janko boehm [email protected]/normalization.pdf · division with remainder for an ideal...

440
Algebraic geometry, Gr¨ obner bases, and Normalization Janko Boehm [email protected] University of Kaiserslautern 14.10.2014 Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 1 / 29

Upload: others

Post on 11-Oct-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Algebraic geometry, Grobner bases, and Normalization

Janko [email protected]

University of Kaiserslautern

14.10.2014

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 1 / 29

Page 2: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Algebraic Varieties

Let K be a field. An affine algebraic variety is the common zero-set

V (f1, ..., fr ) = {p ∈ Kn | f1(p) = 0, ..., fr (p) = 0}

of polynomials f1, ..., fr ∈ K [x1, ..., xn].

Example

V (1) = ∅, V (0) = Kn,

the set of solutions of a linear system of equations

A · x − b = 0

the graphΓ(g) = V (x2 · b(x1)− a(x1)) ⊂ K 2

of a rational functiong =

a

b∈ K (x1)

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 1 / 29

Page 3: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Algebraic Varieties

Let K be a field. An affine algebraic variety is the common zero-set

V (f1, ..., fr ) = {p ∈ Kn | f1(p) = 0, ..., fr (p) = 0}

of polynomials f1, ..., fr ∈ K [x1, ..., xn].

Example

V (1) = ∅, V (0) = Kn,

the set of solutions of a linear system of equations

A · x − b = 0

the graphΓ(g) = V (x2 · b(x1)− a(x1)) ⊂ K 2

of a rational functiong =

a

b∈ K (x1)

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 1 / 29

Page 4: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Algebraic Varieties

Let K be a field. An affine algebraic variety is the common zero-set

V (f1, ..., fr ) = {p ∈ Kn | f1(p) = 0, ..., fr (p) = 0}

of polynomials f1, ..., fr ∈ K [x1, ..., xn].

Example

V (1) = ∅, V (0) = Kn,

the set of solutions of a linear system of equations

A · x − b = 0

the graphΓ(g) = V (x2 · b(x1)− a(x1)) ⊂ K 2

of a rational functiong =

a

b∈ K (x1)

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 1 / 29

Page 5: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Algebraic Varieties

Let K be a field. An affine algebraic variety is the common zero-set

V (f1, ..., fr ) = {p ∈ Kn | f1(p) = 0, ..., fr (p) = 0}

of polynomials f1, ..., fr ∈ K [x1, ..., xn].

Example

V (1) = ∅, V (0) = Kn,

the set of solutions of a linear system of equations

A · x − b = 0

the graphΓ(g) = V (x2 · b(x1)− a(x1)) ⊂ K 2

of a rational functiong =

a

b∈ K (x1)

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 1 / 29

Page 6: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Algebraic Varieties

Let K be a field. An affine algebraic variety is the common zero-set

V (f1, ..., fr ) = {p ∈ Kn | f1(p) = 0, ..., fr (p) = 0}

of polynomials f1, ..., fr ∈ K [x1, ..., xn].

Example

V (1) = ∅, V (0) = Kn,

the set of solutions of a linear system of equations

A · x − b = 0

the graphΓ(g) = V (x2 · b(x1)− a(x1)) ⊂ K 2

of a rational functiong =

a

b∈ K (x1)

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 1 / 29

Page 7: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Graphs

The graph of g(x1) =x31−1x1

is

V (x2x1 − x31 + 1) ⊂ K 2

——————————————————————————————–

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 2 / 29

Page 8: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Graphs

The graph of g(x1) =x31−1x1

is

V (x2x1 − x31 + 1) ⊂ K 2

——————————————————————————————–

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 2 / 29

Page 9: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Graphs

The graph of g(x1) =x31−1x1

is

V (x2x1 − x31 + 1) ⊂ K 2

——————————————————————————————–

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 2 / 29

Page 10: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Curves

Not every curve in K 2 is a graph, e.g., the elliptic curve

V (x22 − x31 − x21 + 2x1 − 1)

——————————————————————————————–

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 3 / 29

Page 11: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Curves

Not every curve in K 2 is a graph, e.g., the elliptic curve

V (x22 − x31 − x21 + 2x1 − 1)

——————————————————————————————–

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 3 / 29

Page 12: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Curves

Elliptic curves come with a group structure. They play an important rolein Number Theory and Cryptography (e.g. Diffie-Hellman key exchange).

——————————————————————————————–

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 4 / 29

Page 13: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Curves

Elliptic curves come with a group structure. They play an important rolein Number Theory and Cryptography (e.g. Diffie-Hellman key exchange).——————————————————————————————–

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 4 / 29

Page 14: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Surfaces

There are also varieties of higher dimension, e.g., Whitney’s umbrella

V (y2 − x2z)

——————————————————————————————–

It is the union of infinitely many lines.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 5 / 29

Page 15: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Surfaces

There are also varieties of higher dimension, e.g., Whitney’s umbrella

V (y2 − x2z)

——————————————————————————————–

It is the union of infinitely many lines.Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 5 / 29

Page 16: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Cubic Surfaces

Theorem (Cayley, 1848)

Any projective smooth cubic surface over C contains exactly 27 lines.

The Clebsch Cubic [Clebsch, 1871] has 27 real lines:

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 6 / 29

Page 17: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Cubic Surfaces

Theorem (Cayley, 1848)

Any projective smooth cubic surface over C contains exactly 27 lines.

The Clebsch Cubic [Clebsch, 1871] has 27 real lines:

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 6 / 29

Page 18: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Cubic Surfaces

Theorem (Cayley, 1848)

Any projective smooth cubic surface over C contains exactly 27 lines.

The Clebsch Cubic [Clebsch, 1871] has 27 real lines:

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 6 / 29

Page 19: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Splines

The cubic spline C ⊂ K 2 parametrized by

x1(t) = p0(1− t)3 + 3p1t(1− t)2 + 3p2t2(1− t) + p3t

3

x2(t) = q0(1− t)3 + 3q1t(1− t)2 + 3q2t2(1− t) + q3t

3

with t ∈ [0, 1] passes through the points (p0, q0) , (p3, q3) ∈ K 2 and thetangents at these points through (p1, q1) and (p2, q2).

The curve sector C is a sub-

set of an algebraic curve C .

C is the closure of C in theZariski Topology, which hasas closed sets the algebraicvarieties.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 7 / 29

Page 20: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Splines

The cubic spline C ⊂ K 2 parametrized by

x1(t) = p0(1− t)3 + 3p1t(1− t)2 + 3p2t2(1− t) + p3t

3

x2(t) = q0(1− t)3 + 3q1t(1− t)2 + 3q2t2(1− t) + q3t

3

with t ∈ [0, 1] passes through the points (p0, q0) , (p3, q3) ∈ K 2 and thetangents at these points through (p1, q1) and (p2, q2).

The curve sector C is a sub-

set of an algebraic curve C .

C is the closure of C in theZariski Topology, which hasas closed sets the algebraicvarieties.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 7 / 29

Page 21: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Examples of Varieties: Splines

The cubic spline C ⊂ K 2 parametrized by

x1(t) = p0(1− t)3 + 3p1t(1− t)2 + 3p2t2(1− t) + p3t

3

x2(t) = q0(1− t)3 + 3q1t(1− t)2 + 3q2t2(1− t) + q3t

3

with t ∈ [0, 1] passes through the points (p0, q0) , (p3, q3) ∈ K 2 and thetangents at these points through (p1, q1) and (p2, q2).

The curve sector C is a sub-

set of an algebraic curve C .

