jayson celestial edmar beatingo paul salvoro

55
JAYSON CELESTIAL EDMAR BEATINGO PAUL SALVORO

Upload: winter

Post on 23-Feb-2016

57 views

Category:

Documents


0 download

DESCRIPTION

JAYSON CELESTIAL EDMAR BEATINGO PAUL SALVORO. THE NATURE OF WAVES. Water waves have two feature common to all waves: A wave is a travelling disturbance. A wave carries energy from place to place. There are two basic types of waves: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

JAYSON CELESTIALEDMAR BEATINGO PAUL SALVORO

Page 2: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO
Page 3: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

THE NATURE OF WAVES

Page 4: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

Water waves have two feature common to all waves:A wave is a travelling disturbance.A wave carries energy from place to place.

There are two basic types of waves:Transverse – is one in which the disturbance occurs perpendicular to the direction of travel of the wave.Longitudinal – is one in which the disturbance occurs parallel to the line of travel of the wave

Page 5: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

PERIODIC WAVES

Page 6: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

Transverse and longitudinal waves are periodic waves for they consist of cycles of patterns that are produced over and over again by the source.

Terminologies used to describe periodic waves:

Cycle - An interval of time during which a characteristic, often regularly repeated event or sequence of events occurs.Amplitude (A) – is the maximum excursion of a particle of the medium from the particle’s undisturbed position.Wavelength (λ) – is the horizontal distance between two successive equivalent points on the wave.Period (T) – is the time required for the wave to travel a distance of one wavelength or one complete up/down cycle.Frequency (f) – is the number of cycles per second or hertz (Hz) that passes by a given location where (f =1/T).

Page 7: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

SPEED OF SOUND ON A STRING

Page 8: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

The medium on a particular properties of material determines the speed of the wave.

In accordance with Newton’s second law.

A stronger net force results in a greater acceleration and thus, a faster moving wave.The ability of one particle to pull on it’s neighbors depends on how tightly the string is stretched, that is on the tension.The greater the tension, the greater the pulling force the particle exert on each other and the faster the wave travels, other things being equal.

Page 9: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

LINEAR DENSITY OF THE STRING

The inertia or mass of one particle also affects how quickly it responds to the upward pull of another particle.

For a given net pulling force, a smaller mass has a greater acceleration than a larger mass.

is the mass per unit length.It is the mass (m) of the string divided by its length (L), effects of the tension are evident in the following expression for the speed (v) of a small amplitude wave on a string: v = √[(f)/(m/L)]

Page 10: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

MATHEMATICAL DESCRIPTION OF A WAVE

Page 11: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

EXPRESSIONS FOR DISPLACEMENT

Represents the displacement of a particle caused by a wave travelling in the +x direction (to the right).

Applies to a wave moving in the –x direction (to the left).

Wave motion toward +x y = A sin (2πft - 2πx/λ)

Wave motion toward -x y = A sin (2πft + 2πx/λ)

Page 12: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

PHASE ANGLE OF THE WAVE

A string particle located at the origin (x = Om) exhibits simple harmonic motion with a phase angle 2πft that is its displacement as a function of time is y = A sin (2πft).A particle located at a distance x also exhibits simple harmonic motion, but its phase angle is:

Problem Solving Insight:When a calculator is used to calculate the functions sin(2πft - 2πx/λ ) or sin(2πft + 2πx/λ), it must be set to its radian mode.

The term for ( 2πft - 2πx/λ)

2πft - 2πx/λ = 2πf(t - x/f λ) = 2πf(t – x/λ)

Page 13: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

THE NATURE OF SOUND

Page 14: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

Sound is a longitudinal wave that is created by a vibrating object such as guitar string, human vocal chords or the diaphragm of a loudspeaker.

Sound can be created or transmitted only in medium such as gas, liquid or solid.The particles of the medium must be present for the disturbance of the wave to move from place to place.Sound cannot exist in a vacuum.

SOUND

Page 15: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

LOUDSPEAKER DIAPHRAGM Considering it vibrating, sound waves are

produced as longitudinal one. When the diaphragm moves outward, it compresses the air directly in front of it.

