james gurka, scientific studies program manager: remote sensing, qpe

129
1 Nowcasting Flash Floods and Heavy Precipitation --- A Satellite Perspective COMET Hydrometeorology 00-1 Thursday, 14 October 1999 James Gurka, Scientific Studies Program Manager: Remote Sensing, QPE NOAA/NWS/Office of Meteorology [email protected]

Upload: ansel

Post on 13-Feb-2016

30 views

Category:

Documents


0 download

DESCRIPTION

Nowcasting Flash Floods and Heavy Precipitation --- A Satellite Perspective COMET Hydrometeorology 00-1 Thursday, 14 October 1999. James Gurka, Scientific Studies Program Manager: Remote Sensing, QPE NOAA/NWS/Office of Meteorology [email protected]. Satellite Pictures. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

1

Nowcasting Flash Floods andHeavy Precipitation ---A Satellite Perspective

COMET Hydrometeorology 00-1Thursday, 14 October 1999

James Gurka, Scientific Studies Program Manager:

Remote Sensing, QPENOAA/NWS/Office of Meteorology

[email protected]

Page 2: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

2

Page 3: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

3

Page 4: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

4

Satellite Pictures•GOES Water Vapor (6.7 m) day

and night): detects moisture and weather systems between 700 - 300 mb

•GOES Infrared (10.5 - 12.6 m) day and night): detects cloud top temperature and surface temperature

•GOES Visible (0.55 - 0.75 m) (day only): what you can see: clouds, water, land

Page 5: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

5

Satellite Pictures

•Polar Microwave (SSM/I and AMSU): detects precipitation, moisture, snow cover, ocean surface winds, surface wetness

Page 6: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

6

Page 7: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

7

Quantitative Precipitation

Forecasts (QPF)•The prediction of how much

precipitation (e.g., 1/2 inch, 1 inch, 2 inches, etc) will fall during a specified period of time (e.g., 3 hours, 6 hours, 12 hours, 24 hours, etc)

Page 8: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

8

Page 9: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

9

Global to Synoptic Scale

•Wetness of ground?•Pattern recognition?

Page 10: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

10

Soil (surface) Wetness Index (85 GHz - 19 GHz) (H)for January 1995

Page 11: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

11

Soil (surface) Wetness Index (85 GHz - 19 GHz) (H)5 day moving averages ending August 7, 1998

Page 12: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

12PATTERN RECOGNITION: 6.7 micron water vapor imageryfor 11-26-97 0000 UTC; 300 mb winds (mps) are superimposed

Page 13: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

13PATTERN RECOGNITION: 6.7 Micron for 2-3-98 1200 UTC;300 mb winds (mps) are superimposed

Page 14: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

14

Synoptic to Mesoscale

•Available moisture and stability?•Presence of lifting or lid?•presence of boundaries?

(synoptic of mesoscale)

Page 15: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

15

Use of Water Vapor(6.7 m) Imagery

•middle - upper level flow fields and circulations

• lifting mechanisms– jet streaks–cyclonic circulations/lobes– trough axes–mid-level cold air advection

•excellent data for pattern recognition

Page 16: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

16

6.7 m Water Vapor Plumes

•Makes environment more efficient?

•Enhances precipitation through cloud seeding?

•associated with favorable synoptic patterns for low-level moisture and instability

Page 17: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

17

WATER VAPOR PLUME: 6.7 micron water vaporimagery for 10-16-98 2345 UTC; 300 mb winds (mps)are superimposed

Page 18: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

18

WATER VAPOR PLUME: 6.7 micron water vaporimagery for 10-17-98 1215 UTC

Page 19: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

196.7 micron water vapor imagery for 6-22-97, 1745 UTC

Page 20: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

20

Page 21: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

21

Precipitation Efficiency Factors

•Precipitable Water (PW) values ---- higher than 1.0 inch, enhances Precipitation Efficiency

•Mean environmental Relative Humidity (RH) ---- higher than 65 % results in less dry air entrainment into cloud masses