C is the closure of C in theZariski Topology, which hasas closed sets the algebraicvarieties.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 7 / 29

Page 22: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Projections

By projecting a smooth curve in K 3 (here the so called twisteted cubic)one may obtain a singular curve:

V (y − x2, z − x3)

−→

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 8 / 29

Page 23: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Projections

By projecting a smooth curve in K 3 (here the so called twisteted cubic)one may obtain a singular curve:

V (y − x2, z − x3)

−→

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 8 / 29

Page 24: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 25: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 26: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 27: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 28: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 29: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 30: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 31: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 32: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 33: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 34: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 35: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 36: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 37: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 38: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 39: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 40: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 41: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 42: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 43: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 44: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 45: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 46: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 47: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 48: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 49: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 50: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 51: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 52: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 53: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 54: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 55: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 56: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 57: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 58: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 59: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 60: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 61: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 62: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 63: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 64: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 65: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 66: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 67: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 68: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 69: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 70: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 71: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 72: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 73: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 74: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 75: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 76: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 77: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 78: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 79: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 80: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 81: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 82: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 83: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 84: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 85: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 86: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 87: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 88: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 89: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 90: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 91: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 92: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 93: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 94: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 95: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 96: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 97: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 98: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 99: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 100: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 101: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 102: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 103: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 104: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 105: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 106: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 107: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 108: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 109: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 110: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 111: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 112: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 113: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 114: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 115: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 116: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 117: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 118: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 119: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 120: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 121: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 122: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 123: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 124: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 125: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 126: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 127: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 128: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 129: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 130: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 131: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 132: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 133: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 134: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 135: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 136: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 137: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 138: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 139: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 140: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 141: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 142: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 143: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 144: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 145: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Ideals and Varieties

The affine variety V (f1, ..., fr ) only depends on the ideal

I = 〈f1, ..., fr 〉 ⊂ R = K [x1, ..., xn]

generated by the fi : If f1(p) = 0, ..., fr (p) = 0, then(r

∑i=1

si · fi

)(p) =

r

∑i=1

si (p)fi (p) = 0

for all si ∈ R.

Hence, we define for an ideal I ⊂ R

V (I ) = {p ∈ Kn | f (p) = 0 ∀f ∈ I}

——————————————————————————————–This is indeed an algebraic variety: A ring is called Noetherian if everyideal is finitely generated.

Theorem (Hilbert’s basis theorem, 1890)

If R is a Noetherian ring, then R [x ] is also Noetherian.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 9 / 29

Page 146: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Ideals and Varieties

The affine variety V (f1, ..., fr ) only depends on the ideal

I = 〈f1, ..., fr 〉 ⊂ R = K [x1, ..., xn]

generated by the fi : If f1(p) = 0, ..., fr (p) = 0, then(r

∑i=1

si · fi

)(p) =

r

∑i=1

si (p)fi (p) = 0

for all si ∈ R. Hence, we define for an ideal I ⊂ R

V (I ) = {p ∈ Kn | f (p) = 0 ∀f ∈ I}

——————————————————————————————–This is indeed an algebraic variety: A ring is called Noetherian if everyideal is finitely generated.

Theorem (Hilbert’s basis theorem, 1890)

If R is a Noetherian ring, then R [x ] is also Noetherian.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 9 / 29

Page 147: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Ideals and Varieties

The affine variety V (f1, ..., fr ) only depends on the ideal

I = 〈f1, ..., fr 〉 ⊂ R = K [x1, ..., xn]

generated by the fi : If f1(p) = 0, ..., fr (p) = 0, then(r

∑i=1

si · fi

)(p) =

r

∑i=1

si (p)fi (p) = 0

for all si ∈ R. Hence, we define for an ideal I ⊂ R

V (I ) = {p ∈ Kn | f (p) = 0 ∀f ∈ I}

——————————————————————————————–This is indeed an algebraic variety: A ring is called Noetherian if everyideal is finitely generated.

Theorem (Hilbert’s basis theorem, 1890)

If R is a Noetherian ring, then R [x ] is also Noetherian.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 9 / 29

Page 148: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Ideals and Varieties

A variety V (I ) ⊂ Kn is called irreducible, if it does not have a non-trivialdecomposition

V (I ) = V (J1) ∪ V (J2)

For a subset S ⊂ Kn define the vanishing ideal

I (S) = {f ∈ R | f (p) = 0 ∀p ∈ S}

Theorem

If K is algebraically closed then

{prime ideals of R}V�I{irrreducible affine varieties in Kn}

is a bijection.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 10 / 29

Page 149: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Ideals and Varieties

A variety V (I ) ⊂ Kn is called irreducible, if it does not have a non-trivialdecomposition

V (I ) = V (J1) ∪ V (J2)

For a subset S ⊂ Kn define the vanishing ideal

I (S) = {f ∈ R | f (p) = 0 ∀p ∈ S}

Theorem

If K is algebraically closed then

{prime ideals of R}V�I{irrreducible affine varieties in Kn}

is a bijection.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 10 / 29

Page 150: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Projection and Elimination

Gaussian elimination parametrizes the solution set L of a linear system ofequations. It computes a bijective projection L→ K r . In the case ofnon-linear systems we can proceed in a similar way:

For an ideal I ⊂ R = K [x1, ..., xn] consider the elimination ideal

Im = I ∩K [xm+1, ..., xn]

and the projection

πm : Kn → Kn−m

πm(a1, ..., an) = (am+1, ..., an)

Theorem

πm(V (I )) = V (Im)

How to compute Im?

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 11 / 29

Page 151: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Projection and Elimination

Gaussian elimination parametrizes the solution set L of a linear system ofequations. It computes a bijective projection L→ K r . In the case ofnon-linear systems we can proceed in a similar way:For an ideal I ⊂ R = K [x1, ..., xn] consider the elimination ideal

Im = I ∩K [xm+1, ..., xn]

and the projection

πm : Kn → Kn−m

πm(a1, ..., an) = (am+1, ..., an)

Theorem

πm(V (I )) = V (Im)

How to compute Im?

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 11 / 29

Page 152: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Projection and Elimination

Gaussian elimination parametrizes the solution set L of a linear system ofequations. It computes a bijective projection L→ K r . In the case ofnon-linear systems we can proceed in a similar way:For an ideal I ⊂ R = K [x1, ..., xn] consider the elimination ideal

Im = I ∩K [xm+1, ..., xn]

and the projection

πm : Kn → Kn−m

πm(a1, ..., an) = (am+1, ..., an)

Theorem

πm(V (I )) = V (Im)

How to compute Im?

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 11 / 29

Page 153: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Projection and Elimination

Gaussian elimination parametrizes the solution set L of a linear system ofequations. It computes a bijective projection L→ K r . In the case ofnon-linear systems we can proceed in a similar way:For an ideal I ⊂ R = K [x1, ..., xn] consider the elimination ideal

Im = I ∩K [xm+1, ..., xn]

and the projection

πm : Kn → Kn−m

πm(a1, ..., an) = (am+1, ..., an)

Theorem

πm(V (I )) = V (Im)

How to compute Im?

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 11 / 29

Page 154: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Division with Remainder

For an ideal I = 〈f1, ..., fr 〉 in the Euclidean domain (and hence PID) K [x ],the Euclidean algorithm computes a generator of I = 〈ggT (f1, ..., fr )〉.Using division with remainder (successively removing the term of highestdegree), we can test whether f ∈ K [x ] is in I .

