased or decreased, the other component is decreased or increased to compensate. This increase or decrease in truth value may be offset by the increase or decrease in another component. An offset may be blocked when certain thresholds are met. Proponents claim that CFL allows for better computational semantic behaviours and mimic natural language. Compensatory fuzzy logic consists of four continuous operators: conjunction (c); disjunction (d); fuzzy strict order (or); and negation (n). The conjunction is the geometric mean and its dual as conjunctive and disjunctive

Page 5: Issues with Reliability of Fuzzy Logic

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

The geometric mean is defined as the product of n numbers, that is, for a set of numbers x2, ..., xn, the conjunction in CFL is equal to the geometric mean is defined as [22]: x1 ∩ x2, ... ∩ xn = n√ x1.x2. ...xn The disjunction in CFL is defined as the complement of conjunction is: x1 ∪ x2, ... ∪ xn = 1 - n√ x1.x2. ...xn 5. Conclusion Linguists and philosophers have found that fuzzy logic does not provide a model for linguistic semantics of vagueness. Despite academic consensus to the contrary, engineers have modelled fuzzy vagueness in natural language in control systems. A real world example of a control system with automatic fan control has found that fuzzy logic can be applied. However, the vagueness of terms can be better modelled by probability and the automatic fan control can be solved probabilistically. It has been suggested that as an approximate model of probability the success of fuzzy logic can be found. Exactly the same result for the fan control system could also be achieved with Boolean algebra and decision processes, raising the question: „Do we need fuzzy logic? ‟ From an engineering viewpoint, a number of inherent flaws of fuzzy logic have been identified. The flaws have been elucidated: i) fuzzy logic as probability ii) fuzzy conjunction iii) fuzzy disjunction iv) fuzzy inference engine v) fuzzy membership function. Fuzzy logic has been found to be an approximate model of probability, however, when viewed as a probability the fuzzy logical operations of OR and AND provide incorrect answers. Fuzzy inference may also fail when these fuzzy logical operations are applied. It appears that theorists have attempted to fix the flaws of fuzzy logic in a system termed „Compensatory fuzzy logic‟ but the ad hoc rules suggest that it is trying to fix the unfixable. Inherent flaws in fuzzy control systems, especially when fuzzy logic OR and AND operations have been applied and or during non-standard operating conditions, may lead to failure in these systems. It

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

The geometric mean is defined as the nth root of the of n numbers, that is, for a set of numbers x1, , the conjunction in CFL is equal to the

The disjunction in CFL is defined as the complement

Linguists and philosophers have found that fuzzy logic does not provide a model for linguistic semantics of vagueness. Despite academic consensus to the contrary, engineers have modelled fuzzy vagueness in natural language in control systems.

example of a control system with automatic fan control has found that fuzzy logic can be applied. However, the vagueness of terms can be better modelled by probability and the automatic fan control can be solved probabilistically. It has been

at as an approximate model of probability the success of fuzzy logic can be found. Exactly the same result for the fan control system could also be achieved with Boolean algebra and decision processes, raising the question: „Do we need fuzzy

an engineering viewpoint, a number of inherent flaws of fuzzy logic have been identified. The flaws have been elucidated: i) fuzzy logic as probability ii) fuzzy conjunction iii) fuzzy disjunction iv) fuzzy inference engine v) fuzzy membership function.

zzy logic has been found to be an approximate model of probability, however, when viewed as a probability the fuzzy logical operations of OR and AND provide incorrect answers. Fuzzy inference may also fail when these fuzzy logical operations are

It appears that theorists have attempted to fix the flaws of fuzzy logic in a system termed

but the ad hoc rules suggest that it is trying to fix the unfixable.

Inherent flaws in fuzzy control systems, especially c OR and AND operations have been

standard operating conditions, may lead to failure in these systems. It

would be anticipated there would be further instances of failure for fuzzy systems. As a result of reliability and robustnefuzzy systems, safety may ultimately be compromised. To quote Peter Clarke from aentitled ‘Whatever happened to fuzzy logic ‘But perhaps fuzzy logic's time has come. References 1. N. Rescher. Many-Valued

New York, N.Y., 1969.

2. G. Lakoff “A study in meaning criteria and the logic of fuzzy concepts”, Journal of Philosophical Logic, 2:458–508, 1973.

3. K. Fine, “Vagueness, truth, and logic”30:265–300, 1975.

4. H. Kamp, “Two theories oKeenan, editor, Formal Semantics of Natural Languages, Cambridge University Press, 1975, pp 123–155.