Page 22: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

22

Precipitation Efficiency Factors

• Depth of cloud with temperatures warmer than 0 degress C enhances the collision-coalescence process by increasing residence time of droplets in clouds --- this increases rainfall intensity and improves precipitation efficiency

Page 23: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

23

Precipitation Efficiency Factors

•Vertical wind shear ---- produces entrainment and reduces Precipitation Efficiency, especially if environmental air is dry

•Cloud-scale vertical motion function of “CAPE” (Convective Available Potential Energy) related to condensate production and residence time of droplets

Page 24: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

24

Additional Precipitation Efficiency

Factors•Storm-relative mean inflow and

moisture transport into storm•Duration of precipitation

Page 25: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

25

Use of Precipitable Water (PW) and

Relative Humidity (RH) Data

•magnitude•transport (plumes)•trends•relation to equivalent potential

temperature

Page 26: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

26

PW Plume: Composited PW (mm) (SSM/I + GOES + ETA model)for 10-17-98 1200 UTC; 850 mb winds are superimposed

Page 27: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

27PW Plume: Composited Precipitable Water Product (mm) for6-22-97 1800 UTC; 850 mb winds superimposed

Page 28: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

28

Precipitable Water Available

•SSM/I (polar microwave)–water only

•GOES 8/9/10–clear (cloud free) areas

•National Center for Environmental Prediction (NCEP) “ETA” and “AVN” models

•Rawinsondes•Composites (SSM/I + GOES 8/9/10

+ ETA/AVN)

Page 29: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

29

Precipitable Water X Relative Humidity

•Adjusts satellite-derived Quantitative Precipitation Estimates (QPE)

•Used in Quantitative Precipitation Forecasts (QPF) Techniques

Page 30: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

30

Precipitable Water (mm) X Relative Humidity for10-17-98 1200 UTC from the ETA Model; 850 mb winds (mps)are superimposed

Page 31: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

31

Equivalent Potential Temperature Ridge

Axis•Represents a potential energy

axis for convective development•Conservative (similar to vorticity)•“Maximum areas” are often

associated with afternoon to evening convection

Page 32: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

32850 mb equivalent potential temperature (degrees K) for 10-17-98 1200 UTC

Page 33: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

33

Page 34: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

34

Page 35: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

35

Page 36: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

36SSM/I PW (mm) for 10-21-96

Page 37: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

37850 mb theta-e (degrees K) for 10-20-96 0000 UTC

Page 38: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

38850 mb theta-e (degrees K) for 10-20-96 0000 UTC

Page 39: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

39

850 mb winds (kts) for 10-20-96 0000 UTC

Page 40: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

40

Page 41: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

416.7 micron water vapor imagery for 2-24-98, 0000 UTC;300 mb winds (mps) are superimposed

Page 42: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

426.7 micron water vapor imagery for 2-24-98 0000 UTC;300 mb isotachs (mps) are superimposed

Page 43: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

4324 Hour Observed Precipitation (in) ending 2-24-98 1200 UTC

Page 44: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

44Soil (Surface) Wetness Index --- 5 day moving averagesending 2-24-98

Page 45: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

45Conceptual model of double jet streaks associated with many heavy rainfall events

Page 46: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

46

ConceptualModelsofJet Streaksin the6.7 micronWaterVaporImagery

Page 47: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

476.7 micron water vapor imagery for 11-10-92 1400 UTC

Page 48: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

48500 mb Analysis (heights/vorticity), 11-10-92, 1200 UTC

Page 49: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

49300 mb Analysis (heights/isotachs), 11-10-98, 1200 UTC

Page 50: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

506.7 micron water vapor imagery for 3-23-98 0000 UTC;300 mb isotachs (kt) are superimposed

Page 51: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

516.7 micron water vapor imagery for 3-23-98 0000 UTC;300 mb winds (kt) are superimposed

Page 52: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

5224 Hour Observed Precipitation (in) ending 3-23-98 1200 UTC

Page 53: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

53Conceptual Model of an Outflow Boundary intersectingan area of maximum warm air advection

Page 54: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

54Conceptual Model of an Outflow Boundaryintersecting another boundary

Page 55: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

55

Example of radar and GOES visible view of “ Outflow Boundaries “

Page 56: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

56

Mesoscale to Storm scale

•Precipitation rate and accumulation?

