jecfa - mhlw.go.jp · an adi was not allocated, the committee noted that hydrogen peroxide should...

30
WHO FOOD ADDITIVES SERIES: 54 Safety evaluation of certain food additives Prepared by the Sixty-third meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) International Programme on Chemical Safety World Health Organization, Geneva IPCS

Upload: vuminh

Post on 12-Feb-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

WHO FOODADDITIVESSERIES: 54

JEC

FA

Safety evaluation of certainfood additives

Prepared by theSixty-third meeting of the Joint FAO/WHOExpert Committee on Food Additives (JECFA)

54

Safety evaluation of certain

food additives

International Programme on Chemical SafetyWorld Health Organization, Geneva

IPCS

This volume contains monographs prepared at the sixty-third meeting of theJoint FAO/WHO Expert Committee on Food Additives (JECFA), which met in Geneva,Switzerland, from 8 to 17 June 2004.

The toxicological monographs in this volume summarize the safety data on anumber of food additives, including benzoyl peroxide, α-cyclodextrin, hexose oxidasefrom Chondrus crispus expressed in Hansenula polymorpha, lutein from Tageteserecta L., peroxyacid antimicrobial solutions containing 1-hydroxyethylidene-1,1-diphosphonic acid, steviol glycosides, D-tagatose, xylanases from Bacillus subtilisexpressed in B. subtilis and zeaxanthin, and a natural constituent, glycyrrhizinic acid.Monographs on eight groups of related flavouring agents evaluated by the Procedurefor the Safety Evaluation of Flavouring Agents are also included.

This volume and others in the WHO Food Additives Series contain informationthat is useful to those who produce and use food additives and veterinary drugs andthose involved with controlling contaminants in food, government and food regulatoryofficers, industrial testing laboratories, toxicological laboratories, and universities.

45404 FOOD ADDITIVES 54 COV 9/2/06 12:42 pm Page 1

NAFKH
テキストボックス
参考資料2-2

K2

–  87  –

PEROXYACID ANTIMICROBIAL SOLUTIONS CONTAINING 1-HYDROXYETHYLIDENE-1,1-DIPHOSPHONIC ACID (HEDP)

First draft prepared by

Dr A. Mattia1, Dr R. Merker1, Dr S. Choudhuri1, Dr M. DiNovi1 and Professor R. Walker2

1 Division of Biotechnology and GRAS Notice Review, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, Food and

Drug Administration, College Park, MD, USA; and2 School of Biomedical and Life Sciences, University of Surrey, Guildford,

Surrey, England

Explanation............................................................................... 88 Compositionofantimicrobialsolutions.............................. 89 Residuesofcomponentsofantimicrobialsolutions.......... 89Biologicaldata.......................................................................... 89 Biochemicalaspects.......................................................... 90 Absorption,distributionandexcretion......................... 90 Biotransformation......................................................... 91 Toxicologicalstudies.......................................................... 92 Acutetoxicity................................................................ 92 Short-termstudiesoftoxicity....................................... 93 Long-termstudiesoftoxicityand carcinogenicity....................................................... 94 Genotoxicity................................................................. 95 Reproductivetoxicity.................................................... 95 Specialstudy:skeletaleffectsindogs........................ 97 Environmentalstudies........................................................ 98 Microbiologicalaspects...................................................... 98 Roleofcomponentsinantimicrobialsolutions............ 98 Studiesofantimicrobialefficacy.................................. 99 SolutionA.............................................................. 99 SolutionB.............................................................. 100 SolutionC.............................................................. 102 SolutionD.............................................................. 102 Observationsinhumans.................................................... 103Intake ..................................................................................... 103 Residuesonfoods............................................................. 103 Internationalestimatesofintake........................................ 104 Nationalestimatesofintake............................................... 105 Non-foodusesofHEDP.................................................... 107Studiesonthequality,nutritionalvalue,orother propertiesoffoodtreatedwithantimicrobial solutions....................................................................... 108 Thiobarbituricacidandfattyacidprofilesofmeat andpoultryproducts.................................................... 108 Theeffectofthepotentialreactivityofhydrogen peroxideandperoxyaceticacidonmeatand poultryproducts........................................................... 108

88  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

Nutritionalteststodeterminetheeffectsof peroxyaceticacidandhydrogenperoxide onfruitandvegetables................................................ 108Comments ............................................................................... 109Evaluation ............................................................................... 112References............................................................................... 113

1. EXPLANATION

TheCommitteeconsidered thesafetyofantimicrobialsolutions thatarepre-paredfromaceticacidandoctanoicacid(singlyorincombination),togetherwithhydrogenperoxide,andusing1-hydroxyethylidene-1,1-diphosphonicacid (HEDP)asasequestrantorstabilizer.Preparationsthatarereadyforusealsocontainasactivecompoundstheperoxyformsofbothacids.Beforeuse,concentratedsolu-tionsaredilutedtoachievetargetconcentrationsoftotalperoxyacidrangingfrom80to200mg/kg.Theseantimicrobialsolutionsareintendedforuseascomponentsofwashsolutionsonfreshpoultryandmeatandinwashwaterforfreshandpro-cessedfruitsandvegetables.Afterbeingappliedinprocesswater,theyarelargelyeliminatedbydrainage,furtherwashingandtrimmingofproducts,andevaporation.Thesafetyoftheantimicrobialsolutionswasthereforeassessedonacomponent-by-componentbasis,considering thepotential residueofeachcomponentor itsbreakdownproductsinfoodasconsumed.

