jarmo hietarinta- faddeev-hopf knots and the two-component ginzburg-landau model

87
Faddeev-Hopf knots and the two-component Ginzburg-Landau model Jarmo Hietarinta Department of Physics, University of Turku, FIN-20014 Turku, Finland NorditaQF2007, August 21, 2007

Upload: pomac232

Post on 06-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 1/87

Faddeev-Hopf knots and the two-componentGinzburg-Landau model

Jarmo Hietarinta

Department of Physics, University of Turku, FIN-20014 Turku, Finland

NorditaQF2007, August 21, 2007

Page 2: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 2/87

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

Topology

Faddeev’s model

Numerical results

Topology on the plane

Closed curve on a punctured plane, f  : S 1 → R/{(0, 0)} ≈ S 1

Topological characterization using the winding number around

the puncture.

Jarmo Hietarinta Hopfions and GL-model

Page 3: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 3/87

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

Topology

Faddeev’s model

Numerical results

Topology on the plane

Closed curve on a punctured plane, f  : S 1 → R/{(0, 0)} ≈ S 1

Topological characterization using the winding number around

the puncture.

• winding number = 0

• winding number = 1

• winding number = 2

Jarmo Hietarinta Hopfions and GL-model

Page 4: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 4/87

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

Topology

Faddeev’s model

Numerical results

Closed curve on a punctured plane, f  : S 1 → R/{(0, 0)} ≈ S 1

Topological characterization of maps f  into homotopy classes

according to the winding number,

f  : S 1 → S 1, π1(S 1) = Z.

Jarmo Hietarinta Hopfions and GL-model

Page 5: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 5/87

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

Topology

Faddeev’s model

Numerical results

Closed curve on a punctured plane, f  : S 1 → R/{(0, 0)} ≈ S 1

Topological characterization of maps f  into homotopy classes

according to the winding number,

f  : S 1 → S 1, π1(S 1) = Z.

Physical interpretation:Complex field ψ = ρe i θ.

Take a 2D section of R3.

θ : R2 → (0, 2π]

Jarmo Hietarinta Hopfions and GL-model

Page 6: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 6/87

Th F dd Sk d l T l

Page 7: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 7/87

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

Topology

Faddeev’s model

Numerical results

Closed curve on a punctured plane, f  : S 1 → R/{(0, 0)} ≈ S 1

Topological characterization of maps f  into homotopy classes

according to the winding number,

f  : S 1 → S 1, π1(S 1) = Z.

Physical interpretation:Complex field ψ = ρe i θ.

Take a 2D section of R3.

θ : R2 → (0, 2π]

ψ must be continuous.

At the point where e i θ would be discontinuous (undefined):

we must have ρ = 0, this defines the vortex core (puncture).

3Jarmo Hietarinta Hopfions and GL-model

The Faddeev Skyrme model Topology

Page 8: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 8/87

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

Topology

Faddeev’s model

Numerical results

Topology in R3:Hopf charge

• Carrier field: 3D unit vector field n in R3, locally smooth.

• 3D-unit vectors can be represented by points on the

surface of the sphere S 2.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev Skyrme model Topology

Page 9: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 9/87

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

Topology

Faddeev’s model

Numerical results

Topology in R3:Hopf charge

• Carrier field: 3D unit vector field n in R3, locally smooth.

• 3D-unit vectors can be represented by points on the

surface of the sphere S 2.

• Asymptotically trivial: n(r) → n∞, when |r| → ∞⇒ can compactify R3 → S 3.

Therefore

n : S 3 → S 2.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model Topology

Page 10: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 10/87

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

Topology

Faddeev’s model

Numerical results

Topology in R3:Hopf charge

• Carrier field: 3D unit vector field n in R3, locally smooth.

• 3D-unit vectors can be represented by points on the

surface of the sphere S 2.

• Asymptotically trivial: n(r) → n∞, when |r| → ∞⇒ can compactify R3 → S 3.

Therefore

n : S 3 → S 2.

Such functions are characterized by the Hopf charge, i.e.,

by the homotopy class π3(S 2) = Z.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model Topology

Page 11: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 11/87

The Faddeev Skyrme model

Knot theory

The Ginzburg-Landau model

Topology

Faddeev’s model

Numerical results

Example of vortex ring with Hopf charge 1:

n =4(2x z  − y (r 2 − 1))

(1 + r 2)2 ,

4(2y z + x (r 2 − 1))

(1 + r 2)2 , 1 −

8(r 2 − z 2)

(1 + r 2)2

.

where r 2 = x 2 + y 2 + z 2.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model Topology

Page 12: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 12/87

The Faddeev Skyrme model

Knot theory

The Ginzburg-Landau model

Topology

Faddeev’s model

Numerical results

Example of vortex ring with Hopf charge 1:

n =4(2x z  − y (r 2 − 1))

(1 + r 2)2 ,

4(2y z + x (r 2 − 1))

(1 + r 2)2 , 1 −

8(r 2 − z 2)

(1 + r 2)2

.

where r 2 = x 2 + y 2 + z 2.