•Duration of precipitation?•Modification of the environment?•Local effects?

Page 57: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

57

Interactive Flash Flood Analyzer (IFFA) Precipitation

Estimates

Assign precipitation rates to the following satellite features:

- Cloud top temperature and cloud growth

- Mergers- Overshooting tops- Stationary Storms (speed of

movement)

The amount of available moisture (determined by the current Precipitable Water and Relative Humidity) is used to adjust the rainfall estimates

Page 58: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

58

Page 59: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

59

Page 60: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

60

Page 61: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

61

Page 62: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

62Interactive Flash Flood Analyzer (IFFA) Estimates (in) for Feb 23, 1230 UTC to Feb 24 1215 UTC, 1998

Page 63: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

63Interactive Flash Flood Analyzer (IFFA) rainfall estimates (in)for October 19, 1145 UTC - October 20, 1145 UTC, 1996

Page 64: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

64

Page 65: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

65

GOES 8/9/10 Auto-Estimator

•10.7 mm rain rate curve (can be manually adjusted ---- especially useful for warm top convection)

•Precipitable Water x Relative Humidity

•Growth•Gradient•Parallax•Orography

Page 66: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

66

Cloud Top Temperature/Rain Rate Curve for Auto-Estimator

Page 67: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

67Auto-Estimator 6 hour rainfall estimates (in) ending10-17-98 2200 UTC

Page 68: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

68Interactive Flash Flood Analyzer (IFFA) rainfall estimates (in)for October 17, 0915 --- 2115 UTC

Page 69: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

69Auto-Estimator 24 Hour Rainfall Estimate (in) ending6-23-97 1200 UTC

Page 70: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

70WSR 88 D 24 Hour Rainfall Estimates (in) ending6-23-97 1200 UTC

Page 71: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

71

Short Term Comparison with Radar

(in mm)July 1998

(1 - 3 hours) cold top convection (colder than - 58o C)Algorithm cases scale (Km) corre bias FAR adj

RMS Auto (std) 18 12 0.43 15.0 0.37

14.0 IFFA 18 12 0.53 5.6 0.23

12.3 (InteractiveFlash FloodAnalyzer)

Page 72: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

72

24 Hour Comparison with Gauges(in mm)

Tropical Origin, slow moving (Hurricane Bonnie / August 1998)

Algorithm cases corre bias adj RMS Auto (std) 2 0.67 17.3 30.5

Auto (adj) 2 0.68 15.0 30.2 Radar 2 0.74 -12.4 23.0

Page 73: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

73

NOAA/NESDIS Automatic satellite rainfall estimation .. Auto-EstimatorMeteosat IR 09/07/98 1430 Z

Instant. rainfall 09/07/98 1430 Z

1-hour rainfall 09/07/98 1430 Z

3-hour rainfall 09/07/98 1630 Z

NOAA/NESDIS Gilberto Vicente

Page 74: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

74

Resource Requirements to

“Run” Flash Flood Algorithms

•GOES digital infrared and visible•Frequency of data: 1/2 hourly to

hourly•Algorithms can be “run” on a

RAMSDIS type system

Page 75: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

75GOES Multi-Spectral Rainfall Algorithm 6 hour rainfallestimates (mm) ending 10-17-98 1200 UTC

Page 76: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

76GOES Multi-Spectral Rainfall Algorithm 6 hour rainfallestimates (mm) ending 11-5-98 0000 UTC

Page 77: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

77GOES Multi-Spectral Rainfall Algorithm 6 hour rainfallestimates (in) ending 11-5-98 0600 UTC

Page 78: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

78GOES Multi-Spectral Rainfall Algorithm 6 hour rainfallestimates (in) ending 11-5-98 1200 UTC