5. E. Klein, “A semantics for positive and comparative adjectives.”, Philosophy, 4, 1980, pp 1–

6. H. Kamp, B. H. Partee, “compositionality”, Cognition, 57, 1995, pp 129191.

7. T. Williamson, “Vagueness as Ignorance”, Proceedings of the Aristotelian Society, Suppl. Vol. 66: 145–162, 1992.

8. S. Haack, Deviant Logic, Fuzzy Logic: Beyond the Formalism, The University of Chicago Press, Chicago,IL, 1996.

9. D. Lassiter, “Vagueness as probabilistic linguistic knowledge”, International Workshop on Vagueness in Communication, Communication, 2009, pp 127

10. U. Sauerland, “Vagueness in Language: The Case Against Fuzzy Logic Revisited”, Vagueness: Logical, Philosophical, and Linguistic Perspectives, Studies in Logic 36Publications, London, UK, 2011, pp 185

11. J. Szymanik, “Vagueness and Fuzzy Logic”, http://www.jakubszymanik.com/teaching/vaguess.pdf July 2018.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 833

would be anticipated there would be further instances

As a result of reliability and robustness concerns in fuzzy systems, safety may ultimately be

To quote Peter Clarke from an article in EE Times Whatever happened to fuzzy logic?’ in 2012:

But perhaps fuzzy logic's time has come.’

Valued Logic. McGraw-Hill,

study in meaning criteria and the logic of fuzzy concepts”, Journal of Philosophical

K. Fine, “Vagueness, truth, and logic”, Synthese,

H. Kamp, “Two theories of adjectives”, E. Formal Semantics of Natural

, Cambridge University Press, 1975, pp

E. Klein, “A semantics for positive and comparative adjectives.”, Linguistics and

– 45.

. Partee, “Prototype theory and compositionality”, Cognition, 57, 1995, pp 129–

T. Williamson, “Vagueness as Ignorance”, Proceedings of the Aristotelian Society, Suppl.

Deviant Logic, Fuzzy Logic: Beyond the The University of Chicago Press,

D. Lassiter, “Vagueness as probabilistic linguistic International Workshop on Communication, Vagueness in

, 2009, pp 127-150.

U. Sauerland, “Vagueness in Language: The Case Against Fuzzy Logic Revisited”, Understanding

gical, Philosophical, and Linguistic Perspectives, Studies in Logic 36, College

London, UK, 2011, pp 185–198.

, “Vagueness and Fuzzy Logic”, anik.com/teaching/vaguene

Page 6: Issues with Reliability of Fuzzy Logic

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

12. C. Elkan “ The Paradoxical Success of Fuzzy Logic”, IEEE discussion, University of California, San Diego, Aug 1994.

13. S. Haack, “Do we need Fuzzy Logic?from Deviant Logic, Fuzzy Logic: Beyond the Formalism, The University of Chicago Press, Chicago, IL, 1996, pp 232- 243.

14. B. Kosko,”Fuzziness vs. ProbabilitySystems, Vol. 17, pp 211-240, 1990.

15. G. Heald “The Similarities between Fuzzy Logic and Probability”, Research Gate, 3rd

16. G. Heald “Traffic lights highlight a flaw in Fuzzy Logic”, Research Gate, March 2017.

17. G. J. Klir, B. Yuan Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice Hall, 1995.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

The Paradoxical Success of Fuzzy , University of California,

, “Do we need Fuzzy Logic?” chapter Deviant Logic, Fuzzy Logic: Beyond the

The University of Chicago Press,

Fuzziness vs. Probability”, Int J. Gen. 240, 1990.

ies between Fuzzy Logic April 2017.

G. Heald “Traffic lights highlight a flaw in Fuzzy Logic”, Research Gate, March 2017.

Fuzzy Sets and Fuzzy Logic Prentice Hall, 1995.

18. J. Gleick, Chaos: Making a New Science,Books, 1987.

19. G. Heald “Does U-logic Offer advantages over Fuzzy logic?” Research Gate, February 2018.

20. F. Veri “Fuzzy Multiple Attribute fsQCA, Problems and SolutionsMethods and Research, October 3, 2017.

21. J. Cejas, “Compensatory Fuzzy LogicHabana: Revista de Ingeniería Industrial,

22. M. Alonso, “Knowledge discovery by Compensatory Fuzzy Logic predicateMetaheuristic approach”, International Workshop Proceedings

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 834

Making a New Science, Viking

logic Offer advantages over Research Gate, February 2018.

“Fuzzy Multiple Attribute Conditions in fsQCA, Problems and Solutions”, Sociological

October 3, 2017.

J. Cejas, “Compensatory Fuzzy Logic”, La Habana: Revista de Ingeniería Industrial, 2011.

M. Alonso, “Knowledge discovery by Compensatory Fuzzy Logic predicates using a

aheuristic approach”, Eureka, Fourth International Workshop Proceedings, 2013.