Note that

• n = (0, 0, 1) at infinity (any direction).• n = (0, 0, −1) on the ring x 2 + y 2 = 1, z  = 0 (vortex core).

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model Topology

Page 13: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 13/87

y

Knot theory

The Ginzburg-Landau model

p gy

Faddeev’s model

Numerical results

Example of vortex ring with Hopf charge 1:

n =4(2x z  − y (r 2 − 1))

(1 + r 2)2 ,

4(2y z + x (r 2 − 1))

(1 + r 2)2 , 1 −

8(r 2 − z 2)

(1 + r 2)2

.

where r 2 = x 2 + y 2 + z 2.

Note that

• n = (0, 0, 1) at infinity (any direction).• n = (0, 0, −1) on the ring x 2 + y 2 = 1, z  = 0 (vortex core).

Computing the Hopf charge:

Given n : R3

→ S 2

define F ij  = abc n a 

∂ i n b 

∂  j n c 

.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model Topology

Page 14: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 14/87

y

Knot theory

The Ginzburg-Landau model

p gy

Faddeev’s model

Numerical results

Example of vortex ring with Hopf charge 1:

n =4(2x z  − y (r 2 − 1))

(1 + r 2)2 ,

4(2y z + x (r 2 − 1))

(1 + r 2)2 , 1 −

8(r 2 − z 2)

(1 + r 2)2

.

where r 2 = x 2 + y 2 + z 2.

Note that

• n = (0, 0, 1) at infinity (any direction).• n = (0, 0, −1) on the ring x 2 + y 2 = 1, z  = 0 (vortex core).

Computing the Hopf charge:

Given n : R3

→ S 2

define F ij  = abc n a 

∂ i n b 

∂  j n c 

.Given F ij  construct A j  so that F ij  = ∂ i A j  − ∂  j Ai ,

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model Topology

Page 15: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 15/87

Knot theory

The Ginzburg-Landau model

Faddeev’s model

Numerical results

Example of vortex ring with Hopf charge 1:

n =4(2x z  − y (r 2 − 1))

(1 + r 2)2 ,

4(2y z + x (r 2 − 1))

(1 + r 2)2 , 1 −

8(r 2 − z 2)

(1 + r 2)2

.

where r 2 = x 2 + y 2 + z 2.

Note that

• n = (0, 0, 1) at infinity (any direction).• n = (0, 0, −1) on the ring x 2 + y 2 = 1, z  = 0 (vortex core).

Computing the Hopf charge:

Given n :R

3

→ S 2

define F ij  = abc n a 

∂ i n b 

∂  j n c 

.Given F ij  construct A j  so that F ij  = ∂ i A j  − ∂  j Ai , then

Q  =1

16π2

 ijk Ai F  jk  d 3x .

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model Topology

Page 16: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 16/87

Knot theory

The Ginzburg-Landau model

Faddeev’s model

Numerical results

Possible physical realization

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

K h

Topology

F dd ’ d l

Page 17: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 17/87

Knot theory

The Ginzburg-Landau model

Faddeev’s model

Numerical results

Faddeev’s model

In 1975 Faddeev proposed the Lagrangian (energy)

E  =

 (∂ i n)2 + g F 2ij 

d 3x , F ij  := n · ∂ in × ∂ jn.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

K t th

Topology

F dd ’ d l

Page 18: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 18/87

Knot theory

The Ginzburg-Landau model

Faddeev’s model

Numerical results

Faddeev’s model

In 1975 Faddeev proposed the Lagrangian (energy)

E  =

 (∂ i n)2 + g F 2ij 

d 3x , F ij  := n · ∂ in × ∂ jn.

Under the scaling r  → λr  the integrated kinetic term scales as

λ and the integrated F 2 term as λ−1.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

Topology

Faddeev’s model

Page 19: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 19/87

Knot theory

The Ginzburg-Landau model

Faddeev s model

Numerical results

Faddeev’s model

In 1975 Faddeev proposed the Lagrangian (energy)

E  =

 (∂ i n)2 + g F 2ij 

d 3x , F ij  := n · ∂ in × ∂ jn.