Atitsseventeenthmeeting(Annex1,reference32),theCommitteeallocatedanacceptabledailyintake(ADI)‘notlimited’1toaceticacidanditspotassiumandsodiumsalts.ThisADIwasretainedattheforty-ninthmeeting(Annex1,reference131)whentheCommitteeevaluatedagroupofflavouringagents(saturatedali-phaticacyclic linearprimaryalcohols,aldehydes,andacids)that includedaceticacid.

Atitsforty-ninthmeeting,theCommitteeevaluatedoctanoicacidforuseasaflavouringagentaspartofthegroupofsaturatedaliphaticacyclic linearprimaryalcohols,aldehydes,andacids,andconcludedthatoctanoicacidposednosafetyconcerns at intakes of up to 3800mg/person per day (or 63mg/kg bw per day,assumingabodyweightof60kg).

Atitstwenty-fourthmeeting(Annex1,reference53),theCommitteeevaluatedhydrogenperoxideasapreservativeandsterilizingagent foruse inmilk.WhileanADIwasnotallocated,theCommitteenotedthathydrogenperoxideshouldbeusedonlywhenbettermethodsofmilkpreservationwerenotavailable.

Peroxyaceticacidandperoxyoctanoicacid,andHEDPhavenotbeenprevi-ouslyevaluatedbytheCommittee.

Atitspresentmeeting,theCommitteeconsideredanumberofstudiesontheantimicrobialefficacyofperoxyacidsolutions,thetoxicityofHEDP,andtheeffects

1 A term no longer used by the Committee, which has the same meaning as ADI ‘notspecified’.

PEROXYACID ANTIMICROBIAL SOLUTIONS  89

K2

ofperoxyacidsolutionsonfoodqualityandnutritionalvalue.TheCommitteealsoevaluatedestimatesoftheintakeoftheindividualcomponentsinthesesolutionsforconsiderationinthesafetyevaluation.

1.1 Composition of antimicrobial solutions

Thecompositionoffourantimicrobialsolutions,A–D,aredescribedinTable1.Theconcentratedsolutionsaredilutedbeforeusetoachievetargetconcentrationsoftotalperoxyacidrangingfrom80to200mg/kg.

In manufacturing each antimicrobial solution, measured quantities of eachcomponentareadded ina specificorder.Hydrogenperoxide reactswithaceticacidtoformperoxyaceticacid,whichitthushelpstostabilize.Hydrogenperoxidealso reacts with octanoic acid, when present, to form peroxyoctanoic acid.Theresultisanequilibriumsolutioncontainingperoxyaceticacid,aceticacid,hydrogenperoxide,HEDP,andinsomecases,octanoicacidandperoxyoctanoicacid.Theconcentrationofperoxyacidscontinuestoincreasefor7–13daysaftermanufac-ture. HEDP is needed to ensure the stability of the solution since peroxy com-poundsareinherentlyunstable.Onceequilibriumisachieved,thesolutionremainsrelativelystableatroomtemperatureforupto1year.ThemainchemicalreactionsthatoccurintheequilibriumsolutionsareshowninFigure1.

1.2 Residues of components of antimicrobial solutions

Afterapplication,theantimicrobialsolutionsandtheircomponentsarelargelylost due to drainage, further washing, trimming and evaporation. Residues ofhydrogen peroxide, peroxyacetic acid, or peroxyoctanoic acid on food rapidlydecompose into water, oxygen, acetic acid and octanoic acid (Figure 1). Smallamountsofaceticacid,octanoicacidandHEDPwillremainonthetreatedcom-modities. Intake assessments for the components of the antimicrobial solutionsaredescribedinsection3.

2. BIOLOGICAL DATA

Antimicrobialmixturesareequilibriummixtures thatarediluted inwaterpriortotheiruseinprocessingfood.Hydrogenperoxideinthesemixtureswilldissociateintowaterandoxygen.AlthoughtheirstabilityisenhancedbyHEDP,bothperoxy-acetic acid and peroxyoctanoic acid are also inherently unstable and will breakdownintoaceticacidandoctanoicacid,respectively.Lowresiduallevelsofthesesimpleorganicacidspresentonfoodwouldposenoconcern.Noresiduesofper-oxyaceticacidorperoxyoctanoicacidinthesemixtureswereexpectedtoremainontreatedfoods.Thus,theperoxidecomponentsoftheperoxyacidantimicrobialmixtures did not pose toxicological concerns for the uses being considered atpresentandthefocusofthebiochemicalandtoxicologicalaspectsofthissafetyevaluationwasHEDP.