For f ∈ R = K [x1, ..., xn] one has to choose a lead term LT(f ), e.g., byordering the terms lexicographically w.r.t x1 > ... > xn.Example

We divide x2y + xy2 + y2 by xy − 1 and y2 − 1 for x > y :

x2y + xy2 + y2 = x (xy − 1) + y (xy − 1) + x + 1(y2 − 1

)+ y + 1

x2y − xxy2 + x + y2

xy2 − yx + y2 + yy2 + yy2 − 1y + 1

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 12 / 29

Page 155: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Division with Remainder

For an ideal I = 〈f1, ..., fr 〉 in the Euclidean domain (and hence PID) K [x ],the Euclidean algorithm computes a generator of I = 〈ggT (f1, ..., fr )〉.Using division with remainder (successively removing the term of highestdegree), we can test whether f ∈ K [x ] is in I .For f ∈ R = K [x1, ..., xn] one has to choose a lead term LT(f ), e.g., byordering the terms lexicographically w.r.t x1 > ... > xn.Example

We divide x2y + xy2 + y2 by xy − 1 and y2 − 1 for x > y :

x2y + xy2 + y2 = x (xy − 1) + y (xy − 1) + x + 1(y2 − 1

)+ y + 1

x2y − xxy2 + x + y2

xy2 − yx + y2 + yy2 + yy2 − 1y + 1

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 12 / 29

Page 156: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases

We divide x2 − y2 by x2 + y and xy + x

x2 − y2 = 1 ·(x2 + y

)+(−y2 − y

)x2 + y−y2 − y

This is strange! We have

x2 − y2 = −y(x2 + y

)+ x (xy + x)

hence x2 − y2 ∈ I =⟨x2 + y , xy + x

⟩, but the remainder is not zero.

Problem: Lead terms cancel.Solution: Add to the divisors all elements of I which can be obtained bycancelling lead terms and reducing by the ones we already have. This isBuchberger’s algorithm [Buchberger, 1976], the basis of computationalcommutative algebra, and the result is called a Grobner basis of I .Grobner basis in the example: G =

{y2 + y , x2 + y , xy + x

}

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 13 / 29

Page 157: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases

We divide x2 − y2 by x2 + y and xy + x

x2 − y2 = 1 ·(x2 + y

)+(−y2 − y

)x2 + y−y2 − y

This is strange! We have

x2 − y2 = −y(x2 + y

)+ x (xy + x)

hence x2 − y2 ∈ I =⟨x2 + y , xy + x

⟩, but the remainder is not zero.

Problem: Lead terms cancel.Solution: Add to the divisors all elements of I which can be obtained bycancelling lead terms and reducing by the ones we already have. This isBuchberger’s algorithm [Buchberger, 1976], the basis of computationalcommutative algebra, and the result is called a Grobner basis of I .Grobner basis in the example: G =

{y2 + y , x2 + y , xy + x

}

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 13 / 29

Page 158: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases

We divide x2 − y2 by x2 + y and xy + x

x2 − y2 = 1 ·(x2 + y

)+(−y2 − y

)x2 + y−y2 − y

This is strange! We have

x2 − y2 = −y(x2 + y

)+ x (xy + x)

hence x2 − y2 ∈ I =⟨x2 + y , xy + x

⟩, but the remainder is not zero.

Problem: Lead terms cancel.

Solution: Add to the divisors all elements of I which can be obtained bycancelling lead terms and reducing by the ones we already have. This isBuchberger’s algorithm [Buchberger, 1976], the basis of computationalcommutative algebra, and the result is called a Grobner basis of I .Grobner basis in the example: G =

{y2 + y , x2 + y , xy + x

}

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 13 / 29

Page 159: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases

We divide x2 − y2 by x2 + y and xy + x

x2 − y2 = 1 ·(x2 + y

)+(−y2 − y

)x2 + y−y2 − y

This is strange! We have

x2 − y2 = −y(x2 + y

)+ x (xy + x)

hence x2 − y2 ∈ I =⟨x2 + y , xy + x

⟩, but the remainder is not zero.

Problem: Lead terms cancel.Solution: Add to the divisors all elements of I which can be obtained bycancelling lead terms and reducing by the ones we already have. This isBuchberger’s algorithm [Buchberger, 1976], the basis of computationalcommutative algebra, and the result is called a Grobner basis of I .

Grobner basis in the example: G ={y2 + y , x2 + y , xy + x

}

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 13 / 29

Page 160: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases

We divide x2 − y2 by x2 + y and xy + x

x2 − y2 = 1 ·(x2 + y

)+(−y2 − y

)x2 + y−y2 − y

This is strange! We have

x2 − y2 = −y(x2 + y

)+ x (xy + x)

hence x2 − y2 ∈ I =⟨x2 + y , xy + x

⟩, but the remainder is not zero.

Problem: Lead terms cancel.Solution: Add to the divisors all elements of I which can be obtained bycancelling lead terms and reducing by the ones we already have. This isBuchberger’s algorithm [Buchberger, 1976], the basis of computationalcommutative algebra, and the result is called a Grobner basis of I .Grobner basis in the example: G =

{y2 + y , x2 + y , xy + x

}Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 13 / 29

Page 161: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases and Ideal Membership in Singular

Theorem

If G is a Grobner basis of I ⊂ R and f ∈ R, then f ∈ I iff NF(f ,G ) = 0.

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^2 - y^2, x^2 + y;

> I = std(I);

> I;

[1] = y2+y

[2] = xy+x

[3] = x2+y

> NF(x^2-y^2,I);

0

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 14 / 29

Page 162: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases and Ideal Membership in Singular

Theorem

If G is a Grobner basis of I ⊂ R and f ∈ R, then f ∈ I iff NF(f ,G ) = 0.

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^2 - y^2, x^2 + y;

> I = std(I);

> I;

[1] = y2+y

[2] = xy+x

[3] = x2+y

> NF(x^2-y^2,I);

0

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 14 / 29

Page 163: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases and Ideal Membership in Singular

Theorem

If G is a Grobner basis of I ⊂ R and f ∈ R, then f ∈ I iff NF(f ,G ) = 0.

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^2 - y^2, x^2 + y;

> I = std(I);

> I;

[1] = y2+y

[2] = xy+x

[3] = x2+y

> NF(x^2-y^2,I);

0

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 14 / 29

Page 164: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases and Ideal Membership in Singular

Theorem

If G is a Grobner basis of I ⊂ R and f ∈ R, then f ∈ I iff NF(f ,G ) = 0.

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^2 - y^2, x^2 + y;

> I = std(I);

> I;

[1] = y2+y

[2] = xy+x

[3] = x2+y

> NF(x^2-y^2,I);

0

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 14 / 29

Page 165: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases and Ideal Membership in Singular

Theorem

If G is a Grobner basis of I ⊂ R and f ∈ R, then f ∈ I iff NF(f ,G ) = 0.

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^2 - y^2, x^2 + y;

> I = std(I);

> I;

[1] = y2+y

[2] = xy+x

[3] = x2+y

> NF(x^2-y^2,I);

0

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 14 / 29

Page 166: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases and Ideal Membership in Singular

Theorem

If G is a Grobner basis of I ⊂ R and f ∈ R, then f ∈ I iff NF(f ,G ) = 0.

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^2 - y^2, x^2 + y;

> I = std(I);

> I;

[1] = y2+y

[2] = xy+x

[3] = x2+y

> NF(x^2-y^2,I);

0

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 14 / 29

Page 167: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases and Projection

Theorem

If G = {g1, ..., gr} is a lexicographical Grobner basis of I ⊂ K [x1, ..., xn],then

Gm = G ∩K [xm+1, ..., xn]

is a lexicographical Grobner basis of Im ⊂ K [xm+1, ..., xn].

Using projections, we can compute the image of V (I ) under a rationalmap ϕ = (ϕ1, ..., ϕr ) with ϕi ∈ K (x1, ..., xn) by projecting the graph

Γ(ϕ) = {(x , ϕ(x)) | x ∈ V (I )} ⊂ Kn ×K r

π1 ↙ ↘π2

V (I ) 99K K r

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 15 / 29

Page 168: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grobner Bases and Projection

Theorem

If G = {g1, ..., gr} is a lexicographical Grobner basis of I ⊂ K [x1, ..., xn],then

Gm = G ∩K [xm+1, ..., xn]

is a lexicographical Grobner basis of Im ⊂ K [xm+1, ..., xn].