The region of increased pressure due to the compression that causes the air pressure to rise slightly.It travels away from the speaker at the speed of sound.Is analogous to the compressed region of coils in a longitudinal wave.

CONDENSATION

Page 16: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

RAREFACTION

A region produced by the inward motion of the diaphragm were the air pressure is slightly less than normal.Is similar to the stretched region of coils in longitudinal wave were it travels away from the speaker at the speed of sound.

Page 17: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

THE FREQUENCY OF A SOUND WAVE

Frequency is an objective property of a sound wave because itcan be measured with an electronic frequency counter.

Experiments have shown that a healthy young person hears all frequencies from approximately 20 to 20,000 Hz (20 kHz). The ability to hear high frequencies decreases with age, however and a normal middle aged adult hears frequencies only up to 12 – 14 kHz.

PURE TONE A sound with a single frequency.

Page 18: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

PUSH – BUTTON TELEPHONES

Pure tones are used in push – button telephones. These phones simultaneously produce two pure tones when each button is pressed, a different pair of tones for each button. The tones are transmitted electronically to the control telephone office, where they activate switching circuits that complete the call.

INFRASONIC – sound waves with frequencies below 20 Hz.ULTRASONIC – sound waves frequencies above 20 kHz.

Sound can be generated whose frequency lies below 20 Hz or above 20 kHz although humans normally do not hear it.

Page 19: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

PITCH

A pure tone with a large (high) frequency is interpreted as a high – pitched sound, while a pure tone with a small (low) frequency is interpreted as a low – pitched sound.

Subjective quality that the brain intercepts the frequency detected by the ear primarily.

Page 20: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

TRIVIABats use ultrasonic frequencies up to 100 kHz for locating their food sources and for navigating, while rhinoceroses use infrasonic frequencies as low as 5 Hz to call one another.

A piccolo produces high – pitched sounds, and a tuba produces low – pitched sound.

Page 21: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

PRESSURE AMPLITUDE OF A SOUND WAVEIs the maximum change in pressure, measured relative to the undisturbed or atmospheric pressure.

The pressure fluctuations in a sound wave that are normally very small.Is an attribute of sound that depends primarily on the

amplitude of the wave; the larger the amplitude, the louder the sound.

Pressure amplitude is an objective property of a sound wave, since it can be measured. Loudness, on the other hand is subjective. Each individual determines what is loud, depending on the accurateness of his or her hearing.

LOUDNESS

Page 22: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO
Page 23: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

Sound travel through gases, liquids and solids at considerably different speeds.

Near room temperature, the speed of sound in air is 343 m/s (767 mi/h) and is markedly greater in liquids and solids.

In general, sound travels slowest in gases, faster in liquids and fastest in solids.In gases, it is only when molecules collide that the condensations and rarefactions of a sound wave move from place to place. It is reasonable, then to expect the speed of sound in a gas to have the same order of magnitude as the average molecules speed between collisions.

Page 24: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

IDEAL GAS

Careful analysis shows that the speed of sound in an ideal gas is given by: v = √(ƴkT/m), where ƴ = cp/cv is the ratio of the specific heat capacity at constant pressure cp to the specific heat capacity at constant volume cv.

This average speed is the translational rms speed given by equation: vrms = √(3kT/m), where T is the kelvin temperature , m is the mass of a molecule and k is the Boltzmann’s constant.

Page 25: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

ULTRASONIC RULERIs a device used to measure the distance to a target such as a wall.To initiate the measurement, the ruler generates a pulse of ultrasonic sound that travels to the wall and much like an echo, reflects from it.The reflected pulse returns to the ruler which measures the time it takes for the round trip.Uses sound with a frequency greater than 20 kHz to measure the distance x to the wall.

Page 26: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

SONAR

Is a technique for determining water depth and locating underwater objects such as reefs, submarines and schools of fish.The core of sonar unit consists of an ultrasonic transmission and receiver mounted on the bottom of a ship. The transmitter emits a short pulse of ultrasonic sound and at a later time the reflected pulse returns and is detected by the receiver.The water depth is determined from the electronically measured round-trip time of the pulse and a knowledge of the speed of sound in water, the depth registers automatically on an appropriate meter.