90  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

Table 1. Composition of four antimicrobial solutions (A–D) and maximum concentration of components in ready-to-use solutions (after dilution)

Component Weightofeachcomponentin Maximumconcentrationof thesolutionatequilibriuma eachcomponentinthe (%) solutionafterdilutionb(mg/kg)

A B C D A B C D

Aceticacid 40.6 49.4 32.0 42.0 985 2000 208d NSPeroxyaceticacid 12 12.2 15.0 12.0 213c 220c 80 80Hydrogenperoxide 6.2 4.5 11.1 4.0 110 150 59 59Octanoicacid 3.2 8.8 0.0 10.0 74 300 0 NSPeroxyoctanoicacid 0.8 1.4 0.0 3.4 14c 25c 0 NS1-Hydroxy-ethylidene-1, 0.6 0.6 0.9 0.6 13 13 4.8d 4.8 1-diphosphonicacid (HEDP)Water 36.6 23.1 41.0 28.0 — — — —

NS,notstated.a Atequilibrium,whichoccurs7–13daysaftermanufacture,dependingonthetemperature

atwhichthesolutionisstored.b SolutionsAandBaredilutedtoachieveatargetconcentrationoftotalperoxyacidof

200mg/kg;toaccountforvariations,maximumvaluesassumethatusewillresultinaconcentrationoftotalperoxyacidsof220mg/kg.SolutionsCandDaredilutedtoachieveatargetconcentrationoftotalperoxyacidof40mg/kg;toaccountforvariations,maximumvaluesassumethatusewillresultinaconcentrationoftotalperoxyacidsof80mg/kg.

c Concentrationoftotalperoxyacidasperoxyaceticacid=[220]+[(22/160)¥76];thereisvariationofupto10%inthemeasuredconcentrationofperoxyaceticacid,duetodifferencesinequipmentformeasurementanddispensing.

d Theoreticalvalue(notbasedonanalysis).

2.1 Biochemical aspects

2.1.1 Absorption, distribution and excretion

Caniggia&Gennari(1977)publishedaconcisereportontheintestinalabsorp-tion and kinetics of 32P-labelled EHDP (disodium ethane-1-hydroxy-1, 1 diphos-phonate;disodiumetidronate;referredtoasHEDPinthismonograph)inhumans.TenvolunteersweregivenHEDPatanoraldoseof20mg/kg (thecarrierdose)togetherwith40mCi(1480kBq)of[32P]HEDP.After6days,70–90%oftheadmin-istereddosewasfoundinthefaeces.SevenothersubjectsweregivenEHDPatanoraldoseof100mg(thecarrierdose)togetherwith20mCi(740kBq)of[32P]HEDPintravenously.Sixdaysafterintravenousadministration,35–50%oftheradiolabeladministered was excreted unchanged in the urine, with negligible [32P]HEDPfoundinthefaeces.Therewasarapiddeclineintheconcentrationof[32P]HEDPin the plasma; after 6 days,<0.03% of the administered dose remained in theplasma.Althoughonlylimitedinformationwaspublishedinthisreport,theresultssuggestedthatorallyadministeredHEDPispoorlyabsorbedinhumans,andthatHEDPmayaccumulateoutsideoftheblood.

PEROXYACID ANTIMICROBIAL SOLUTIONS  91

K2

2.1.2 Biotransformation

Michael et al. (1972) studied theabsorption, distribution, andmetabolismofHEDPinrats(n=3or4),rabbits(n=3),dogs(n=2or3)andmonkeys(n=3)afteroraladministrationof14C-labelledHEDPviaintragastriccannula.Thedosesadministeredrangedfrom10to50mg/kgbw.Theauthorsfoundthatabout90%oftheadministereddosewasexcretedinthefaecesoftheadultanimals.Absorp-tion,whichoccurredinthestomach,was<10%inrats,rabbitsandmonkeys,andranged fromabout14% inolderdogs to21% inyoungdogs.Consistentwithapossibleage-dependenteffect,absorptionwassomewhatgreaterinweanlingrats.SomeratshadbeenpreviouslyfedHEDPaspartoftheirdiet,butsuchprecondi-tioningdidnotaffectabsorption.Theauthorsattemptedtoidentifymetabolitesinbiologicalsamplesobtainedfromratsanddogs,buttheyreportedthattherewasnometabolismofHEDPineitherspecies.Inallspecies,abouthalftheabsorbeddosewasexcretedunchangedintheurineandtherestwasdepositedinthebone,where itshalf-life in ratswasdemonstrated tobeabout12days.The resultsofthesestudies,conductedinavarietyofspecieswithsmallnumbersoftestanimals,wereconsistentwiththedataobtainedfromasmallsampleofhumanvolunteers.Collectively,thedataindicatedthatabsorptionofHEDPfromthegastrointestinaltract is very limited and its metabolism is negligible. Negligible metabolism of

O

H3C

Acetic acid

Peroxyacetic acid

2H2O2

2 H2O 2 H2O + O2

22 2OH

O

H3C OH

O

H3C O – OH+ +

O

C7H15 C7H15 C7H15

Octanoic acid

Hydrogen peroxide

Peroxyoctanoic acid

2H2O2

2 H2O

2 H2O + O2

2 H2O + O2

22 2OH

O

OH

O

O – OH

2 H2O2

+ +

Figure 1. Main chemical reactions in the equilibrium solutions

92  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

systemicHEDPcouldhavebeendueto the fact thatcarbon–phosphorus(C–P)bondsaredifficulttobreak.

2.2 Toxicological studies

2.2.1 Acute toxicity

Theavailablemedianlethaldose(LD50)valuesforHEDPadministeredorallyaresummarized inTable2.Twoof thesestudies, inwhichhighdosesofHEDPwereassociatedwithkidneydamageinratsandrabbits,aredescribedmorefullybelow.

