j. h. lacasce norwegian meteorological institute oslo,...

39
Understanding the buoyancy-driven circulation J. H. LaCasce Norwegian Meteorological Institute Oslo, Norway Understanding the buoyancy-driven circulation – p.1/39

Upload: others

Post on 25-Apr-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Understanding thebuoyancy-driven circulation

J. H. LaCasce

Norwegian Meteorological Institute

Oslo, Norway

Understanding the buoyancy-driven circulation – p.1/39

Page 2: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Modelling climate change

Use general circulation models (GCMs)

e.g., double CO � and measure temperature change

But models parameterize processes, like:

� Sub-grid scale dissipation

� Tracer mixing

� Air-sea coupling

� Boundary conditions

Which approach is right? Why do different modelsgive different results?

Understanding the buoyancy-driven circulation – p.2/39

Page 3: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Idealized models

Take a simplified system, and examine itsdependencies (e.g. boundary conditions) thoroughly

� Improve the GCMs

� Write simplified climate models

� Understand the physics

Understanding the buoyancy-driven circulation – p.3/39

Page 4: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Idealized models

1) Meridional overturning circulation

2) Wind-driven oceanic variability

Understanding the buoyancy-driven circulation – p.4/39

Page 5: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Global heat transport

Trenberth and Caron, 2001Understanding the buoyancy-driven circulation – p.5/39

Page 6: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Oceanic heat transport

Trenberth and Caron, 2001Understanding the buoyancy-driven circulation – p.6/39

Page 7: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Mean vs. eddies

Jayne and Marotzke, 2002Understanding the buoyancy-driven circulation – p.7/39

Page 8: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Model example

Te Raa and Dijkstra, 2002

Understanding the buoyancy-driven circulation – p.8/39

Page 9: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Understanding the models

Questions:

� What drives the overturning (MOC)?

� How does MOC depend on mixing?

� On frictional parameterizations?

� On boundary conditions?

Understanding the buoyancy-driven circulation – p.9/39

Page 10: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Models II

Marotzke, 1997

Understanding the buoyancy-driven circulation – p.10/39

Page 11: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

GeostrophyAtmospheric and oceanic motion governed by theNavier-Stokes equations

But simplified dynamics possible at larger scales,where the Coriolis force approximately balancespressure gradients

L

Understanding the buoyancy-driven circulation – p.11/39

Page 12: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Geostrophy

Understanding the buoyancy-driven circulation – p.12/39

Page 13: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Scaling theorye.g. Bryan and Cox, ’67, Nilsson et al., 2003

Assume: 1) Geostrophic flow:

�� � ��

��

� � �� ��

��

2) Hydrostatic balance

���

� � � ��

Understanding the buoyancy-driven circulation – p.13/39

Page 14: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Scaling theory

3) Vertical advective-diffusive balance

��

��� � ��

� �

� � �

Yields:

� � � � �� � � �

� � � � � �� � � �

Understanding the buoyancy-driven circulation – p.14/39

Page 15: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Scaling theory

Park and Bryan, 2000Understanding the buoyancy-driven circulation – p.15/39

Page 16: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Viscosity dependence

Huck et al., 1999

Understanding the buoyancy-driven circulation – p.16/39

Page 17: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Scaling

Scaling theory approximately correct when constantmixing over the whole basin

Numerical simulations suggest mixing is intensifiednear the boundaries and viscosity-dependent

Observations (Polzin, Ledwell) also suggestboundary-intensified mixing

Scaling theory probably inadequate

Understanding the buoyancy-driven circulation – p.17/39

Page 18: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Abyssal circulationStommel and Arons, 1960; Kawase, 1987

x

Understanding the buoyancy-driven circulation – p.18/39

Page 19: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Equations

�� � � � �

���� �

� ��

�� � � � � �� �

� �

� � � � ��

� � � � ��� � �

� � � � � �� � � � � �

Understanding the buoyancy-driven circulation – p.19/39

Page 20: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Abyssal flowStommel and Arons, 1960

0 0.5 1 1.50

0.5

1

1.5

Stommel and Arons flow to uniform w0

Latit

ude

LongitudeUnderstanding the buoyancy-driven circulation – p.20/39

Page 21: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Abyssal solutions

Good:

� Dynamically plausible

� Predicted Deep Western Boundary current

� Viscosity dependence in boundary layer

Less good:

� Must specify upwelling

� Buoyancy driving produces purely baroclinicflow

Understanding the buoyancy-driven circulation – p.21/39

Page 22: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Implied flow

0 0.5 1 1.50

0.5

1

1.5

Stommel and Arons flow to uniform w0

Latit

ude

Longitude

0 0.5 1 1.50

0.5

1

1.5

Latit

ude

Longitude

Implied surface flow

Understanding the buoyancy-driven circulation – p.22/39

Page 23: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Model example

Te Raa and Dijkstra, 2002

Understanding the buoyancy-driven circulation – p.23/39

Page 24: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Linear modelPedlosky, 1968,1969; Salmon, 1986

10y_0

1

Understanding the buoyancy-driven circulation – p.24/39

Page 25: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Planetary Geostrophy

� �� � ��

�� �

�� � ��

�� ��

� � ��

�� �

��� �

��� �

��� � � �

��

��� �

���

� ��

��� � �� � � � ��

� ��� � �

Understanding the buoyancy-driven circulation – p.25/39

Page 26: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Linear PG

� � � � � � � � � � � � � � � � � � � �

� � � � � �

Temperature equation becomes:

� � � �� � � ��� �

� � �

where

� �

��� �

Understanding the buoyancy-driven circulation – p.26/39

Page 27: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Characteristics1) Flow driven by vertical mixing

2) Flow confined to surface boundary layer

about 500 m thick

3) Baroclinic velocities

4) Viscosity, lateral diffusion important only at west,North, South walls

5) Upwelling/downwelling occurs mostly near lateralboundaries

Understanding the buoyancy-driven circulation – p.27/39

Page 28: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Diffusive viscosity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κV=κ

H=10−4, E=10−5

−1.5

−1

−0.5

0

0.5

1

1.5x 10

−3

Understanding the buoyancy-driven circulation – p.28/39

Page 29: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Rayleigh viscosity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κV=κ

H=10−4, ε=0.01

−1.5

−1

−0.5

0

0.5

1

1.5x 10

−3

Understanding the buoyancy-driven circulation – p.29/39

Page 30: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Boundary mixing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κV=κ

H=10−4, ε=.01; d=0.95

−1.5

−1

−0.5

0

0.5

1

1.5x 10

−3

Understanding the buoyancy-driven circulation – p.30/39

Page 31: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Comparison to models

� SimilaritiesBoundary-intensified vertical velocitiesWestern boundary current with large �

� sensitive to viscosity and BCZonal thermocline flow with BT � �

� DifferencesSense of surface flowMagnitudes of vertical velocities

Understanding the buoyancy-driven circulation – p.31/39

Page 32: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Models

Huck et al., 1999

Understanding the buoyancy-driven circulation – p.32/39

Page 33: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Models

Huck et al., 1999

Understanding the buoyancy-driven circulation – p.33/39

Page 34: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Models

Marotzke, 1997

Understanding the buoyancy-driven circulation – p.34/39

Page 35: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Models

Understanding the buoyancy-driven circulation – p.35/39

Page 36: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Comparison to observations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κV=κ

H=10−4, ε=0.01

−1.5

−1

−0.5

0

0.5

1

1.5x 10

−3

Understanding the buoyancy-driven circulation – p.36/39

Page 37: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Comparison to observations

Shetland

Rockall

Tro

ugh

Greenland Sea

Mohns Ridge

Jan Mayen Lofoten

Basin

Norwegian

Sea

Vøring

Plateau

Fram Strait

Reykja

nes

Rid

ge

Icel

and

Bas

in Faroes

Denmark

Strait

North Sea

Knip

ovic

hRid

ge

Barents

Sea

Svalbard

Greenland

IrelandEngland

Scotland

Norway

Iceland

Greenland Sea

Greenland

IrelandEngland

Scotland

Norway

Svalbard

Rockall

Tro

ughReykja

nes

Rid

ge

Mohns Ridge

Knip

ovic

hRid

ge

Lofoten

Basin

Barents

Sea

Norwegian

Sea

Icel

and

Bas

in

Vøring

Plateau

Iceland

Faroes

Shetland

North Sea

Jan Mayen

Denmark

Strait

Fram Strait

Orvik and Niiler, 2002Understanding the buoyancy-driven circulation – p.37/39

Page 38: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Comparison to observations

Skagseth and Orvik, 2002

Understanding the buoyancy-driven circulation – p.38/39

Page 39: J. H. LaCasce Norwegian Meteorological Institute Oslo, Norwayindico.ictp.it/event/a0341/session/47/contribution/36/material/0/0.pdf · Understanding the buoyancy-driven circulation

Summary

� Idealized thermocline models capture someelements of observed circulation (Deep WesternBoundary Current, Norwegian Atlantic Current)

� But none (so far) capture the flow exhibited bymost numerical models

� Need for an improved analytical representation

Understanding the buoyancy-driven circulation – p.39/39