Page 79: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

79GOES Multi-Spectral Rainfall Algorithm 24 hour estimates (mm) ending 11-5-98 1200 UTC

Page 80: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

80Auto-Estimator 24 hour rainfall estimate (in) ending11-5-98 1200 UTC

Page 81: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

81

Special Sensor Microwave Imager (SSM/I) (DMSP) and

Advanced Microwave Sensing Unit (AMSU)

(NOAA K) Precipitation Estimates

Emission - Based• Over water only• Liquid precipitation causes brightness

temperature increase over a radiometrically cold/ocean background

• most direct estimate of how much rainfall reaches ground

Page 82: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

82

SSM/I and AMSU) Precipitation Estimates

Scattering Based• Over land and water • Precipitation (colder than freezing level)

causes brightness temperature decreases over a radiometrically warm/land background

• more indirect estimate of how much rainfall reaches ground

Page 83: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

83

PRECIPITATION POTENTIAL

(P)

P = E x C V

Where E = Precipitation Estimates

C = Cross-section thru storm

V = Speed of storm

Page 84: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

84SSM/I rainfall estimates (in) for Hurricane Fran fromSeptember 3 - 8, 1996

Page 85: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

85Auto-Estimator 24 hour rainfall estimates (in) for Hurricane Fran ending 9-6-96 1200 UTC

Page 86: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

86Auto-Estimator 3 hour rainfall estimates (in) for Hurricane Fran ending 9-5-96 1215 UTC

Page 87: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

87Auto-Estimator 3 hour rainfall estimates (in)for Hurricane Fran ending 9-6-96 0015 UTC

Page 88: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

88WSR 88 D 24 hour rainfall estimates (in) for Hurricane Fran ending 9-6-96 1200 UTC

Page 89: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

89Auto-Estimator 24 hour rainfall estimates (in)for Hurricane Mitch ending 10-29-98 1200 UTC

Page 90: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

90TRMM Microwave

Page 91: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

91

SSM/I rainfall (in) for Hurricane Mitch10-30-98

Page 92: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

92TRMM Microwave

Page 93: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

93Auto-Estimator 24 hour rainfall estimates (in)for Hurricane Mitch ending 10-31-98

Page 94: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

94TRMM Microwave

Page 95: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

95 Auto-Estimator 3 day accumulations (in) for Hurricane Mitch

Page 96: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

96

Page 97: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

97

ConceptualModels ofForwardandBackwardPropagation

Page 98: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

98

Nowcasting Flash Floods

“ Look for steady state conditions that will produce

congruent paths of heavy rain cells “

Page 99: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

99Conceptual model of backward propagating thunderstorms

Page 100: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

100

6.7 micron water vapor imagery for 10-4-98 1315 UTC;300 mb winds (mps) are superimposed

Page 101: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

10110.7 micron infrared imagery for 10-4-98 1145 UTC;850 mb theta-e (degrees K) is superimposed

Page 102: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

10210.7 micron infrared imagery for 10-4-98 1145 UTC;850 mb winds (mps) are superimposed

Page 103: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

10310.7 micron infrared imagery for 10-4-98 1145 UTC

Page 104: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

10410.7 micron infrared imagery for 10-4-98 1245 UTC

Page 105: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

10510.7 micron infrared imagery for 10-4-98 1445 UTC

Page 106: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

10610.7 micron infrared imagery for 10-4-98 1602 UTC

Page 107: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

10710.7 micron infrared imagery for 10-4-98 1632 UTC

Page 108: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

10810.7 micron infrared imagery for 10-4-98 1902 UTC

Page 109: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

10910.7 micron infrared imagery for 10-4-98 2045 UTC

Page 110: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

11010.7 micron infrared imagery for 10-4-98 2202 UTC

Page 111: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

11110.7 micron infrared imagery for 10-5-98 0215 UTC

Page 112: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

112WSR 88 D 24 hour rainfall estimates (in) ending 10-5-98 1200 UTC

Page 113: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

113

Page 114: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

114Development of a Mesoscale Convective Complex (MCC) induced vortex

Page 115: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

115

Page 116: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

116

Orographic Adjustment

W = surface/850/700 wind speed x slope of terrain

SLOPE-0.12 -0.06 0.000.060.12

0 1.0 1.0 1.0 1.0 1.05 0.4 0.7 1.0 1.1 1.410 0.2 0.4 1.0 1.4 2.015 0.2 0.2 1.0 1.7 2.620 0.2 0.2 1.0 2.3 3.825 0.2 0.2 1.0 2.6 4.4