Rats

Groupsof10maleand10 female fastedCharlesRiverCD ratsweregivenHEDP(asdisodiumetridronate,thedisodiumsaltofHEDP) bystomachtube,atoneoffourdosesselectedonthebasisofanassumedtoxicityanddose–responsecurve.TheLD50wasdeterminedtobe1.34g/kgbw.Amongthesurvivinganimalsthathadreceivedahigherdose(1.60or1.14g/kgbw)ofdisodiumetidronate,3outof10werefoundtohavelightgrey,granularkidneys.Microscopicevaluationrevealeddamagetothenephritictubules.Thekidneysofallanimalsreceivingthelowestdose(0.814g/kgbw)alsoshowedmildtubularchanges.Thekidney:bodyweightratiosoftheanimalsatthetwohigherdosesweresignificantlyhigherthanthoseofanimalsat0.814g/kgbw,aswellasbeinghigherthanthenormalrange(Nixonetal.,1972).

Rabbits

The same procedure was used to determine LD50 values in New Zealandrabbits.ItwasfoundthatthesusceptibilityofrabbitstotheacuteeffectsofHEDP(asdisodiumetridronate,thedisodiumsaltofHEDP)isafunctionofage,weight,andsex.TheLD50valuesrangedfrom0.581to1.14g/kgbw,andwere lower inmalesthaninfemales,andlowerinmatureanimals(bodyweight,>3300g)thanimmatureanimals(bodyweight,about2500g).Nounusuallesionswerereporteduponmicroscopicanalysis.About50%ofthesurvivinganimals(inallgroups)werefound to have kidney lesions indicative of chronic interstitial nephritis; however,

Table 2. Acute toxicity of HEDP administered orally

Species Sex LD50(g/kgbw) Reference

Rat Notspecified 2.40 MonsantoMSDSRat M,F 1.34 Nixonetal.(1972)Rabbit M,F 0.581–1.14 Nixonetal.(1972)Dog M,F 84.80a Nixonetal.(1972)Rat M,F 3.13 YoungerLaboratories (1965)

F,female;M,male.a Valuewasestimated,duetoemesisinsomedogs.

PEROXYACID ANTIMICROBIAL SOLUTIONS  93

K2

chronicinterstitialnephritisiscommonlyfoundintherabbitanditisthushardtodeterminewhetherthefindingwasrelatedtotreatment(Nixonetal.,1972).

Dogs

The administration of HEDP (as disodium etridronate, the disodium salt ofHEDP)producedan immediateemetic response insomedogs,and itwas thusnot possible to clearly define an LD50 value. On the basis of early deaths andnecropsyofanimalsfoundinamoribundconditionathigherdoses(1.0–10.0g/kg),however,theLD50wasestimatedtobeabout1.0g/kg(Nixonetal.1972).

2.2.2 Short-term studies of toxicity

Rats

Ina91-dayfeedingstudy,groupsof20maleand20femaleCharlesRiverCDratswerefeddietscontainingHEDP(disodiummonohydratesalt)at0,0.2,1.0,or5.0%(equivalenttodosesof0,100,500,and2500mg/kgbwperday).Owingtoseveremortalityandweightlossobservedat5.0%,thestudyofthatgroupwasterminatedafter1week.Afterconclusionof thestudy (91days forgroupsat0,0.2,and1.0%,and1weekforthe5.0%group),fivemalesandfivefemalesfromeachgroupwererandomlyselectedfornecropsy.Histopathologicallesionsand/oralterations of blood parameters were observed and appeared to be associatedwithgastritis.At5.0%,gastrointestinalerosionswereobservedandthekidney:bodyweight ratio was high (1.48% and 1.55% for females and males, respectively)comparedwithcontrols(1.11%).Notreatment-relatedchangeswereobservedinhistopathological lesions or blood haematological values at 0.2% or 1.0%. Thekidney:bodyweightratio in femalesat1.0%wasslightlyhigher(at0.82%)thancontrols (0.64%).All other parameters measured in the study were normal andsimilartothoseinthecontrols.Hence,theno-observed-effect level(NOEL)was1.0%,equivalenttoadoseof500mg/kgbwperday(Nixonetal.,1972).

A90-day feedingstudy in ratswasdesigned toassess the toxicityofHEDP(crystalline sodium salt characteristic of DEQUEST®2010 phosphonate in thenature and amount of by-products and impurities). Groups of 15 male and 15female rats were given HEDP at a dietary concentration of 0, 3000, 10000 or30000mg/kg of feed (equivalent to 0, 150, 500, or 1500mg/kg bw per day) ofHEDP.Bodyweights,foodconsumptionandmortalityweredeterminedweekly.At45and90days,haematologyandclinicalchemistryparameterswereassessedand urine analysis was performed. The animals were necropsied at the endofthestudyandhistopathologicalexaminationswereperformedontissuesfromanimalstreatedatthehighestdoseonly.Ahighlevelofmortalitywasobservedat30000mg/kg.Thisfindingmightberelatedtothe ingestionofHEDP,althoughitwas possibly the result of trauma induced by blood collection.At 30000mg/kg,body-weightgainwasinhibitedinmales.Atthehighestdosetested,haematologyrevealed significant changes, including increased erythrocyte counts in males,decreasedhaemoglobinconcentrationanderythrocytevolumefractionsinmalesandfemales,anddecreasedleukocytecountsattheendofthestudyinfemalesonly. The lesions observed in histopathological examinations, which were con-

94  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

ductedonanimalstreatedatthehighestdoseonly,weredescribedbythepatholo-gistasbeingtypicalofthecontrols.At10000mg/kg(500mg/kgbwperday),noadverseeffectswerenoted inanyparametersmeasured in thisstudy;however,histopathologicalexaminationswerenotconductedonratsinthegroupsgiventhetwolowerdoses.TheNOELwas500mg/kgbwperday(IndustrialBio-TestLabo-ratories,Inc.,1975a).