Using projections, we can compute the image of V (I ) under a rationalmap ϕ = (ϕ1, ..., ϕr ) with ϕi ∈ K (x1, ..., xn) by projecting the graph

Γ(ϕ) = {(x , ϕ(x)) | x ∈ V (I )} ⊂ Kn ×K r

π1 ↙ ↘π2

V (I ) 99K K r

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 15 / 29

Page 169: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Desingularization of Curves

Given a singular curve, find smooth curve C ′ which is birational to C .

C = V (x3 + x2 − y2)

The coordinate ring of C (i.e. ring of functions on C ) is the quotient ring

A = K [x , y ]/I where I =⟨x3 + x2 − y2

⟩.

Suppose C ′ is another affine variety with coordinate ring A′.

Definition

C and C ′ are called birational if Q(A) ∼= Q(A′).

Equivalently: There is a rational map C 99K C ′ defined on a Zariski opensubset of C which admits an inverse rational map.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 16 / 29

Page 170: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Desingularization of Curves

Given a singular curve, find smooth curve C ′ which is birational to C .

C = V (x3 + x2 − y2)

The coordinate ring of C (i.e. ring of functions on C ) is the quotient ring

A = K [x , y ]/I where I =⟨x3 + x2 − y2

⟩.

Suppose C ′ is another affine variety with coordinate ring A′.

Definition

C and C ′ are called birational if Q(A) ∼= Q(A′).

Equivalently: There is a rational map C 99K C ′ defined on a Zariski opensubset of C which admits an inverse rational map.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 16 / 29

Page 171: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Desingularization of Curves

Given a singular curve, find smooth curve C ′ which is birational to C .

C = V (x3 + x2 − y2)

The coordinate ring of C (i.e. ring of functions on C ) is the quotient ring

A = K [x , y ]/I where I =⟨x3 + x2 − y2

⟩.

Suppose C ′ is another affine variety with coordinate ring A′.

Definition

C and C ′ are called birational if Q(A) ∼= Q(A′).

Equivalently: There is a rational map C 99K C ′ defined on a Zariski opensubset of C which admits an inverse rational map.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 16 / 29

Page 172: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Desingularization of Curves

Given a singular curve, find smooth curve C ′ which is birational to C .

C = V (x3 + x2 − y2)

The coordinate ring of C (i.e. ring of functions on C ) is the quotient ring

A = K [x , y ]/I where I =⟨x3 + x2 − y2

⟩.

Suppose C ′ is another affine variety with coordinate ring A′.

Definition

C and C ′ are called birational if Q(A) ∼= Q(A′).

Equivalently: There is a rational map C 99K C ′ defined on a Zariski opensubset of C which admits an inverse rational map.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 16 / 29

Page 173: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Desingularization of Curves

Given a singular curve, find smooth curve C ′ which is birational to C .

C = V (x3 + x2 − y2)

The coordinate ring of C (i.e. ring of functions on C ) is the quotient ring

A = K [x , y ]/I where I =⟨x3 + x2 − y2

⟩.

Suppose C ′ is another affine variety with coordinate ring A′.

Definition

C and C ′ are called birational if Q(A) ∼= Q(A′).

Equivalently: There is a rational map C 99K C ′ defined on a Zariski opensubset of C which admits an inverse rational map.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 16 / 29

Page 174: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Desingularization of Curves

Example

C = V (x3 + x2 − y2)ϕ−→ K 1, (x , y) 7−→ t =

y

x

I (Γ (ϕ)) = 〈x3 + x2 − y2, x · t − y ,⇒x 6=0

w · x − 1〉 ⊂ K [w , x , y , t]

Elimination with w > x > y > t :

x3 + x2 − y2 wxt − y −w wy −wtwx − 1 t x2 − x 1

−wy + t 1 xt t−wy2 + x2 + x 1 −1−x2 + xt2 − x 1 w−x + t2 − 1 1

...

K 1 ϕ−1−→ Ct 7−→

(t2 − 1, t3 − t

)

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 17 / 29

Page 175: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Desingularization of Curves

Example

C = V (x3 + x2 − y2)ϕ−→ K 1, (x , y) 7−→ t =

y

x

I (Γ (ϕ)) = 〈x3 + x2 − y2, x · t − y ,⇒x 6=0

w · x − 1〉 ⊂ K [w , x , y , t]

Elimination with w > x > y > t :

x3 + x2 − y2 wxt − y −w wy −wtwx − 1 t x2 − x 1

−wy + t 1 xt t−wy2 + x2 + x 1 −1−x2 + xt2 − x 1 w−x + t2 − 1 1

...

K 1 ϕ−1−→ Ct 7−→

(t2 − 1, t3 − t

)

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 17 / 29

Page 176: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Desingularization of Curves

Example

C = V (x3 + x2 − y2)ϕ−→ K 1, (x , y) 7−→ t =

y

x

I (Γ (ϕ)) = 〈x3 + x2 − y2, x · t − y ,⇒x 6=0

w · x − 1〉 ⊂ K [w , x , y , t]

Elimination with w > x > y > t :

x3 + x2 − y2 wxt − y −w wy −wtwx − 1 t x2 − x 1

−wy + t 1 xt t−wy2 + x2 + x 1 −1−x2 + xt2 − x 1 w−x + t2 − 1 1

...

K 1 ϕ−1−→ Ct 7−→

(t2 − 1, t3 − t

)

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 17 / 29

Page 177: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 178: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 179: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 180: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 181: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 182: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 183: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 184: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 185: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 186: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 187: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 188: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 189: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 190: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 191: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 192: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 193: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 194: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 195: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 196: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 197: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 198: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 199: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 200: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 201: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 202: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 203: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 204: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 205: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 206: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 207: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 208: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 209: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 210: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 211: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 212: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 213: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 214: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 215: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 216: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 217: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 218: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 219: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 220: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 221: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 222: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 223: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 224: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 225: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 226: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 227: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 228: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 229: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 230: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 231: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 232: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 233: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 234: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 235: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 236: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 237: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 238: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 239: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 240: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 241: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 242: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 243: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 244: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 245: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 246: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 247: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 248: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 249: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 250: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 251: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 252: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 253: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 254: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 255: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 256: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 257: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 258: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization

Definition

Let A be a Noetherian domain. The normalization A of A is the integralclosure of A in its quotient field Q(A).

We call A normal if A = A.

Setup: Affine algebra A = K [x1, . . . , xn]/I where I ⊂ K [x1, ..., xn] is ideal.

Theorem (Noether)

A is a finitely generated A-module.

Example

For C = V (I ) where I =⟨x3 + x2 − y2

⟩⊂ K [x , y ]

A = K [x , y ]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= Ax 7→ t2 − 1y 7→ t3 − t

Since K [t] is factorial (UFD) it is normal. As an A-module A =⟨

1, yx

⟩.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 18 / 29

Page 259: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization

Definition

Let A be a Noetherian domain. The normalization A of A is the integralclosure of A in its quotient field Q(A). We call A normal if A = A.

Setup: Affine algebra A = K [x1, . . . , xn]/I where I ⊂ K [x1, ..., xn] is ideal.

Theorem (Noether)

A is a finitely generated A-module.

Example

For C = V (I ) where I =⟨x3 + x2 − y2

⟩⊂ K [x , y ]

A = K [x , y ]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= Ax 7→ t2 − 1y 7→ t3 − t

Since K [t] is factorial (UFD) it is normal. As an A-module A =⟨

1, yx

⟩.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 18 / 29

Page 260: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization

Definition

Let A be a Noetherian domain. The normalization A of A is the integralclosure of A in its quotient field Q(A). We call A normal if A = A.

Setup: Affine algebra A = K [x1, . . . , xn]/I where I ⊂ K [x1, ..., xn] is ideal.