Sound Navigation Ranging

Page 27: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

RULE OF THUMBEstimates how far away a thunderstorm is. After a flash of lightning, count off the seconds until the thunder is heard. Divide the number of seconds by five. The result gives the approximate distance (in miles) to the thunderstorm. The time interval between seeing the flash and hearing the thunder is about 5 seconds for every mile of travel.The rule of thumb works because the speed of light is so much greater than the speed of sound that the time needed for the light to reach the observer is negligible compared to the time needed for the sound.

Page 28: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

LIQUIDSIn a liquid, the speed of sound depends on the density ρ and adiabatic bulk modulus βad of the liquid: v = √(βad / ρ)There is tacitly assumed that the temperature remains constant while the volume of the material changes, that is the compression or expansion is isothermal. However, the condensations and rarefactions in a sound wave occur under adiabatic rather than isothermal conditions. Thus, the adiabatic bulk modulus βad must be used when calculating the speed of sound in liquids. Values of βad will be provided as needed.

Page 29: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

SOLID BARS

When sound travels through a long slender solid bar, the speed of the sound depends on the properties of the medium according to long slender solid bar:v = √(ϒ/ρ)

Where ϒ is Young modulus and ρ is the density.

Page 30: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

SOUND INTENSITY

Page 31: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

POWER OF WAVESThe amount of energy transported per second by a sound wave and is measured in SI units of Joules per second (J/s) or watts (W).

Sound Intensity (I) is defined as the power (P) that passes perpendicularly through a surface divided by the area (A) of that surface:

I = P/A

The unit of sound intensity is power per unit area or W/m2.

Page 32: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

THRESHOLD OF HEARING

The smallest sound intensity that the human hear can detect of about 1x10-12 w/m2 for a 1000 – Hz tone.

On the other extreme, continuous exposure to intensities greater than 1 w/m2 can be painful and result in permanent hearing damage. The human ear is remarkable for the wide range of intensities to which it is sensitive.

Page 33: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

SPHERICALLY UNIFORM RADIATIONIf a source emits sound uniformly in all directions, the intensity depends on distance in a simple way. Such as a source at the center of an imaginary sphere. The radius of the sphere is r. Since all the radiated sound and power passes through the spherical surface of area A = 4r2, the intensity at a distance r is: I = P/4r2During a fireworks display, a rocket explodes high in air. If an explosion in a fireworks display radiates sound uniformly in all directions, the intensity at any distance r is I = P/4r2 where P is the sound power of the explosion.

FIREWORKS

Page 34: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

REFLECTED SOUND & SOUND INTENSITYWhen someone says in the shower, the sound power passing through part of an imaginary spherical surface is the sum of the direct and reflected sound power.The “direct” sound that is given by I = P/4r2. The remaining paths are two of the many that characterize the sound reflected from the shower stall. The total sound power that passes through the surface is the sum of the directed and reflected powers. Thus, the total sound intensity at a distance r from the source is greater than the intensity of the direct sound alone, and the relation I = P/4r2 underestimates the second intensity from the singing because it does not take into account the reflected soundPeople like to sing in the shower because their voices sound so much louder due to the enhanced intensity caused by the reflected sound.

Page 35: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

DECIBELS

Page 36: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

Decibel (dB) is a measurement unit used when comparing two sound intensities.Comparing I = 8x10-12 w/m2 to Io = 1x10-12 w/m2 by computing I/Io = 8 and stating that I is eight times as great as Io.