WIND(m/s)

Page 117: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

117Auto-Estimator 24 hour rainfall estimates (in) ending11-25-98 1200 UTC; adjusted for orography

Page 118: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

118

GOES Multi-Spectral Rainfall Algorithm 24 hour rainfallestimates (mm) ending 11-25-98 1200 UTC; not adjusted for orography

Page 119: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

119Auto-Estimator 24 hour rainfall estimates (in)ending 11-25-98 1200 UTC; adjusted for orography

Page 120: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

120Auto-Estimator 24 hour rainfall estimate (in) ending11-25-98 1200 UTC; not adjusted for orography

Page 121: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

121WSR 88 D 24 hour precipitation estimates (in) ending11-25-98 1200 UTC

Page 122: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

12224 hour rain gauge measurements (in) ending 11-25-98 1200 UTC

Page 123: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

123

Orographic adjustment for 11-25-98 1800 UTC;850 mb winds (mps) are superimposed

Page 124: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

124Orography adjustment for 11-25-98 1800 UTC; 850 mb winds (mps) are superimposed

Page 125: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

125Interactive Flash Flood Analyzer (IFFA) estimates (in) for11-25- 1600 UTC ----- 11-26- 2000 UTC, 1998

Page 126: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

126

Three Hour Rainfall Outlooks(1) The speed and direction of movement of the

coldest portions of the convective systems are measured on the

latest satellite imagery(2) This speed and direction are used to extrapolate

the current estimated rainfall rates out to 3 hours(3) Heaviest rainfall areas are correlated best to the

mean cloud- layer shear vector (i.e., moves in the direction of 850-300

thickness isopleths)(4) For regenerative convective systems, the growth

and movement of individual convective clusters must be

considered(5) The following “trend and expectancy” guidelines

are used to anticipate the evolution of the convective

systems for the next 3 hours --- these guidelines are used to adjust the

extrapolated rainfall in (2) above

Page 127: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

127

Forecasting Excessive Rainfall (3 or more inches) in a 12 to

24 hour periodYES NO----- ----- Is an 850/700 mb theta-e ridge present ?----- ----- Is the sfc-500 mb RH > 70 % and PW > 1 in

and/or 120 % of normal?----- ----- Is a short wave, cyclonic circulation (lobe), or jet

streak expected over the area?----- ----- Is a water vapor (6.7 m) and Precipitable Water

Plume over or approaching the area?----- ----- Is positive 850/700 mb theta-e advection present?----- ----- Is sfc-500 mb RH > 70 % and PW > 1.5 and/or > 140

% of norm?--------------------------------------------other meteorological variables to consider: speed of system,

regeneration, and surface features such as winds, dew points and boundaries.

Page 128: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

128

Satellite Home Pages for NOWCASTING Flash Floods

and Heavy Precipitation and for QPF

• NESDIS Flash Flood:http://orbit-net.nesdis.noaa.gov/ora/ht/ff

• IFFA Precipitation Estimates:http://hpssd1en.wwb.noaa.gov/SSD/ML/pcpn-ndx.html

• Microwave TPW and Precipitation: http://manati.wwb.noaa.gov/doc/ssmiprecip.html

Page 129: James Gurka,  Scientific Studies Program Manager: Remote Sensing, QPE

129

Satellite Home Pages for NOWCASTING Flash Floods

and Heavy Precipitation and for QPF

• GOES SOUNDINGS: TPW; Lifted Index; Temperature

http://orbit30i.nesdis.noaa.gov/http/temp.html