Theorem (Noether)

A is a finitely generated A-module.

Example

For C = V (I ) where I =⟨x3 + x2 − y2

⟩⊂ K [x , y ]

A = K [x , y ]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= Ax 7→ t2 − 1y 7→ t3 − t

Since K [t] is factorial (UFD) it is normal. As an A-module A =⟨

1, yx

⟩.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 18 / 29

Page 261: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization

Definition

Let A be a Noetherian domain. The normalization A of A is the integralclosure of A in its quotient field Q(A). We call A normal if A = A.

Setup: Affine algebra A = K [x1, . . . , xn]/I where I ⊂ K [x1, ..., xn] is ideal.

Theorem (Noether)

A is a finitely generated A-module.

Example

For C = V (I ) where I =⟨x3 + x2 − y2

⟩⊂ K [x , y ]

A = K [x , y ]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= Ax 7→ t2 − 1y 7→ t3 − t

Since K [t] is factorial (UFD) it is normal. As an A-module A =⟨

1, yx

⟩.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 18 / 29

Page 262: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization

Definition

Let A be a Noetherian domain. The normalization A of A is the integralclosure of A in its quotient field Q(A). We call A normal if A = A.

Setup: Affine algebra A = K [x1, . . . , xn]/I where I ⊂ K [x1, ..., xn] is ideal.

Theorem (Noether)

A is a finitely generated A-module.

Example

For C = V (I ) where I =⟨x3 + x2 − y2

⟩⊂ K [x , y ]

A = K [x , y ]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= Ax 7→ t2 − 1y 7→ t3 − t

Since K [t] is factorial (UFD) it is normal.

As an A-module A =⟨

1, yx

⟩.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 18 / 29

Page 263: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization

Definition

Let A be a Noetherian domain. The normalization A of A is the integralclosure of A in its quotient field Q(A). We call A normal if A = A.

Setup: Affine algebra A = K [x1, . . . , xn]/I where I ⊂ K [x1, ..., xn] is ideal.

Theorem (Noether)

A is a finitely generated A-module.

Example

For C = V (I ) where I =⟨x3 + x2 − y2

⟩⊂ K [x , y ]

A = K [x , y ]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= Ax 7→ t2 − 1y 7→ t3 − t

Since K [t] is factorial (UFD) it is normal. As an A-module A =⟨

1, yx

⟩.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 18 / 29

Page 264: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Example

Theorem

Any factorial ring is normal.

Proof.

Let A be factorial and rs ∈ Q(A) integral over A. Then there are ai ∈ A

with ( rs

)n=

n−1∑i=0

ai

( rs

)i,

and, cancelling the denominator,

rn = s

(n−1∑i=0

ai ri sn−1−i

).

So if p is a prime divisor of s, then also of r , which implies that rs ∈ A.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 19 / 29

Page 265: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Example

Theorem

Any factorial ring is normal.

Proof.

Let A be factorial and rs ∈ Q(A) integral over A.

Then there are ai ∈ Awith ( r

s

)n=

n−1∑i=0

ai

( rs

)i,

and, cancelling the denominator,

rn = s

(n−1∑i=0

ai ri sn−1−i

).

So if p is a prime divisor of s, then also of r , which implies that rs ∈ A.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 19 / 29

Page 266: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Example

Theorem

Any factorial ring is normal.

Proof.

Let A be factorial and rs ∈ Q(A) integral over A. Then there are ai ∈ A

with ( rs

)n=

n−1∑i=0

ai

( rs

)i,

and,

cancelling the denominator,

rn = s

(n−1∑i=0

ai ri sn−1−i

).

So if p is a prime divisor of s, then also of r , which implies that rs ∈ A.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 19 / 29

Page 267: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Example

Theorem

Any factorial ring is normal.

Proof.

Let A be factorial and rs ∈ Q(A) integral over A. Then there are ai ∈ A

with ( rs

)n=

n−1∑i=0

ai

( rs

)i,

and, cancelling the denominator,

rn = s

(n−1∑i=0

ai ri sn−1−i

).

So if p is a prime divisor of s, then also of r , which implies that rs ∈ A.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 19 / 29

Page 268: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Example

Theorem

Any factorial ring is normal.

Proof.

Let A be factorial and rs ∈ Q(A) integral over A. Then there are ai ∈ A

with ( rs

)n=

n−1∑i=0

ai

( rs

)i,

and, cancelling the denominator,

rn = s

(n−1∑i=0

ai ri sn−1−i

).

So if p is a prime divisor of s, then also of r , which implies that rs ∈ A.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 19 / 29

Page 269: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Key Lemma

Definition

For ideals Ij ⊂ A the ideal quotient is (I1 :A I2) = {b ∈ A | bI2 ⊂ I1}

.

Algorithm (Ideal quotients by Elimination)

I : 〈g1, g2〉 = (I : g1) ∩ (I : g2)I ∩ 〈g〉 = 〈g · f1, ..., g · fs〉 =⇒ I : 〈g〉 = 〈f1, ..., fs〉I , J ⊂ R =⇒ I ∩ J = (t · I + (1− t) · J) ∩ R

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1g (gJ :A J) ⊂ A

a 7→ a·ϕ 7→ ϕ(g )

g

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 20 / 29

Page 270: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Key Lemma

Definition

For ideals Ij ⊂ A the ideal quotient is (I1 :A I2) = {b ∈ A | bI2 ⊂ I1}.

Algorithm (Ideal quotients by Elimination)

I : 〈g1, g2〉 = (I : g1) ∩ (I : g2)

I ∩ 〈g〉 = 〈g · f1, ..., g · fs〉 =⇒ I : 〈g〉 = 〈f1, ..., fs〉I , J ⊂ R =⇒ I ∩ J = (t · I + (1− t) · J) ∩ R

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1g (gJ :A J) ⊂ A

a 7→ a·ϕ 7→ ϕ(g )

g

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 20 / 29

Page 271: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Key Lemma

Definition

For ideals Ij ⊂ A the ideal quotient is (I1 :A I2) = {b ∈ A | bI2 ⊂ I1}.

Algorithm (Ideal quotients by Elimination)

I : 〈g1, g2〉 = (I : g1) ∩ (I : g2)I ∩ 〈g〉 = 〈g · f1, ..., g · fs〉 =⇒ I : 〈g〉 = 〈f1, ..., fs〉

I , J ⊂ R =⇒ I ∩ J = (t · I + (1− t) · J) ∩ R

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1g (gJ :A J) ⊂ A

a 7→ a·ϕ 7→ ϕ(g )

g

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 20 / 29

Page 272: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Key Lemma

Definition

For ideals Ij ⊂ A the ideal quotient is (I1 :A I2) = {b ∈ A | bI2 ⊂ I1}.

Algorithm (Ideal quotients by Elimination)

I : 〈g1, g2〉 = (I : g1) ∩ (I : g2)I ∩ 〈g〉 = 〈g · f1, ..., g · fs〉 =⇒ I : 〈g〉 = 〈f1, ..., fs〉I , J ⊂ R =⇒ I ∩ J = (t · I + (1− t) · J) ∩ R

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1g (gJ :A J) ⊂ A

a 7→ a·ϕ 7→ ϕ(g )

g

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 20 / 29

Page 273: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Key Lemma

Definition

For ideals Ij ⊂ A the ideal quotient is (I1 :A I2) = {b ∈ A | bI2 ⊂ I1}.

Algorithm (Ideal quotients by Elimination)

I : 〈g1, g2〉 = (I : g1) ∩ (I : g2)I ∩ 〈g〉 = 〈g · f1, ..., g · fs〉 =⇒ I : 〈g〉 = 〈f1, ..., fs〉I , J ⊂ R =⇒ I ∩ J = (t · I + (1− t) · J) ∩ R

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1g (gJ :A J) ⊂ A

a 7→ a·ϕ 7→ ϕ(g )

g

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 20 / 29

Page 274: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Key Lemma

Definition

For ideals Ij ⊂ A the ideal quotient is (I1 :A I2) = {b ∈ A | bI2 ⊂ I1}.