Because of the way in which the human mechanism responds to intensity, it is more appropriate to use a logarithmic scale for the comparison.The intensity level β is defined as follows:

β = (10dB) log (1/Io)

Where “log” denotes the logarithm to the base ten. Io is the intensity of the reference level to which I is being compared and is often the threshold of hearing that is, Io = 1.00 x 10-12 w/m2. With the aid of calculator, the intensity level can be evaluated for the values of I and Io given:β = (10dB) log [(8x10-12 w/m2)/(1x10-12 w/m2)] = (10dB) log 8 = (10dB)(0.9) = 9 dB

Page 37: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

INTENSITY LEVEL

β is not an intensity and does not have intensity units of w/m2.Decibel like radian is dimensionless. If both I and Io are not the threshold of hearing, then I = Io and then intensity level is 0 dB.β = (10dB) log (Io/Io) = (10 dB) log 1 = 0dB

Since log 1 = 0. Thus, an intensity level of zero decibels does not mean that the sound intensity I is zero; it means that I = Io.β can be measured with a sound meter and displayed on it’s scale.

Page 38: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

SOUND LEVEL METER

Is a device used to measure intensity level.

Hearing test have revealed that a one decibel (1-dB) change in the intensity level corresponds to approximately the smallest change in loudness that an average listener with normal hearing can detect.Experiment shows that if the intensity level increases by 10 dB, the new sound seems approximately twice as loud as the original sound.

TRIVIA

Page 39: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

DOPPLER EFFECT

Page 40: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

DOPPLER EFFECT

It arises when the source and the observer of the sound wave have different velocities with respect to the medium through the sound travels.

is the change in frequency on pitch of the sound detected by an observer because the sound source and the observer have different velocities with respect to the medium of sound propagation.

Page 41: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

MOVING SOURCE

If the stationary siren emits a condensation at the time t = 0s, it will emit the next one at a time T, where T is the period of the wave. The distance between those two condensations is the wavelength (λ) of the sound produced by the stationary source. Then the truck is moving with a speed vs (the subscript “s” stands for the “source” of sound) toward a stationary observer, then siren also emits condensations at t = 0s and time (T). However, prior emitting the second condensation, the truck moves closer to the observer by a distance vsT. As a result, the distance between successive condensations is no longer the wavelength (λ) created by the stationary siren but rather a wavelength (λ) that is shortened by the amount vsT: λ’ = λ- vsT

Page 42: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

When the truck is stationary, the wavelength of the sound is the same in front of and behind the truck.When the truck is moving, the wavelength in front of the truck becomes smaller while the wavelength behind the truck becomes larger.

Denote the frequency perceived by the stationary observer as fo, where the subscript “o” stands for “observer”, fo is equal to the speed of sound (v) divided by the shortened wavelength (λ) :

fo = v/λ = v/(λ-vsT)For the stationary siren, we have λ = v/fs and T = 1/fs, where fs is the frequency of the sound emitted by the source (not the frequency fo perceived by the observer with the aid of these substitutions for λ and T, the expression for fo can be arranged to give the following result:

fo = fs[1/(1-vs/v)]

Page 43: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

SOURCE MOVING TOWARD STATIONARY OBSERVER

The term 1-vs/v is in the denominator in the equation earlier and is less than one, the frequency fo heard by the observer is greater than the frequency fs emitted by the source.

Is the difference between two frequencies fo – fs and its magnitude depends on the ratio of the speed of the source vs to the speed of sound v.When the siren moves away from, rather than toward the observer, the wavelength λ’ becomes greater than λ.

λ’= λ+vsT

DOPPLER SHIFT

Page 44: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

SOURCE MOVING AWAY FROM STATIONARY OBSERVER

Fo = fs[1/(1+vs/v)]The denominator (1+vs/v) on the equation is greater than one, so the frequency fo heard y the observer is less than the frequency f, emitted by the source.

When the source is stationary, the distance between successive condensations is on wavelength (λ)When the source moves with a speed vs, the wavelength of the sound in front of the truck is shortened to λ.

Page 45: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

MOVING OBSERVER

Doppler effect arises when the sound is stationary and the observer moves, again assuming the air is stationary. The observer moves with a speed vo (“o” stands for observer) toward the stationary source and covers a distance vot in a time t.During this time, the moving observer encounters all the condensations that he would if he were stationing plus an additional number. The additional number of condensations encountered per second is vo/λ. Thus, the additional number of condensations encountered vo/λ. Since a stationary observer would hear a frequency fs emitted by the source, the moving observer hears a greater frequency fo given by: fo = fs + vo/λ = fs (1+vo/fsλ)Using the fact that v = fsλ, where v is the speed of sound. fo = fs(1+vo/v)

Page 46: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

OBSERVER MOVING TOWARD STATIONARY SOURCE

An observer moving away from a stationary source moves in the same direction as the sound wave and as a result, intercepts fewer condensations per second than a stationary observer does. In this case, The moving observer hears a smaller frequency fo that is given by: fo = fs (1-vo/v).