Dogs

Ina90-daystudyoftoxicitydesignedtotesttheeffectsofHEDP(crystallinesodiumsaltcharacteristicofDEQUEST®2010phosphonateinnatureandamountof by-products and impurities), groups of four male and four female beagledogs(aged5monthsatthestartofthestudy)weregivenHEDPataconcentrationof 0, 1000, 3000, or 10000mg/kgof diet (equivalent to a dose of 0, 25, 75, or250mg/kgbwperday).Foodandwaterwereavailableadlibitum.Bodyweightsandfoodconsumptionwererecordedweekly.Haematologyandbloodchemistryparameterswereassessedandurineanalysiswasconductedatthebeginningofthe study and at 56 and 85 days.At the end of the study, organ weights weredeterminedandgrossandhistopathologicalexaminationswereconducted.Therewerenoadverseeffectsofthetestmaterialonbodyweight,althoughfoodintakeinfemalesattheintermediateandhighestdoseswasdecreasedcomparedwiththatof thecontrols.Nodeathswere reported.Smallchanges inhaematologicalparameters (increased erythrocyte counts and decreased mean corpuscularvolume)andvariationsinbloodchemicalparameters(serumpotassiumandmag-nesium concentrations in males and females, respectively) were noted, but theeffectswereinconsistentandwerenotattributedtotreatment.Increasednumbersofleukocytesandcrystalswerefoundintheurineofdogsfromalltreatmentgroupsatthefinalanalysis.However,thiswasnotconsideredtobeasignificantfindingsincenochangesinthegenitourinarysystemwereobservedonmicroscopy.Somedifferences were noted in organ weights, including increased brain weights infemalesat the intermediateandhighestdosesand increased thyroidweights inmales at the highest dose. These differences, which were not associated withmicroscopicchangesintheseorgans,werenotconsideredtoberelatedtotreat-ment.Therewerenogrossorhistopathologicalchangesreported foranyof thetissuesororgansexamined in thisstudy.TheNOELwas250mg/kgbwperday(IndustrialBio-TestLaboratories,Inc.,1975b).

2.2.3 Long-term studies of toxicity and carcinogenicity

Long-term studies to address the toxicity or carcinogenic potential of HEDPwerenotavailableforthisevaluation.ThepublicationbyNixonetal.(1972)referstodataobtainedinchronicteststhatwere“tobepublishedelsewhere”.However,aliteraturesearchfailedtorevealanydataresultingfromtraditionallong-termtestsof toxicity in animals. One study on the skeletal effects of HEDP administeredsubcutaneouslytobeagledogsforapproximately1or2yearsisdescribedbelow(see2.2.6,specialstudy).

PEROXYACID ANTIMICROBIAL SOLUTIONS  95

K2

2.2.4 Genotoxicity

ThepotentialgenotoxicityofHEDPwasassessedusinganassayforreversemutation inwhichfivestrainsofS. typhimurium (TA98,TA100,TA1535,TA1537andTA1538),were tested,withandwithoutmetabolicactivationprovidedbyratlivermicrosomes,atdosesof0.001,0.01,0.1,1,5or10ml/plate(inwater).Thetestarticlewasacommercialproductthatcontained60%HEDPinaqueoussolu-tion.Aberrationsinthebackgroundlawnwereobservedatconcentrationsof5and10ml/plate, indicating toxicityat the twohighestconcentrations tested forallfivestrainsof Salmonella.The tester strains respondedasexpected to solvent andpositivecontrols.Undertheconditionsoftheassay,thetestarticlewasnotmuta-genic(MonsantoCo.,1977).

The potential genotoxicity of HEDP was also assessed by thymidine kinase(Tk) gene forward mutation assay in mouse lymphoma L5178Y cells, with andwithoutmetabolicactivationprovidedbyratlivermicrosomes;atdosesof0.064,0.125, 0.250, 0.500, or 0.600ml/ml in the absence of microsomal enzymes and0.125,0.250,0.500,0.600and0.800ml/mlinthepresenceofmicrosomalenzymes.Thetestarticle,acommercialproduct thatcontained60%HEDPinanaqueoussolution,wasthesameasthattestedintheassayforreversemutation,butwasinthiscasedilutedindimethylsulfoxide(DMSO).Atconcentrationsof≥0.5ml/ml,cytotoxicitywasobservedthatwasgreaterinthepresenceofmicrosomalenzymes.Inthefirstofthetwotrials,althoughcontrolvaluesforspontaneousmutagenesiswerehigherthanexpected,theincidenceofmutagenesiscausedbyHEDPatthehighest concentration tested was more than 2.5 times that for the controls forspontaneous mutagenesis with microsomal activation. In the second trial, theincidence of spontaneous mutagenesis was not elevated and the incidence ofmutagenesiscausedbyHEDPatthehighestconcentrationtestedwasabouttwicethatforthecontrolsforspontaneousmutagenesis.Thepositivecontrolsgavetheexpectedresults.Undertheconditionsoftheassay,thetestarticledidnotinduceforwardmutationinthemouselymphomaassay(LittonBionetics,Inc.,1978).