Algorithm (Ideal quotients by Elimination)

I : 〈g1, g2〉 = (I : g1) ∩ (I : g2)I ∩ 〈g〉 = 〈g · f1, ..., g · fs〉 =⇒ I : 〈g〉 = 〈f1, ..., fs〉I , J ⊂ R =⇒ I ∩ J = (t · I + (1− t) · J) ∩ R

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1g (gJ :A J) ⊂ A

a 7→ a·ϕ 7→ ϕ(g )

g

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 20 / 29

Page 275: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Key Lemma

Proof.

Let J = 〈g1, . . . , gs〉 and b ∈ (gJ :A J).

By

bJ ⊂ gJ

there are bij ∈ 〈g〉 withbgj = ∑i

bijgi .

By Cayley-Hamilton, b· is a zero of χ(t) = det(t · E − (bij )), so there are

ai ∈ 〈g〉i withs

∑i=0

aibs−i = 0 and a0 = 1

hences

∑i=0

aig i

(b

g

)s−i= 0 with

aig i∈ A.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 21 / 29

Page 276: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Key Lemma

Proof.

Let J = 〈g1, . . . , gs〉 and b ∈ (gJ :A J). By

bJ ⊂ gJ

there are bij ∈ 〈g〉 withbgj = ∑i

bijgi .

By Cayley-Hamilton, b· is a zero of χ(t) = det(t · E − (bij )), so there are

ai ∈ 〈g〉i withs

∑i=0

aibs−i = 0 and a0 = 1

hences

∑i=0

aig i

(b

g

)s−i= 0 with

aig i∈ A.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 21 / 29

Page 277: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Key Lemma

Proof.

Let J = 〈g1, . . . , gs〉 and b ∈ (gJ :A J). By

bJ ⊂ gJ

there are bij ∈ 〈g〉 withbgj = ∑i

bijgi .

By Cayley-Hamilton, b· is a zero of χ(t) = det(t · E − (bij )),

so there are

ai ∈ 〈g〉i withs

∑i=0

aibs−i = 0 and a0 = 1

hences

∑i=0

aig i

(b

g

)s−i= 0 with

aig i∈ A.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 21 / 29

Page 278: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Key Lemma

Proof.

Let J = 〈g1, . . . , gs〉 and b ∈ (gJ :A J). By

bJ ⊂ gJ

there are bij ∈ 〈g〉 withbgj = ∑i

bijgi .

By Cayley-Hamilton, b· is a zero of χ(t) = det(t · E − (bij )), so there are

ai ∈ 〈g〉i withs

∑i=0

aibs−i = 0 and a0 = 1

hences

∑i=0

aig i

(b

g

)s−i= 0 with

aig i∈ A.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 21 / 29

Page 279: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Key Lemma

Proof.

Let J = 〈g1, . . . , gs〉 and b ∈ (gJ :A J). By

bJ ⊂ gJ

there are bij ∈ 〈g〉 withbgj = ∑i

bijgi .

By Cayley-Hamilton, b· is a zero of χ(t) = det(t · E − (bij )), so there are

ai ∈ 〈g〉i withs

∑i=0

aibs−i = 0 and a0 = 1

hences

∑i=0

aig i

(b

g

)s−i= 0 with

aig i∈ A.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 21 / 29

Page 280: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Non-normal and singular locus

For simplicity, assume V (I ) is curve. Then the non-normal locus N(A) isequal to the singular locus Sing(A).

In general, N(A) ⊂ Sing(A).

Definition

For an ideal I = 〈f1, ..., fs〉 ⊂ K [x1, ..., xn], the Jacobian ideal Jac(I ) isgenerated by the c × c minors of the Jacobian matrix

∂f1∂x1

· · · ∂f1∂xn

......

∂fs∂x1

· · · ∂fs∂xn

where c = n− dim(X ) is the codimension of X = V (I ). Then

Sing(A) = V (Jac(I ) + I ).

Example

For I =⟨x4 + x5 − y2

⟩we have Jac(I ) + I =

⟨x3, y

⟩.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 22 / 29

Page 281: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Non-normal and singular locus

For simplicity, assume V (I ) is curve. Then the non-normal locus N(A) isequal to the singular locus Sing(A). In general, N(A) ⊂ Sing(A).

Definition

For an ideal I = 〈f1, ..., fs〉 ⊂ K [x1, ..., xn], the Jacobian ideal Jac(I ) isgenerated by the c × c minors of the Jacobian matrix

∂f1∂x1

· · · ∂f1∂xn

......

∂fs∂x1

· · · ∂fs∂xn

where c = n− dim(X ) is the codimension of X = V (I ). Then

Sing(A) = V (Jac(I ) + I ).

Example

For I =⟨x4 + x5 − y2

⟩we have Jac(I ) + I =

⟨x3, y

⟩.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 22 / 29

Page 282: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Non-normal and singular locus

For simplicity, assume V (I ) is curve. Then the non-normal locus N(A) isequal to the singular locus Sing(A). In general, N(A) ⊂ Sing(A).

Definition

For an ideal I = 〈f1, ..., fs〉 ⊂ K [x1, ..., xn], the Jacobian ideal Jac(I ) isgenerated by the c × c minors of the Jacobian matrix

∂f1∂x1

· · · ∂f1∂xn

......

∂fs∂x1

· · · ∂fs∂xn

where c = n− dim(X ) is the codimension of X = V (I ).

Then

Sing(A) = V (Jac(I ) + I ).

Example

For I =⟨x4 + x5 − y2

⟩we have Jac(I ) + I =

⟨x3, y

⟩.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 22 / 29

Page 283: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Non-normal and singular locus

For simplicity, assume V (I ) is curve. Then the non-normal locus N(A) isequal to the singular locus Sing(A). In general, N(A) ⊂ Sing(A).

Definition

For an ideal I = 〈f1, ..., fs〉 ⊂ K [x1, ..., xn], the Jacobian ideal Jac(I ) isgenerated by the c × c minors of the Jacobian matrix

∂f1∂x1

· · · ∂f1∂xn

......

∂fs∂x1

· · · ∂fs∂xn

where c = n− dim(X ) is the codimension of X = V (I ). Then

Sing(A) = V (Jac(I ) + I ).

Example

For I =⟨x4 + x5 − y2

⟩we have Jac(I ) + I =

⟨x3, y

⟩.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 22 / 29

Page 284: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grauert-Remmert Criterion

Definition

The radical of an ideal I ⊂ A is√I = {f ∈ A | ∃a ∈N with f a ∈ I}

Example√〈x3, y〉 = 〈x , y〉.

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A = K [x1, ..., xn]/I be an ideal with J =√J and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)a 7→ (b 7→ ab)

is an isomorphism.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 23 / 29

Page 285: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grauert-Remmert Criterion

Definition

The radical of an ideal I ⊂ A is√I = {f ∈ A | ∃a ∈N with f a ∈ I}

Example√〈x3, y〉 = 〈x , y〉.

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A = K [x1, ..., xn]/I be an ideal with J =√J

and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)a 7→ (b 7→ ab)

is an isomorphism.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 23 / 29

Page 286: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grauert-Remmert Criterion

Definition

The radical of an ideal I ⊂ A is√I = {f ∈ A | ∃a ∈N with f a ∈ I}

Example√〈x3, y〉 = 〈x , y〉.

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A = K [x1, ..., xn]/I be an ideal with J =√J and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)a 7→ (b 7→ ab)

is an isomorphism.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 23 / 29

Page 287: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Grauert-Remmert Criterion

Definition

The radical of an ideal I ⊂ A is√I = {f ∈ A | ∃a ∈N with f a ∈ I}

Example√〈x3, y〉 = 〈x , y〉.