Under the scaling r  → λr  the integrated kinetic term scales as

λ and the integrated F 2 term as λ−1.

Therefore nontrivial configurations will attain some fixed size

determined by the dimensional coupling constant g . (Virial

theorem)

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

Topology

Faddeev’s model

Page 20: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 20/87

Knot theory

The Ginzburg-Landau model

Faddeev s model

Numerical results

Faddeev’s model

In 1975 Faddeev proposed the Lagrangian (energy)

E  =

 (∂ i n)2 + g F 2ij 

d 3x , F ij  := n · ∂ in × ∂ jn.

Under the scaling r  → λr  the integrated kinetic term scales as

λ and the integrated F 2 term as λ−1.

Therefore nontrivial configurations will attain some fixed size

determined by the dimensional coupling constant g . (Virial

theorem)

Vakulenko and Kapitanskii (1979): a lower limit for the energy,

E  ≥ c |Q |34 ,

where c is some constant, and Q  the Hopf charge.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

TopologyFaddeev’s model

Page 21: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 21/87

Knot theory

The Ginzburg-Landau model

Faddeev s model

Numerical results

Numerical studies of Faddeev’s model

What is the minimum energy state for a given Hopf charge?

Studied in 1997-2004 by Gladikowski and Hellmund, Faddeev

and Niemi, Battye and Sutcliffe, and Hietarinta and Salo.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

TopologyFaddeev’s model

Page 22: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 22/87

Knot theory

The Ginzburg-Landau model

Faddeev s model

Numerical results

Numerical studies of Faddeev’s model

What is the minimum energy state for a given Hopf charge?

Studied in 1997-2004 by Gladikowski and Hellmund, Faddeev

and Niemi, Battye and Sutcliffe, and Hietarinta and Salo.

Our work:

Full 3D minimization without restrictive symmetry assumptions.

Linked unknots of various charges.Later (with Jäykkä) also knotting of twisted Hopf-vortices.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

TopologyFaddeev’s model

Page 23: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 23/87

Knot theory

The Ginzburg-Landau model

Faddeev s model

Numerical results

Numerical studies of Faddeev’s model

What is the minimum energy state for a given Hopf charge?

Studied in 1997-2004 by Gladikowski and Hellmund, Faddeev

and Niemi, Battye and Sutcliffe, and Hietarinta and Salo.

Our work:

Full 3D minimization without restrictive symmetry assumptions.

Linked unknots of various charges.Later (with Jäykkä) also knotting of twisted Hopf-vortices.

More technically:• Discretized on a cubic lattice, size typically 2403.

• Discretized the Lagrangian: ∂ i n on links, F ij  on plaquettes.• Computed the gradient n(r)L symbolically.• Used dissipative dynamics: nnew  = nold  − δn(r)L.

Program parallelizes well, have used Cray T3E, SGI Origin

2000, IBM SP, etc.Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

TopologyFaddeev’s model

Page 24: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 24/87

y

The Ginzburg-Landau model Numerical results

How to visualize vector fields?

Cannot draw vectors at every point and flow lines do not makesense.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

TopologyFaddeev’s model

Page 25: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 25/87

y

The Ginzburg-Landau model Numerical results

How to visualize vector fields?

Cannot draw vectors at every point and flow lines do not makesense.

n is a point on the sphere S 2.

There is one fixed direction, n∞ = (0, 0, 1), the north pole.

All other points are defined by latitude and longitude.

Vortex core is where n = −n∞ (the south pole).

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

TopologyFaddeev’s model

Page 26: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 26/87

The Ginzburg-Landau model Numerical results

How to visualize vector fields?

Cannot draw vectors at every point and flow lines do not makesense.

n is a point on the sphere S 2.

There is one fixed direction, n∞ = (0, 0, 1), the north pole.

All other points are defined by latitude and longitude.

Vortex core is where n = −n∞ (the south pole).

Latitude is invariant under global gauge rotations that keep the

north pole fixed, therefore we plot equilatitude surfaces

i.e., tubes (around the core) defined by {x : n(x) · n∞ = c }.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

TopologyFaddeev’s model

Page 27: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 27/87

The Ginzburg-Landau model Numerical results

How to visualize vector fields?

Cannot draw vectors at every point and flow lines do not makesense.

n is a point on the sphere S 2.

There is one fixed direction, n∞ = (0, 0, 1), the north pole.

All other points are defined by latitude and longitude.

Vortex core is where n = −n∞ (the south pole).

