ivan hamráček supervisor: rndr. jaroslav antoš csc

30
Ivan Hamráček Supervisor: RNDr. Jaroslav Antoš CSc. Institute of Experimental Physics Slovak Academy of Sciences, Košice Doctoral Seminar IEP, SAS, Košice 2011 June 15. 2011 1/20 hamracek@saske. sk

Upload: archer

Post on 15-Jan-2016

49 views

Category:

Documents


0 download

DESCRIPTION

Institute of Experimental Physics Slovak Academy of Sciences, Košice. Spectroscopic Measurements of the Single Bubble Sonoluminescence. Ivan Hamráček Supervisor: RNDr. Jaroslav Antoš CSc. Doctoral Seminar IEP, SAS, Košice 2011. [email protected]. Sonoluminescence. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

Ivan HamráčekSupervisor: RNDr. Jaroslav Antoš CSc.

Institute of Experimental PhysicsSlovak Academy of Sciences, Košice

Doctoral Seminar IEP, SAS, Košice 2011

June 15. 2011 1/[email protected]

Page 2: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

light emitting from the gaseous bubbles in the liquid excited by the acoustic pressure field

temperature in bubble(~ 10.000 K )

light flash duration(~100 ps)

SBSL in water; I. Hamracek; April 2006

MBSL SBSL light production mechanism still unknown

June 15. 2011 2/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 3: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

one gaseous bubble trapped in the centerof the flask exposed to ultrasound

concentration of the energy of acousticvibrations by a factor of 1012

106 photons (2-6eV) per one flash

June 15. 2011 3/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 4: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

10

20

30

40

50

radi

us [

μm]

0

acou

stic

ampl

itude

[ATM

]

1

-1

0

time [μs]2010 300

bubble expansion and implosion

RMAX ~ 50 mMie scattering

R0 ~ 5 m

vR ~ 4M

T ~ 104 - 108 K !spectrum

shock wave

flash

t ~ 60 - 250 psTCSPC

R0 ~ 0,5 m

• volume shift by factor 106

• slow isothermal expansion• fast adiabatic colaps

• high pressure and temperature

• periodic intervals• 106 photons

June 15. 2011 4/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 5: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

SL laboratory formation experimental apparatus for SBSL creation technology of proper conditions for stable SBSL automation of SBSL creation

June 15. 2011 5/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 6: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

continuous in 190nm – 700nm region UV sector absorbed by water light production mechanism still unknown very low intensity

wavelength calibration absolute spectral response calibration calibration verification medium absorbance analysis suitable optical apparatus

OceanOptics USB4000 Spectrometer• detector range 200 – 900 nm• 3648-element Toshiba linear CCD array• integration time 3.8 ms – 10 sUncalibrated deformed SBSL Spectrum 200-900nm, 7s/20average/10box, 2007

June 15. 2011 6/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

QE65000-FLSpectrometerUSB4000 Spectrometer

Page 7: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

wavelength drift slightly with time OceanOptics HG-1 Mercury Argon Calibration Source spectrum calibration included with every measurement automatization needed study of external effects on w.c. (spec. board temperature, integration time,

averaging, source runtime)

automatized calibration in LabView (HG-1 spectrum and spectrum parameters loaded, line identification, calibration recommendation, archiving data)

June 15. 2011 7/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

HG-1 Mercury Argon Calibration Source

Page 8: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

June 15. 2011 8/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

LS-1-CAL Radiometric Calibration Standard

USB4000 Spectrometer

corrections:

size of light emitting surface time integration (pulses) emissivity (temperature and wavelength

dependent) transmittance (water, flask glass, lens) geometric (water, flask, lens, light source

distance)

keep a check on:

conditions (temperature, humidity, atmospheric pressure)

light distortions (light dispersion, reflection, refraction)

mechanical distortions (fiber) aberrations (chromatic, defocus, spherical,

astigmatism, coma, Petzval field curvature)

other corrections

Page 9: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

thermal sources (Tungsten & Nichrome filament, Sun, stars, hotplate)Planck’s & Stefan-Boltzmann & Wien’s law

other (LED)

automated Tungsten & Nichrome filament temperature estimator (LabView)

(I,U,P,T controlling and recording)systematically undervalued temperatures

automated software for Planck fit(raw spectra, calibration, spectral power, spectral radiance, number of photons, corrections (transmittances, emissivity))

June 15. 2011 9/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 10: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

Sun spectra measurementsair mass (coordinate, time, zenith angle)wavelength dependent correction (atmosphere purity (clouds, dust, smog...), spectra measurements procedure (acceptance angle, spectrometer overheat)…)

LEDsreproducibility, corrections, distortions,spectra, radial distributions, dissipatedpower,

June 15. 2011 10/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Neckel H. a Labs D. The Solar Radiation Between 3300 and 12500 A; Solar Physics, 1984, 90, 205-258

Page 11: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

included: calibration function, integration time,light collection solid angle

not included:water, glass and optics absorption optics geometry

Sonoluminescence spectrum, T = 10.400 Kf = 26.698 kHz; A = 7,4 V; integration time = 10 s; averaging = 10; boxcar width =50dissolved oxygen = 3,2 mg/lT = 21°C; pa = 1015 mbar

raw spectra

June 15. 2011 11/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 12: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

conditions for stable SBSLobservations experimental apparatus for SBSL creation – done technology of proper conditions for stable SBSL (even hours) - done

SBSL temperature estimation observation of raw SL spectra - done automated wavelength calibration - done absolute spectral response calibration – in progress calibration verification – in progress distortions & corrections analysis – in progress preliminary temperature estimation – done suitable approach for UV detection (wavelength shifter, closer to bubble…) new spectrometer (QE65000) possibility of temperature regulations – to do

June 15. 2011 12/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 13: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

estimation of flash duration• confirmation of one light flash per one acoustic cycle - done• confirmation of flash duration being of couple orders lower than acoustic

cycle (PMT) - done• flash registrated with MPPC - single photons registered – done

diameter measurements• Mie Scattering – qualitative agreement with dynamics theory – done • slow diameter increasing, fast collapse, afterpulses observed – done

corelations between parameters (pressure amplitude, temperature,intensity, flash duration) – to do

required experimental apparatus for dissertation aims completion already obtained – done

June 15. 2011 13/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 14: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

Thank you for your attention!