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A = K [x1, ..., xn]/I be an ideal with J =√J and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)a 7→ (b 7→ ab)

is an isomorphism.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 23 / 29

Page 288: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

If A is not normal, then for J =√

Jac(I ) + I by Grauert-Remmert

A $ HomA(J, J) ∼=1

g(gJ :A J) ⊂ A ⊂ Q(A).

This gives algorithm [de Jong, 98], [Greuel, Laplagne, Seelisch, 2010]:

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =1g (gJi :Ai

Ji ) Ji =√JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1 = A.

Terminates since A is Noetherian. By Grauert-Remmert Am = A, using:

Lemma

N(Ai ) ⊂ V (Ji )

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 24 / 29

Page 289: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

If A is not normal, then for J =√

Jac(I ) + I by Grauert-Remmert

A $ HomA(J, J) ∼=1

g(gJ :A J) ⊂ A ⊂ Q(A).

This gives algorithm [de Jong, 98], [Greuel, Laplagne, Seelisch, 2010]:

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =1g (gJi :Ai

Ji ) Ji =√JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1 = A.

Terminates since A is Noetherian. By Grauert-Remmert Am = A, using:

Lemma

N(Ai ) ⊂ V (Ji )

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 24 / 29

Page 290: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

If A is not normal, then for J =√

Jac(I ) + I by Grauert-Remmert

A $ HomA(J, J) ∼=1

g(gJ :A J) ⊂ A ⊂ Q(A).

This gives algorithm [de Jong, 98], [Greuel, Laplagne, Seelisch, 2010]:

Algorithm

Starting from A0 = A and J0 = J,

setting

Ai+1 =1g (gJi :Ai

Ji ) Ji =√JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1 = A.

Terminates since A is Noetherian. By Grauert-Remmert Am = A, using:

Lemma

N(Ai ) ⊂ V (Ji )

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 24 / 29

Page 291: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

If A is not normal, then for J =√

Jac(I ) + I by Grauert-Remmert

A $ HomA(J, J) ∼=1

g(gJ :A J) ⊂ A ⊂ Q(A).

This gives algorithm [de Jong, 98], [Greuel, Laplagne, Seelisch, 2010]:

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =1g (gJi :Ai

Ji ) Ji =√JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1 = A.

Terminates since A is Noetherian. By Grauert-Remmert Am = A, using:

Lemma

N(Ai ) ⊂ V (Ji )

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 24 / 29

Page 292: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

If A is not normal, then for J =√

Jac(I ) + I by Grauert-Remmert

A $ HomA(J, J) ∼=1

g(gJ :A J) ⊂ A ⊂ Q(A).

This gives algorithm [de Jong, 98], [Greuel, Laplagne, Seelisch, 2010]:

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =1g (gJi :Ai

Ji ) Ji =√JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1 = A.

Terminates since A is Noetherian. By Grauert-Remmert Am = A,

using:

Lemma

N(Ai ) ⊂ V (Ji )

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 24 / 29

Page 293: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

If A is not normal, then for J =√

Jac(I ) + I by Grauert-Remmert

A $ HomA(J, J) ∼=1

g(gJ :A J) ⊂ A ⊂ Q(A).

This gives algorithm [de Jong, 98], [Greuel, Laplagne, Seelisch, 2010]:

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =1g (gJi :Ai

Ji ) Ji =√JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1 = A.

Terminates since A is Noetherian. By Grauert-Remmert Am = A, using:

Lemma

N(Ai ) ⊂ V (Ji )

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 24 / 29

Page 294: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

Example

For I =⟨x4 + x5 − y2

the first step yields

A1 =1

x(xJ : x) =

1

x〈x , y〉 =A

⟨1,

y

x

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 25 / 29

Page 295: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

Example

For I =⟨x4 + x5 − y2

the first step yields

A1 =1

x(xJ : x) =

1

x〈x , y〉 =A

⟨1,

y

x

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 25 / 29

Page 296: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

To obtain A, one more iteration is needed, leading to A2 =A

⟨1, y

x2

⟩:

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^4 - y^2 + x^5;

> LIB "normal.lib";

> list nor = normal(I,"var1");

> nor[2];

[1]:

[1] = y

[2] = x2

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 26 / 29

Page 297: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

To obtain A, one more iteration is needed, leading to A2 =A

⟨1, y

x2

⟩:

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^4 - y^2 + x^5;

> LIB "normal.lib";

> list nor = normal(I,"var1");

> nor[2];

[1]:

[1] = y

[2] = x2

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 26 / 29

Page 298: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

To obtain A, one more iteration is needed, leading to A2 =A

⟨1, y

x2

⟩:

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^4 - y^2 + x^5;

> LIB "normal.lib";

> list nor = normal(I,"var1");

> nor[2];

[1]:

[1] = y

[2] = x2

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 26 / 29

Page 299: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

To obtain A, one more iteration is needed, leading to A2 =A

⟨1, y

x2

⟩:

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^4 - y^2 + x^5;

> LIB "normal.lib";

> list nor = normal(I,"var1");

> nor[2];

[1]:

[1] = y

[2] = x2

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 26 / 29

Page 300: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

To obtain A, one more iteration is needed, leading to A2 =A

⟨1, y

x2

⟩:

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^4 - y^2 + x^5;

> LIB "normal.lib";

> list nor = normal(I,"var1");

> nor[2];

[1]:

[1] = y

[2] = x2

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 26 / 29

Page 301: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

To obtain A, one more iteration is needed, leading to A2 =A

⟨1, y

x2

⟩:

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^4 - y^2 + x^5;

> LIB "normal.lib";

> list nor = normal(I,"var1");

> nor[2];

[1]:

[1] = y

[2] = x2

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 26 / 29

Page 302: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Normalization Algorithm

To obtain A, one more iteration is needed, leading to A2 =A

⟨1, y

x2

⟩:

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^4 - y^2 + x^5;

> LIB "normal.lib";

> list nor = normal(I,"var1");

> nor[2];

[1]:

[1] = y

[2] = x2

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 26 / 29

Page 303: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Desingularization of Curves by Normalization

C = V (x4 − y2 + x5)

t =y

x2

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 27 / 29

Page 304: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Desingularization of Curves by Normalization

C = V (x4 − y2 + x5)

t =y

x2

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 27 / 29

Page 305: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 306: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 307: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 308: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 309: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 310: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 311: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 312: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 313: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 314: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 315: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 316: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 317: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 318: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 319: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 320: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 321: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 322: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 323: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 324: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 325: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 326: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 327: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 328: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 329: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 330: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 331: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 332: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 333: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 334: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 335: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 336: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 337: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 338: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 339: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 340: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 341: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 342: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 343: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 344: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 345: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 346: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 347: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 348: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 349: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 350: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 351: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 352: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 353: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 354: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 355: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 356: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 357: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 358: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 359: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 360: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 361: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 362: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 363: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 364: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 365: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 366: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 367: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 368: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 369: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 370: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 371: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 372: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 373: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 374: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 375: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 376: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 377: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 378: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 379: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 380: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 381: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 382: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 383: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 384: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 385: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 386: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 387: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 388: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 389: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 390: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 391: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 392: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 393: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 394: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 395: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 396: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 397: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 398: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 399: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 400: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 401: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 402: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 403: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 404: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 405: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 406: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 407: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 408: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 409: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 410: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 411: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 412: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 413: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 414: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 415: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 416: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 417: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 418: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 419: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 420: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 421: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 422: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 423: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 424: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 425: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 426: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 427: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 428: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm
Page 429: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Local Techniques for Normalization

Similarly to the prime factorization of integers, any ideal J ⊂ K [x1, . . . , xn]has a primary decomposition as an intersection

J = P1 ∩ . . . ∩ Pr

of primary ideals Pi

(i.e. ab ∈ Pi ⇒ a ∈ Pi or ∃m : bm ∈ Pi ). If J =√J

then the Pi are prime.For simplicity assume again that V (I ) is a curve.