Latitude is invariant under global gauge rotations that keep the

north pole fixed, therefore we plot equilatitude surfaces

i.e., tubes (around the core) defined by {x : n(x) · n∞ = c }.Longitudes are represented by colors on the equilatitude

surface. (Under a global gauge rotation only colors change).

Paint the tubes using latitudes.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

Th Gi b L d d l

TopologyFaddeev’s model

N i l l

Page 28: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 28/87

The Ginzburg-Landau model Numerical results

Isosurface n 3 = 0 (equator) for |Q | = 1, 2

Color order and handedness of twist determine Hopf charge.Inside the torus is the core, where n 3 = −1.

These figures were made using the program funcs developed by J. Ruokolainen at

CSC, Espoo, Finland

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

Th Gi b L d d l

TopologyFaddeev’s model

N i l lt

Page 29: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 29/87

The Ginzburg-Landau model Numerical results

Results for linked unknots of charge 1+1

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg Landau model

TopologyFaddeev’s model

Numerical results

Page 30: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 30/87

The Ginzburg-Landau model Numerical results

Energy evolution in minimization

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg Landau model

TopologyFaddeev’s model

Numerical results

Page 31: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 31/87

The Ginzburg-Landau model Numerical results

Vakulenko bound

0 1 2 3 4 5 6 7

Q

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

   E   Q    /

   (   E   1

   Q   3   /   4   )

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

TopologyFaddeev’s model

Numerical results

Page 32: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 32/87

The Ginzburg-Landau model Numerical results

Different and improved final states

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

TopologyFaddeev’s model

Numerical results

Page 33: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 33/87

The Ginzburg Landau model Numerical results

Deformation 5 + 4 − 2 → trefoil

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

TopologyFaddeev’s model

Numerical results

Page 34: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 34/87

The Ginzburg Landau model Numerical results

(1, 5) evolution

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Page 35: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 35/87

g

Linking number addition rules for the Hopf charge

Total charge = charges of individual unknots + linking number.

Linking number depends on the relative directionof the unknots.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Page 36: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 36/87

g

Linking number addition rules for the Hopf charge

Total charge = charges of individual unknots + linking number.

Linking number depends on the relative directionof the unknots.

Assign direction as follows: if the unknot is right-handed  then

the direction is the same as color direction, if left-handed  then

opposite.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Page 37: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 37/87

Linking number addition rules for the Hopf charge

Total charge = charges of individual unknots + linking number.

Linking number depends on the relative directionof the unknots.

Assign direction as follows: if the unknot is right-handed  then

the direction is the same as color direction, if left-handed  then

opposite.Then linking number is obtained from the following figure:

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Page 38: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 38/87

Framed links and ribbon knots

The proper knot theoretical setting is to use framed links.

Framing attached to a curve adds local information near the

curve, like twisting around it.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Page 39: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 39/87

Framed links and ribbon knots

The proper knot theoretical setting is to use framed links.

Framing attached to a curve adds local information near the

curve, like twisting around it.

One way to describe framed links is to use directed ribbons,

which are preimages of line segments.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Page 40: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 40/87

Framed links and ribbon knots

The proper knot theoretical setting is to use framed links.

Framing attached to a curve adds local information near the

curve, like twisting around it.

One way to describe framed links is to use directed ribbons,

which are preimages of line segments.

We could use equilatitude line segments , then increasing

latitude and longitude give two directions, their cross product

the ribbon direction.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Page 41: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 41/87

Framed links and ribbon knots

The proper knot theoretical setting is to use framed links.

Framing attached to a curve adds local information near the

curve, like twisting around it.

One way to describe framed links is to use directed ribbons,

which are preimages of line segments.

We could use equilatitude line segments , then increasing

latitude and longitude give two directions, their cross product

the ribbon direction.

Another choice would be to use equilongitude line near the 

south pole (=core)

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Page 42: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 42/87

Example: ribbon view of Q = −1 unknot

Here we have plotted the preimages of four nearby points on

the tubular preimage of the equator.

These figures were made using OpenDX

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Page 43: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 43/87

Computing the charge

For a ribbon define:

• twist = linking number of the ribbon core with a ribbon

boundary.

• writhe = signed crossover number of the ribbon core with

itself.

• linking number = 12 (sum of signed crossings)

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Page 44: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 44/87

Computing the charge

For a ribbon define:

• twist = linking number of the ribbon core with a ribbon

boundary.

• writhe = signed crossover number of the ribbon core with

itself.

• linking number = 12 (sum of signed crossings)

The Hopf charge can be determined either by

twist + writheor

linking number of the two ribbon boundaries.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Page 45: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 45/87

Charge from the ribbon view, Q = −1

Sign convention for crossings allows computing the charge.