2.2.5 Reproductive toxicity

Rats

Inacombinedtwo-generationstudyofreproductivetoxicityandteratogenicity,fivegroupsof22femaleand22maleweanlingCharles-RiverratsweregiventhedisodiumsaltofHEDP(disodiumetidronate)atadietaryconcentrationof0,0.1or0.5%(equivalenttoadoseof0,50or250mg/kgbwperday),eithercontinu-ouslyoronlyondays6–15ofgestation for twogenerations.Reproductiveend-pointsandoffspringparameterswereanalysedintheF1a,F1b,andF2alitters.ThethirdlitteroftheF1generation(F1c)andthesecondlitterofthesecondgeneration(F2b)wereusedinteratologicalexaminations.Duringtheteratologyphase,halfoftheanimalsineachgroupweresacrificedatday13andtheothersatday21ofgestation.Body-weightgainsweresimilarforallgroupsinbothgenerations,andtheoverallconceptionratewas90%,indicatingthatthecompounddidnotinterferewithspermatogenesisorovulation.Inthefirstgeneration,atthehighestdose,thenumberofpubsborninthefirstlitter(F1a)wasreducedandtherewasanincrease

96  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

instillbornpupsinthesecondlitter(F1b).Therateofmortalityinpupsafterbirthwaslowandtheweightsofpupsatday4andatweaningwerethesame.Terato-logicalexaminationofthethirdlitter(F1c)showednodifferencesinresorptionsorimplantationsinfemalessacrificedatday13(corporaluteawerenotcounted)andnodifferencesinlivefetuses,corporalutea,orimplantationat21days.Atday21,however,significantresorptionswerereportedinthecontrols.Inthesecondgen-eration,thefirstlitters(F2a)weresmallerthanthelittersinthefirstgeneration,buttherewerenootherdifferencesinreproductiveparameters.Duringtheteratologyphase,nodifferencesincorporalutea,implantations,orresorptionswerenotedinratssacrificedat13days.Incontinuallyfedratssacrificedat21days,thenumberof implantationswasreducedandcorporaluteaformationwasdepressedatthehighestdose.Adecreaseinthenumberoflivefetusesatthehighestdose,signifi-cantonlyinratsfedduringgestation,wasalsoobserved.Theincidenceofdefec-tivepupswassimilartothat incontrolanimalsandthestudyauthorsconcludedthat disodium etidronate was not teratogenic in rats at either dose tested. TheNOEL,basedonreducedlittersizeanddecreasednumberofpupsatthehighestdose,was50mg/kgbwperday(Nolen&Buehler,1971).

Rabbits

Inacombinedstudyofreproductivetoxicityandteratogenicityinrabbits,twoseparateexperimentswereconducted.Inthefirstexperiment, fourgroupsof25virginNewZealandwhite rabbitsweregivenHEDP (asanaqueoussolutionofdisodiumetidronate)atadoseof0,100,250or500mg/kgbwperdayviaintuba-tionondays2–16ofgestation.Therabbitswereinseminated(day1)anddosingcommencedbeforeimplantation(day7).After4–5consecutivedosesofHEDPat500mg/kgbwperday,thepregnantrabbitsdied.FourrabbitssurvivedthreedailydosesofHEDPat500mg/kgbwperdayandtheseanimalssubsequentlyreceivedHEDPat250mg/kgfortherestofthestudy.Atadoseof100mg/kgbwperday,HEDPcauseda68%reductionintheconceptionrateinrabbits.Owingtotoxicityat500mg/kgbwperdayandareducedconceptionrateatthelowestdosetested(i.e.100mg/kg bw per day), a second experiment was performed in which thehighestdosetestedwas100mg/kgbwperday.

Inthesecondexperiment,fourgroupsof25virginNewZealandwhiterabbitsweregivenHEDP(disodiumetidronate)atadoseof0(water),25,50,or100mg/kgbw per day in the diet or 100mg/kg by gavage, on days 2–16 of gestation.Anadditional untreated control group was also used in this study. Reproductiveparametersandoffspringmalformationswereanalysed.Theauthorsreportednostatistical differences in food consumption or body-weight gain, although thesedatawerenotpresented.However,theauthorsnotedthatrabbitsgiventhehighestdose(100mg/kgbwperday)consumedtheleastamountoffoodandgainedtheleastweight.Theconceptionrateindamsgivendisodiumetidronateatadoseof100mg/kg bw per day by gavage or in the diet was 90% or 95%, respectively,indicatingnoeffectonconceptionornidation.Nodifferenceswereobservedinthenumbersofcorpora lutea,resorptions,or live fetuses.Fetusesfromdamsgivendisodiumetidronateatadoseof100mg/kgbwperdaybygavageweresignifi-cantlysmallerthanthosefromuntreatedcontrols.Nodifferencesinthedefective

PEROXYACID ANTIMICROBIAL SOLUTIONS  97

K2

fetuses in treated groups compared with the controls were reported. Very fewskeletaldefectswereseen,althoughvariationsinthenumberofribsandsterne-braeoccurred inup to50%of the rabbit fetuses.Thestudyauthorsstated thatthesevariationsintheribsandsternebraewerenotteratogeniceffects(Cozens,1965).Theythusconcludedthattherewerenotreatment-relatedadverseeffectson reproduction parameters and that disodium etidronate is not teratogenic inrabbits(Nolen&Buehler,1971).