Page 47: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

OBSERVER MOVING AWAY FROM STATIONARY SOURCE

The physical mechanism producing the doppler effect is different when the source moves and the observer is stationary then when the observer moves and the source is stationary.When the source moves, the wavelength of the sound perceived by the observer changes from λ to λ’.

When the wavelength changes, the stationary observer hears a different frequency fo than that produced by the source.On the other hand, when the observer moves and the source is stationary, the wavelength does not change. Instead, the moving observer intercepts a different number of wave condensations per second than does a stationary observer and therefore detects a different frequency fo.

Page 48: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

GENERAL CASE: SOURCE & OBSERVER BOTH MOVING

It is possible for both the sound source and the observer to move with respect to the medium of sound propagation. If the medium is stationary, maybe combined to give observed frequency fo as:

fo = fs [(1±vo/v)/(1±vs/v)]In the numerator, the plus sign applies when the observer moves toward the source, and the minus sign applies when the observer moves away from the source.In the denominator, the minus sign is used when the source moves toward the observer and the plus sign is used when the source moves away from the observer.

Page 49: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

NEXRAD

Is a nation wide system used by the National Weather Service to provide dramatically improved early warning of service storms such as tornado.The system is based on radar waves which are a type of electromagnetic wave and like sound waves, it exhibits the Doppler Effect.

Doppler Effect is at the heart of NEXRAD that sent radar pulses whose protective covering is shaped like a soccer ball.The waves reflected from the water droplets and return to the unit where the frequency is observed and compared to the outgoing frequency.

Next Generation Weather Radar

Page 50: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

APPLICATIONS OF SOUND IN MEDICINE

Page 51: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

ULTRASONIC IMAGING

Ultrasonic waves are used in medicine for diagnostic purposes, high frequency sound pulses are produced by a transmitter and directed into the body.

Employed extensively in obstetrics to examine the developing fetus. The fetus surrounded by the amniotic features so that fetal size, position and possible abnormalities can be detected.

Page 52: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

CUSA (Cavitron Ultrasonic Surgical Aspirator)

A device used by the neurosurgeons to remove brain tumors once through to be inoperable.Ultrasonic sound waves cause the slender tip of the CUSA probe to vibrate at approximately 23 kHz. The probe shatters any section of the tumor that it touches and the fragments are flushed out of the brain with a saline solution. Because the tip of the probe is small, the surgeon can selectively remove small bits of malignant tissue without damaging the surrounding healthy tissue.

Page 53: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

HIFU (High Intensity Focused Ultrasound)

A new type of bloodless surgery, which can eliminate abnormal cells, such as those benign hyperplasia of the prostate gland.It is analogous to focusing the sun’s electromagnetic waves by using a magnifying glass and producing a small region where the energy carried by the waves can cause localized heating.

A device used to measure the speed of blood flow, using transmitting and receiving elements that are placed directly on the skin.

DOPPLER FLOW METER

Page 54: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

SENSITIVITY OF THE HUMAN EAREar is capable of detecting sound intensities as small as 1x10-12 w/m2, it is not equally sensitive to al frequencies.Fletcher – Munson curves –named after H. Fletcher and M. Munson in 1933.A graphs of audible sound frequencies that are plotted on the horizontal axis, and the sound intensity levels (in decibels) are plotted on the vertical axis.Each curve is a constant loudness curve because it shows the sound intensity level needed at each frequency to make the sound appear to have the same loudness.

Page 55: JAYSON CELESTIAL EDMAR BEATINGO   PAUL SALVORO

THANK YOU

CELBEASAL

FROMTEAM