In this case linking number of ribbon boundaries = −1.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Ch f h ibb i Q 1

Page 46: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 46/87

Charge from the ribbon view, Q = −1

Sign convention for crossings allows computing the charge.

In this case linking number of ribbon boundaries = −1.

On the right the ribbon has been turned vertical and is

viewed from above: a twist in the ribbon becomes a crossing.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Ch f th ibb i Q 1

Page 47: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 47/87

Charge from the ribbon view, Q = −1

Sign convention for crossings allows computing the charge.

In this case linking number of ribbon boundaries = −1.

On the right the ribbon has been turned vertical and is

viewed from above: a twist in the ribbon becomes a crossing.

Note that when considering equivalence of ribbon diagrams

type I Reidemeister move is not valid:

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Ribb i Q 2

Page 48: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 48/87

Ribbon view, Q = −2

Two ways to get charge −2: twice around small vs. large circle.

The first one has twist = −1, writhe = −1,the second twist = −2, writhe = 0.

Both have boundary linking number = −2.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

E l f ibb d f ti d i i i i ti

Page 49: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 49/87

Example of ribbon deformation during minimization

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Close up of the deformation process

Page 50: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 50/87

Close-up of the deformation process

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Diagrammatic rule for deformations

Page 51: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 51/87

Diagrammatic rule for deformations

Knot deformations correspond to ribbon deformations, e.g.,

crossing and breaking, but the Hopf charge will be conserved.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

Linking numberFramed links and ribbon knots

Ribbon deformations

Ribbon connection rules

Page 52: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 52/87

Ribbon connection rules

• Total Hopf charge = charges of individual unknots + linkingnumber.

• Unknots: Connecting a ribbon with a clockwise a full twist

(on the end at the right hand) yields charge +1.

• Linking number depends on the relative direction

associated with the unknots, as before:

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme modelKnot theory

The Ginzburg-Landau model

The modelGL and FS?

Preliminary results

The Ginzburg Landau model

Page 53: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 53/87

The Ginzburg-Landau model

Two electromagnetically coupled, oppositely charged Bose

condensates

L = 2

2m 1 + i 2e c 

 AΨ12

+ 2

2m 2 − i 2e c 

 AΨ22

+V 

Ψ1, Ψ2

+ 1

2µ0

 B 2,

Ψ1 and Ψ2: are order parameters for the condensates, A is the electromagnetic vector potential,

 B  = 1c  ×  A,V  is the potential.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

Page 54: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 54/87

Faddeev-Skyrme model is hidden here!

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

Change of variables

Page 55: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 55/87

Change of variables

Introduce new variables ρ, χα by

Ψα = 

2m αρχα,

where χ is normalized as

|χ1|2 + |χ2|2 = 1,

and therefore

ρ2 = 12

|Ψ1|

2

m 1+ |Ψ2|

2

m 2

.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

Change of variables

Page 56: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 56/87

Change of variables

Introduce new variables ρ, χα by

Ψα = 

2m αρχα,

where χ is normalized as

|χ1|2 + |χ2|2 = 1,

and therefore

ρ2 = 12

|Ψ1|

2

m 1+ |Ψ2|

2

m 2

.

In terms of the new fields the GL-model can be written as

L = 2ρ2

+ i 2e c 

 A

χ1

2+ − i 2e 

c  A

χ2

2

+ 2

ρ2

+ V 

χ1, χ2, ρ2

+ 12µ0

 B 2.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

Next define the unit vector field n by

Page 57: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 57/87

y

 n T  = χ∗1 χ2σχ1

χ∗2 =

χ1χ2+χ∗1χ∗

2

i (χ1χ2−χ∗1χ∗

2)

|χ1|2−|χ2|2 ,

where σ are the Pauli matrices.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

Next define the unit vector field n by

Page 58: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 58/87

y

 n T  = χ∗1 χ2σχ1

χ∗2 =

χ1χ2+χ∗1χ∗

2

i (χ1χ2−χ∗1χ∗

2)

|χ1|2−|χ2|2 ,

where σ are the Pauli matrices.