Nolan&Buehler(1971)speculatedthattheeffectsonconceptionrateinrabbitsgiven HEDP (disodium etidronate) at a dose of 100mg/kg per day in their firstexperimentmayhaveresultedfromstresscausedbygavage,becauseareductionin conception ratewasnot observed in their secondexperiment. In the secondexperiment,however,theauthorsreportedareductioninfetalweightswithHEDPatadoseof100mg/kgbwperdayadministeredbygavage,whichtheyattributedto slightly larger litters.Although, not statistically significant, decreases in foodconsumptionandbody-weightgainindamsatthesamedosewerereportedinthesecondexperiment.Onthebasisofdecreasedfetalweights, theNOELwassetconservativelyat50mg/kgbwperday(Nolan&Buehler,1971).

2.2.6 Special study: skeletal effects in dogs

Ina long-termstudy todetermine theskeletaleffectsofHEDP,adult femalebeagledogs(aged3–4yearsatthestartofthestudy)weregivenHEDPatadoseof0,0.1,0.5,2,5or10mg/kgbwperdayviasubcutaneousinjectionfordifferenttimesrangingfrom1to2years.Therewere10dogsinthecontrolgroupandfivedogsineachtreatmentgroup.Dogsatthetwolowerdoses(0.1and0.5mg/kgbwper day)were treated for 2 years.Dogsat 5mg/kgbwper daywere sacrificedafter13.5months,whiledogsat2and10mg/kgbwperdayweresacrificedafter12months.At the two lowerdoses, therewasaslight reduction inosteoblasticactivity,reductioninthepercentageofbonesurfaceswithactivemineralization,areduction in mineralization rates, and a reduction in resorption spaces, butno change inosteoid seamwidth.Therewereno treatment-related fracturesat0.1mg/kgbw,butradiographicstudiesindicatedthattheincidenceoffractureswasslightlyincreasedat0.5mg/kgbwperday.Profoundeffectsonboneparameterswere observed at doses of 2–10mg/kg bw per day. The number of resorptionspaces was reduced and mineralization activity was blocked to the extent thatosteoidseamsbecamethickened.Atthesehigherdoses,theincidenceoffractureswas markedly increased and fractures were radiologically apparent after 9–12months.Healingoffractures,whentheyoccurred,wasinhibitedatdosesofHEDPof>0.5mg/kgbwperday.TheauthorssuggestedthathighdosesofHEDPdidnotcause any permanent change in the skeleton that would interfere with fracturehealing.Thisstudy indicatesthatHEDPcausedprofoundeffectsontheskeletalsystemthataredose-relatedanddependentontheperiodoftreatment,butthattheeffectsarereversible(Floraetal.,1981).

Floraetal.(1981)alsopointedoutthatoraladministrationofthedisodiumsaltofHEDPatadoseof5mg/kgbwperdayforupto6monthsisrecommendedforthetreatmentofPagetdiseaseinhumans.TheauthorsindicatedthatthedoseofHEDP that resulted in the development of spontaneous fractures in dogs was

98  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

about10timeshigherthanthedoserecommendedforextendeduseinhumans.Thisisbasedontheassumptionthatgastrointestinalabsorptionoforallyadmin-isteredHEDPwouldoccuratarateof1%inhumans.Thus,aorallyadministereddoseofHEDPof5mg/kgbwperdaywouldbeexpected to lead toasystemicdoseof0.05mg/kgbwperday inhumans,or3mg/day foranadultwithabodyweightof60kg.

2.3 Environmental studies

HEDPcanalsoundergophotolysistoacetateandphosphatewithinafewdays(Steber & Wierich, 1986). In distilled water and in the presence of calcium, nophotodegradation of HEDP was observed, but the addition of Fe(III) and Cu(II)resultedinrapidphotodegradation(Fischer,1993).Thus,aftertheuseoftheanti-microbial solutions, residual HEDP in foods may undergo photolysis before thetreatedfoodsareconsumed.

2.4 Microbiological aspects

2.4.1 Role of components in antimicrobial solutions

Differentantimicrobialwashsolutionsareaddedtowatertospray,wash,rinse,dip,coolorotherwiseprocessmeat,poultry,andfreshaswellasprocessedfruitsandvegetables.Thesolutionsareused to inhibit thegrowthofSalmonella sp., Campylobacter jejuni,Listeria monocytogenes,andEscherichia coli O157:H7,andspoilageanddecayorganismsontheproductorsurfacetobetreated(Table3).

Peroxyaceticacid(alsoreferredtoasperaceticacid)isthemajoractiveingredi-ent in all of the antimicrobial wash solutions.The effect of peroxyacetic acid is

Table 3. The intended uses of four antimicrobial wash solutionsa

Solution Product/surfacetobetreated Function

A Poultrycarcasses,parts,and AntimicrobialefficacyagainstSalmonella organs sp.,C. jejuni,L. monocytogenes, E. coli O157:H7andspoilageorganismson poultryB Meatcarcasses,parts,trims, AntimicrobialefficacyagainstSalmonella andorgans sp.,L. monocytogenes,E. a coli O157:H7 andspoilageorganismsonmeatC Post-harvest,fresh-cut,and Antimicrobialefficacyagainstspoilageand furtherprocessedfruitsand decayorganismsontreatedfruitsand vegetables,including vegetablesandinprocesswater processwaterD Furtherprocessedfruitsand AntimicrobialefficacyagainstS. a javiana, vegetables L. monocytogenes,E. coli O157:H7, spoilageanddecayorganismsonfurther processedfruitandvegetablesurfaces.

a SeeTable1forthecompositionofthesesolutions.