June 15. 2011 14/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 15: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

June 15. 2011 15/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 16: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

34410A 6½ Digit Multimeter 33220A Function Generator

E3647A Dual Output Power SupplyE3649A Dual Output Power SupplyPicoScope 3424

HG-1 Mercury Argon Calibration Source9306 1-GHz Preamplifier

VME-V1290N 16Channel Multihit TDC

935 Quad 200MHz CFD

SPMMini High Gain APD

C10751-03 MPPC

Sony EVI-D100P

HI 9142 Dissolved Oxygen Meter

USB4000 SpectrometerQE65000-FL

Spectrometer

FVA-UV Attenuator

DT-MINI-2-GSLight Source

LS-1-CAL Radiometric Calibration Standard

Longpass & Shortpassfilters

CUV-UV Cuvette Holder

June 15. 2011 16/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 17: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

the light scattered within a given angle is proportional to the square of the radius of the bubble signal from the PMT is proportional to the intensity of the scattered light 565 nm laser (red) no calibration for PMT signal to radius nor for excitation signal amplitude to acoustic pressure field amplitude yet proportional parameters: good qualitative agreement with Rayleigh-Plesset equation and published experimental results

excitation signal amplitude [V]

light pulses observed

light pulses not observed

June 15. 2011 17/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 18: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

June 15. 2011 18/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 19: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

p(t)=0

p(t)=p0sin(ωt)

acoustic pressurep(x,t)

X position

Bjerknes force – time average

t0+T/2

t0

June 15. 2011 19/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 20: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

tpp

R

R

RR

R

RpRRR AH

b

H

sin4221

2

33

0

0

2

qualitative bubble dynamics description

R – bubble radiuspH – hydrostatic pressurepA – acoustic amplitudeσ – surface tensionμ – liquid viscosity

Assumptions

- liquidincompressibility

- slow radius shift

June 15. 2011 20/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 21: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

S. Putterman; February 1995

no SBSLSBSL

1,0

acoustic amplitude [ATM]

1,1

1,2

1,3

relative intensity of light emitted

time [μs]50

4030

2010

0

1020304050

radi

us [μ

m]

Hiller et al.; 1992

M.P. Brenner; April 2002

0,1 1 10 100% inert gas in N2

SL in

tens

ity

• liquid used• bubble gas used• acoustic amplitude• ambient temperature• others?

Weninger et al.; May 1995

June 15. 2011 21/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 22: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

• signal generated and amplified with frequency of ~ 27 kHz

flask

osciloscope pc

pmt camera

• apparatus scene captured with camera

• transformed by piezoceramic transducers to US standing wave

parameters monitored

• LC circuit current• sound captured with microphone at

the bottom of the flask• flash captured with photomultiplier

USB 4000

1MΩ

10kΩ

• spectrum scanned USB 4000

function generator

~amplifier

L

requirements

• function generator output voltage

June 15. 2011 22/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 23: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

June 15. 2011 23/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 24: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

liquid preparation

• 5-10 fold cut-down of gas content in destilated water

• 115 ml, liquid surface in flask neck for spherical liquid shape

signal generated• 26,69 kHz, 3-5 Vpp

bubble creation• liquid surface undulation (miniature bubble creation)

sonoluminescence observation• microphone output signal folds• light pulses captured with PMT

SBSL in water on osciloscope LeCroy; I. Hamráček; April 2006

June 15. 2011 24/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011

Page 25: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

June 15. 2011 Ivan Hamracek, Doctoral Seminar IEP SAS 2011 25/20

Page 26: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

focal distance 11mm, F/3.2

r ~ 50m

Hamráček; April 2006; Olympus C750

1mm

0,5exposition [s]: 123,25610ISO: 50 400 100 400 400 400 400

dig. zoom 15x0.3mm

50μm

Page 27: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

focal distance 11mm, F/3.2

r ~ 50m

Hamráček; April 2006; Olympus C750

1mm

0,5exposition [s]: 123,25610ISO: 50 400 100 400 400 400 400

dig. zoom 15x0.3mm

50μm

Page 28: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

• Photon Counting• low-light-level measurements (luminescence, fluorescence)

• incident photons are detected as separate pulses• average time intervals between signal pulses are wider than the

time resolution of PMT• signal stability, detection effeciency, signal-to-noise ratio• <100 ps time resolution• 2 fast detectors - time difference of

signal registration distribution

PMT – MPPC, CFD – constant fraction discriminator , TAC – time to amplitude converter, MCA – multichannel analyzer

Light sourcePMT

PMT

CFD

CFD

TACstart

stop

MCAU(Δt)

June 15. 2011 28/20

Page 29: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

• novel type semiconducting photon sensor• built from an avalanche photodiode (APD) array on common Si substrate• sensitive size 1x1 mm2

• great photon dtection ability• excellent cost performance• very compact size

SPMMini PMT

Ivan Hamracek, Written part of the dissertation examinationJune 15. 2011

Page 30: Ivan  Hamráček Supervisor: RNDr. Jaroslav Antoš CSc

June 15. 2011 32/20Ivan Hamracek, Doctoral Seminar IEP SAS 2011