The Lagrangian is invariant under the gauge transformation

Ψ1 → e −i 2e  θ(x )Ψ1, Ψ2 → e i 

2e  θ(x )Ψ2, Aµ → Aµ + c ∂ µθ(x ),

and the corresponding Noether current is

J k  = i e m 1 Ψ∗

1∂ k Ψ1 − Ψ1∂ k Ψ∗1 − i e 

m 2 Ψ∗2∂ k Ψ2 − Ψ2∂ k Ψ

∗2 − 8e 2ρ2

c  Ak 

= 2e ρ2i 

χ∗1∂ k χ1 − χ1∂ k χ∗1 − χ∗2∂ k χ2 + χ2∂ k χ∗2

− 8e 2ρ2

c  Ak 

= 4e ρ2

12 j k  − 2e 

c Ak 

,

Later on we also use the gauge invariant vector field  C  = 1e ρ2

 J .

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

Page 59: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 59/87

Using the above results we can write the original Lagrangian in

the form

L =2ρ2

4 ∂ k n l ∂ k n l  + 2

ρ2

+ 2ρ2

16 C 2 + V 

ρ, n k 

+ 2

128µ0e 2 klm 

 n · ∂ k  n × ∂ l  n + ∂ k C l 

2

,

The dynamical fields are now ρ,  n  and  C .

If ρ = constant and  C  = 0, the GL model reduces to the FS

model.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

Page 60: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 60/87

Using the above results we can write the original Lagrangian in

the form

L =2ρ2

4 ∂ k n l ∂ k n l  + 2

ρ2

+ 2ρ2

16 C 2 + V 

ρ, n k 

+ 2

128µ0e 2

klm 

 n · ∂ k  n × ∂ l  n + ∂ k C l 

2

,

The dynamical fields are now ρ,  n  and  C .

If ρ = constant and  C  = 0, the GL model reduces to the FS

model.

What happens when ρ,  C  take their proper dynamical roles?

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

The potential

Page 61: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 61/87

e pote t a

From physical arguments the following special cases is relevant

(Babaev, 2002)

V 1 (Ψ1, Ψ2) = λ

|Ψ1|2 − 12

+

|Ψ2|2 − 12

,

which breaks O (3) to O (2), and

V 2 (Ψ1, Ψ2) = λ

|Ψ1|2 − 1

2 +

|Ψ2|2 − 1

2

+c Ψ1Ψ∗

2 − Ψ2Ψ∗1

+ a 0,

which breaks O (3) completely.

In our computations we have also used

V 3 (Ψ1, Ψ2) = 14 λ

|Ψ1|2 + |Ψ2|2 − ρ20

2

+ 2γ 

|Ψ1|2 + |Ψ2|2

−1

+a 0.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

The initial state

Page 62: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 62/87

Constructed following Aratyn et al. (1999).

We use toroidal coordinates

η, ξ , ϕ

of R3 defined by

x 1 = (sinh(η) cos(ϕ))/q , x 2 = (sinh(η) sin(ϕ))/q , x 3 = sin(ξ)/q ,

where q  = cosh(η) − cos(ξ).

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

The initial state

Page 63: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 63/87

Constructed following Aratyn et al. (1999).

We use toroidal coordinates

η, ξ , ϕ

of R3 defined by

x 1 = (sinh(η) cos(ϕ))/q , x 2 = (sinh(η) sin(ϕ))/q , x 3 = sin(ξ)/q ,

where q  = cosh(η) − cos(ξ). Then we define

χ1 := g (η)e ip ξ, χ2 :=

 1 − g 

η2

e iq ϕ

Here g  is a smooth monotonous function.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

The initial state

Page 64: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 64/87

Constructed following Aratyn et al. (1999).

We use toroidal coordinates

η, ξ , ϕ

of R3 defined by

x 1 = (sinh(η) cos(ϕ))/q , x 2 = (sinh(η) sin(ϕ))/q , x 3 = sin(ξ)/q ,

where q  = cosh(η) − cos(ξ). Then we define

χ1 := g (η)e ip ξ, χ2 :=

 1 − g 

η2

e iq ϕ

Here g  is a smooth monotonous function.

The χi  above are continuous, if

• g (∞) = 0 (at the core) and,

• g (0) = ±1 (at the z -axis and at infinity).

The corresponding n has Hopf charge Q  = pq .

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

Discretization

Page 65: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 65/87

The system has been discretized on a cubic rectangular lattice

with periodic boundary conditions, using methods of lattice fieldtheory (Wilson 1974, Damgaard 1988).

Condition on discretization: gauge invariance is preserved.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

Discretization

Page 66: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 66/87

The system has been discretized on a cubic rectangular lattice

with periodic boundary conditions, using methods of lattice fieldtheory (Wilson 1974, Damgaard 1988).

Condition on discretization: gauge invariance is preserved.