Theorem (BDLSS, 2013)

Suppose

J =√

Jac(I ) + I = P1 ∩ . . . ∩ Pr

with prime ideals Pi , and A ⊂ Bi ⊂ A is the ring given by thenormalization algorithm applied to Pi instead of J, then

A = B1 + . . . + Br

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 28 / 29

Page 430: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Local Techniques for Normalization

Similarly to the prime factorization of integers, any ideal J ⊂ K [x1, . . . , xn]has a primary decomposition as an intersection

J = P1 ∩ . . . ∩ Pr

of primary ideals Pi (i.e. ab ∈ Pi ⇒ a ∈ Pi or ∃m : bm ∈ Pi ).

If J =√J

then the Pi are prime.For simplicity assume again that V (I ) is a curve.

Theorem (BDLSS, 2013)

Suppose

J =√

Jac(I ) + I = P1 ∩ . . . ∩ Pr

with prime ideals Pi , and A ⊂ Bi ⊂ A is the ring given by thenormalization algorithm applied to Pi instead of J, then

A = B1 + . . . + Br

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 28 / 29

Page 431: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Local Techniques for Normalization

Similarly to the prime factorization of integers, any ideal J ⊂ K [x1, . . . , xn]has a primary decomposition as an intersection

J = P1 ∩ . . . ∩ Pr

of primary ideals Pi (i.e. ab ∈ Pi ⇒ a ∈ Pi or ∃m : bm ∈ Pi ). If J =√J

then the Pi are prime.

For simplicity assume again that V (I ) is a curve.

Theorem (BDLSS, 2013)

Suppose

J =√

Jac(I ) + I = P1 ∩ . . . ∩ Pr

with prime ideals Pi , and A ⊂ Bi ⊂ A is the ring given by thenormalization algorithm applied to Pi instead of J, then

A = B1 + . . . + Br

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 28 / 29

Page 432: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Local Techniques for Normalization

Similarly to the prime factorization of integers, any ideal J ⊂ K [x1, . . . , xn]has a primary decomposition as an intersection

J = P1 ∩ . . . ∩ Pr

of primary ideals Pi (i.e. ab ∈ Pi ⇒ a ∈ Pi or ∃m : bm ∈ Pi ). If J =√J

then the Pi are prime.For simplicity assume again that V (I ) is a curve.

Theorem (BDLSS, 2013)

Suppose

J =√

Jac(I ) + I = P1 ∩ . . . ∩ Pr

with prime ideals Pi , and A ⊂ Bi ⊂ A is the ring given by thenormalization algorithm applied to Pi instead of J, then

A = B1 + . . . + Br

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 28 / 29

Page 433: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Local Techniques for Normalization

Similarly to the prime factorization of integers, any ideal J ⊂ K [x1, . . . , xn]has a primary decomposition as an intersection

J = P1 ∩ . . . ∩ Pr

of primary ideals Pi (i.e. ab ∈ Pi ⇒ a ∈ Pi or ∃m : bm ∈ Pi ). If J =√J

then the Pi are prime.For simplicity assume again that V (I ) is a curve.

Theorem (BDLSS, 2013)

Suppose

J =√

Jac(I ) + I = P1 ∩ . . . ∩ Pr

with prime ideals Pi ,

and A ⊂ Bi ⊂ A is the ring given by thenormalization algorithm applied to Pi instead of J, then

A = B1 + . . . + Br

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 28 / 29

Page 434: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Local Techniques for Normalization

Similarly to the prime factorization of integers, any ideal J ⊂ K [x1, . . . , xn]has a primary decomposition as an intersection

J = P1 ∩ . . . ∩ Pr

of primary ideals Pi (i.e. ab ∈ Pi ⇒ a ∈ Pi or ∃m : bm ∈ Pi ). If J =√J

then the Pi are prime.For simplicity assume again that V (I ) is a curve.

Theorem (BDLSS, 2013)

Suppose

J =√

Jac(I ) + I = P1 ∩ . . . ∩ Pr

with prime ideals Pi , and A ⊂ Bi ⊂ A is the ring given by thenormalization algorithm applied to Pi instead of J

, then

A = B1 + . . . + Br

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 28 / 29

Page 435: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Local Techniques for Normalization

Similarly to the prime factorization of integers, any ideal J ⊂ K [x1, . . . , xn]has a primary decomposition as an intersection

J = P1 ∩ . . . ∩ Pr

of primary ideals Pi (i.e. ab ∈ Pi ⇒ a ∈ Pi or ∃m : bm ∈ Pi ). If J =√J

then the Pi are prime.For simplicity assume again that V (I ) is a curve.

Theorem (BDLSS, 2013)

Suppose

J =√

Jac(I ) + I = P1 ∩ . . . ∩ Pr

with prime ideals Pi , and A ⊂ Bi ⊂ A is the ring given by thenormalization algorithm applied to Pi instead of J, then

A = B1 + . . . + Br

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 28 / 29

Page 436: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Local Techniques for Normalization

Example

For I = 〈x4 + y2(y − 1)3〉

we haveJ = 〈x , y〉 ∩ 〈x , y − 1〉

and A = B1 + B2 with

B1 =⟨

1, x2

y , x4

y2

⟩B2 =

⟨1, x2

y−1 , x3

(y−1)2⟩

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 29 / 29

Page 437: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Local Techniques for Normalization

Example

For I = 〈x4 + y2(y − 1)3〉

we haveJ = 〈x , y〉 ∩ 〈x , y − 1〉

and A = B1 + B2 with

B1 =⟨

1, x2

y , x4

y2

⟩B2 =

⟨1, x2

y−1 , x3

(y−1)2⟩

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 29 / 29

Page 438: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

Local Techniques for Normalization

Example

For I = 〈x4 + y2(y − 1)3〉

we haveJ = 〈x , y〉 ∩ 〈x , y − 1〉

and A = B1 + B2 with

B1 =⟨

1, x2

y , x4

y2

⟩B2 =

⟨1, x2

y−1 , x3

(y−1)2⟩

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 29 / 29

Page 439: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

References

D. Cox, J. Little, D. O’Shea, Ideals, varieties, and algorithms, Springer(2007)

G.-M. Greuel, G. Pfister, A Singular introduction to commutativealgebra, Springer (2008)

H. Schenck, Computational algebraic geometry, Cambridge (2003)

M. Reid, Undergraduate algebraic geometry Cambridge (1988)

M. Reid, Undergraduate commutative algebra Cambridge (1995)

D. Eisenbud, Commutative algebra - With a view toward algebraicgeometry, Graduate Texts in Mathematics, Springer (1995)

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 29 / 29

Page 440: Janko Boehm boehm@mathematik.uni-klboehm/Normalization.pdf · Division with Remainder For an ideal I = hf 1,...,f riin the Euclidean domain (and hence PID) K[x], the Euclidean algorithm

References

J. Boehm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, S. Steidel,Parallel algorithms for normalization, J. Symbolic Comput. (2013)

J. Boehm, W. Decker, M. Schulze, Local analysis of Grauert-Remmerttype normalization algorithms, Internat. J. Algebra Comput. (2014)

Th. de Jong, An algorithm for computing the integral closure, J.Symbolic Comput. (1998)

G.-M. Greuel, S. Laplagne, F. Seelisch, Normalization of rings, J.Symbolic Comput. (2010)

W. Vasconcelos, Integral Closure, Springer (2005)

I. Swanson, C. Hunecke, Integral Closure of Ideals, Rings, andModules Cambridge (2006)

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 29 / 29