For  A the gauge transformation is

A1|s ,u ,v  → A1|s ,u ,v  + c a (θs +1,u ,v  − θs ,u ,v ),

A2|s ,u ,v  → A2|s ,u ,v  + c a (θs ,u +1,v  − θs ,u ,v ),

A3|s ,u ,v  → A3|s ,u ,v  + c a (θs ,u ,v +1 − θs ,u ,v ),

where s , u , v  are the lattice coordinates.

Thus, Ak  should be considered as living on the link between

two lattice points parallel to the coordinate axis k .

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theory

The Ginzburg-Landau model

The model

GL and FS?

Preliminary results

For the kinetic term of Ψα (κ := 2e c ) this leads to

Page 67: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 67/87

Ψ∗1|s +1,u ,v Ψ1|s ,u ,v e −ia κA1|s ,u ,v  + Ψ1|s +1,u ,v Ψ

∗1|s ,u ,v e ia κA1|s ,u ,v 

−Ψ∗1|s +1,u ,v Ψ1|s +1,u ,v  − Ψ∗1|s ,u ,v Ψ1|s ,u ,v .

+ similar expressions in the other components and directions.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

For the kinetic term of Ψα (κ := 2e c ) this leads to

Page 68: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 68/87

Ψ∗1|s +1,u ,v Ψ1|s ,u ,v e −ia κA1|s ,u ,v  + Ψ1|s +1,u ,v Ψ

∗1|s ,u ,v e ia κA1|s ,u ,v 

−Ψ∗1|s +1,u ,v Ψ1|s +1,u ,v  − Ψ∗1|s ,u ,v Ψ1|s ,u ,v .

+ similar expressions in the other components and directions.

For the discretization of  B 2 we use the expression

e iF 

12|suv  + e −iF 

12|suv  + e iF 

23|suv  + e −iF 

23|suv  + e iF 

31|suv  + e −iF 

31|suv  − 6,

where for example

F 12|suv  = A1,s ,u +1,v  − A1,s ,u ,v  − A2,s +1,u ,v  + A2,s ,u ,v .

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

For the kinetic term of Ψα (κ := 2e c ) this leads to

Page 69: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 69/87

Ψ∗1|s +1,u ,v Ψ1|s ,u ,v e −ia κA1|s ,u ,v  + Ψ1|s +1,u ,v Ψ

∗1|s ,u ,v e ia κA1|s ,u ,v 

−Ψ∗1|s +1,u ,v Ψ1|s +1,u ,v  − Ψ∗1|s ,u ,v Ψ1|s ,u ,v .

+ similar expressions in the other components and directions.

For the discretization of  B 2 we use the expression

e iF 

12|suv  + e −iF 

12|suv  + e iF 

23|suv  + e −iF 

23|suv  + e iF 

31|suv  + e −iF 

31|suv  − 6,

where for example

F 12|suv  = A1,s ,u +1,v  − A1,s ,u ,v  − A2,s +1,u ,v  + A2,s ,u ,v .

Energy was miminized using the steepest descent method.The gradients were calculated symbolically from the discretized

Lagrangian.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

For the kinetic term of Ψα (κ := 2e c ) this leads to

Page 70: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 70/87

Ψ∗1|s +1,u ,v Ψ1|s ,u ,v e −ia κA1|s ,u ,v  + Ψ1|s +1,u ,v Ψ

∗1|s ,u ,v e ia κA1|s ,u ,v 

−Ψ∗1|s +1,u ,v Ψ1|s +1,u ,v  − Ψ∗1|s ,u ,v Ψ1|s ,u ,v .

+ similar expressions in the other components and directions.

For the discretization of  B 2 we use the expression

e iF 

12|suv  + e −iF 

12|suv  + e iF 

23|suv  + e −iF 

23|suv  + e iF 

31|suv  + e −iF 

31|suv  − 6,

where for example

F 12|suv  = A1,s ,u +1,v  − A1,s ,u ,v  − A2,s +1,u ,v  + A2,s ,u ,v .

Energy was miminized using the steepest descent method.The gradients were calculated symbolically from the discretized

Lagrangian.

In practice we use the cubic grids of sizes of 1203 . . . 9 6 03.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

For the FS-model there were (local) minimum energy states.

Page 71: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 71/87

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

For the FS-model there were (local) minimum energy states.

Page 72: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 72/87

Here apparently not.

If minimize both fields ψ and A simultaneously and

independently arrive at squeezed singular states .

Possible explanation: The degree 4 term is

2 n · ∂ k  n × ∂ l  n + ∂ k C l  − ∂ l C k 2

If  C  adjusts so that this term vanishes, then scaling to zero size

is not prevented.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

For the FS-model there were (local) minimum energy states.

Page 73: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 73/87

Here apparently not.

If minimize both fields ψ and A simultaneously and

independently arrive at squeezed singular states .

Possible explanation: The degree 4 term is

2 n · ∂ k  n × ∂ l  n + ∂ k C l  − ∂ l C k 2

If  C  adjusts so that this term vanishes, then scaling to zero size

is not prevented.

Once the tube has been squeezed to the thickness of 1 lattice

space (where also ρ = 0), topology breaks

 n  : ↑↑↑↑↓↑↑↑↑ −→ ↑↑↑↑↑↑↑↑↑

and the state degenerates to vacuum.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

Page 74: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 74/87

0

100

200

300

400

   E  n  e  r  g  y

   (  a  r   b .  u  n   i   t  s   )

0 2000 4000 6000 8000

Iterations

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

     n  .     n 

  a  n

   d

      ρ   2

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

Page 75: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 75/87

Dynamical stability still possible.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

Page 76: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 76/87

Dynamical stability still possible.

More recent computer runs:

1 iterate ψ one step

2 iterate  A until Maxwell equation sufficiently good

3 repeat 1 and 2 until also ψ equation satisfied

Practical problem: The intermediate  A iterations take time.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

Page 77: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 77/87

Dynamical stability still possible.

More recent computer runs:

1 iterate ψ one step

2 iterate  A until Maxwell equation sufficiently good

3 repeat 1 and 2 until also ψ equation satisfied

Practical problem: The intermediate  A iterations take time.

Stability plausible, especially with strong potentials.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

λ = 1, g f  = 2

Page 78: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 78/87

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

λ = 1, g f  = 0.01

Page 79: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 79/87

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

λ = 1000, g f  = 2

Page 80: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 80/87

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

λ = 1000, g f  = 2

Page 81: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 81/87

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

λ = 1000, g f  = 2

Page 82: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 82/87

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

Conclusions

Page 83: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 83/87

The GL-model contains FS as a submodel, the vector field ncan be extracted from ψi .

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

Conclusions

Page 84: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 84/87

The GL-model contains FS as a submodel, the vector field ncan be extracted from ψi .

The extra degrees of freedom change the behavior

(in comparison to FS) as follows:

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

Conclusions

Page 85: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 85/87

The GL-model contains FS as a submodel, the vector field ncan be extracted from ψi .

The extra degrees of freedom change the behavior

(in comparison to FS) as follows:

For a given Hopf charge the energy is not bounded from 0,

i.e, Hopfions are globally unstable, since a deformation path

exists to singular configurations with zero energy.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

Conclusions

Page 86: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 86/87

The GL-model contains FS as a submodel, the vector field ncan be extracted from ψi .

The extra degrees of freedom change the behavior

(in comparison to FS) as follows:

For a given Hopf charge the energy is not bounded from 0,

i.e, Hopfions are globally unstable, since a deformation path

exists to singular configurations with zero energy.

Dynamical stability possible, especially with strong potentials.

Jarmo Hietarinta Hopfions and GL-model

The Faddeev-Skyrme model

Knot theoryThe Ginzburg-Landau model

The model

GL and FS?Preliminary results

References

J Hi t i t d P S l F dd H f k t d i f li k d

Page 87: Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

8/3/2019 Jarmo Hietarinta- Faddeev-Hopf knots and the two-component Ginzburg-Landau model

http://slidepdf.com/reader/full/jarmo-hietarinta-faddeev-hopf-knots-and-the-two-component-ginzburg-landau 87/87

J. Hietarinta and P. Salo: Faddeev-Hopf knots: dynamics of linked 

unknots , Phys. Lett. B 451, 60-67 (1999).J. Hietarinta and P. Salo: Ground state in the Faddeev-Skyrme model ,Phys. Rev. D 62, 081701(R) (2000).

J. Hietarinta, J. Jäykkä and P. Salo: Dynamics of vortices and knots in Faddeev’s model , JHEP Proceedings: PrHEP unesp2002/17http://jhep.sissa.it/archive/prhep/preproceeding/008/017/sp-proc.pdf

J. Hietarinta, J. Jäykkä and P. Salo: Relaxation of twisted vortices in the Faddeev-Skyrme model , Phys. Lett. A 321, 324-329 (2004).

J. Hietarinta, J. Jäykkä and P. Salo: Investigation of the stability of 

Hopfions in the two-component Ginzburg-Landau model ,cond-mat/0608424

http://users.utu.fi/hietarin/knots/index.html

Jarmo Hietarinta Hopfions and GL-model