PEROXYACID ANTIMICROBIAL SOLUTIONS  99

K2

similartothatofotherantimicrobialagentsthatfunctionasoxidizingagents,andwhich attack multiple cell sites and can disrupt the chemiosmotic balance. Arecentlypublishedsummary(Kitis,2004)statedthatperaceticacidwasidentifiedtohaveantimicrobialpropertiesasearlyas1902;that ithadoftenbeenusedin‘coldsterilization’procedures formedical instrumentsandhadbeenfoundtobebactericidalat0.001%,fungicidalat0.003%andsporicidalat0.3%;andthatithadbeenused in theproductionofgnotobiotic (germ-free)animals.Thispublicationalsoproposedthattheantimicrobialactionofperaceticacidmayresult fromtheoxidationofproteinsand,inparticular,theirsulfhydrylbonds.Alternatively,perace-tic acid may disrupt the chemosmotic functions of outer membrane lipoproteinsandoxidizenitrogenousbasesinDNA,resultingincelldeath.Peraceticacidwascompared favourably with chlorine-based compounds; it was proposed that itsantimicrobialefficacywassimilaranditsdecompositiontotheenvironmentallysafeproductsaceticacid,waterandoxygenprovidesanadvantageoverchlorine-basedproducts.

Octanoicacidalsocontributestotheefficacyoftheseantimicrobialsolutions.ApublicationbySunetal.(2002)concludesthatatlowerpH,caproate(C6:0)andcaprylicacid(C8:0,thealternativenameforoctanoicacid)inhibitmicrobialgrowth.Inaddition,octanoicacidfunctionsasasurfactant toaid inwettinghydrophobicsurfaces,particularlyonmeat.

While acetic acid and hydrogen peroxide are known to have antimicrobialeffects,theireffectswithinthesesolutionsareminimal.Aceticacidandhydrogenperoxideare,however,inequilibriumwiththeperoxyaceticacid,sotheirpresenceiscriticalfortheantimicrobialeffectsoftheperoxyaceticacid.Peroxyoctanoicaciddoesnothaveantimicrobialactivity.Itispresentinthesolutionbecauseitispro-duced when octanoic acid reacts with hydrogen peroxide. HEDP has no anti-microbialeffects.Itfunctionsasastabilizerinthesesolutionsbypreventingmetalionsfromcatalysingthebreakdownofperoxyaceticacidandhydrogenperoxide.

2.4.2 Studies of antimicrobial efficacy

Laboratoryandin-plantstudiesweredoneonfourantimicrobialwashsolutions,describedassolutionsA,B,CandDinTables1and3,todemonstratethereduc-tionofmicrobesfortheintendeduseofeachsolution.Overall,theresultsofthesetestsindicatemodestreductionsinthenumberofsurfacemicrobesonpoultryandmeat.Inwashwaterforfreshandprocessedfruitsandvegetables,greaterreduc-tionsinconcentrationsofmicrobeswereobserved.Theresultsofstudiesthatwereavailableforthisevaluationaredescribedbelow.

(a) Solution A

TheproposeduseofantimicrobialwashsolutionAisforadditiontowaterusedforsprayingorsubmerging,orsprayingfollowedbysubmergingevisceratedpoultrycarcasses. Tests were done to compare specimens treated with water withthose treated with the test substance.Thus, the key result is the net reductionbeyond that found with water only.There were three groups, a group that wassubmersion-chilled,agroupthatwassprayed,andagroupthatwassprayed,then

100  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

submerged.Themean log10 reductionsusingUnitedStatesDepartmentofAgri-culture procedures for carcass processing are listed in Table 4. These resultsindicatethatamodestnetreductionofuptoaboutlog100.8canbeachievedfromthesetreatments(unpublisheddatafromthesubmitter).

Asecondsetoftestswasperformedonpathogens(Listeria monocytogenes,Salmonella typhimurium, andEscherichia coli O157:H7)ondifferentchickenparts(carcasses, wings, and livers). Net log10 reductions in pathogens varied from amodesttoaconsiderableamount(fromlog100.32to0.75forS. typhimurium, from log10 1.13 to2.11 forL. monocytogenes, and from log10 0.82 to3.17 forE. coli O157:H7).

(b) Solution B

TheproposeduseofantimicrobialwashsolutionBisforaddingtowaterusedforsprayingbeefcarcasses.Thesolutionwasdilutedappropriatelyandaddedtowaterforsprayingbeef.Threeseparatetestrunswereconducted.Inthefirsttest,10 randomly selected carcasses were selected; in the second test, 29–30 ran-domly selected carcasses were selected, and in the third, 128 carcasses wereselected in-plant. Inall tests, the carcasseswereaseptically sampledby tissueexcision,eitherbeforetreatment,aftertreatment,oratfinalinspection,thenseriallydilutedandplated.Thenumberofcoloniesformed(CFU/cm2)forallaerobicbac-teria(totalaerobicplatecounts),coliforms,andE. coliweredetermined.Forthesetrials,reductionsrangedfromlog100.434(standarddeviation(SD),1.083)to1.05(SD,0.495) forsamples taken immediatelyafter treatmentand from log100.246(SD,1.221) to0.573 (SD,0.567)at thefinal inspection. Inessence, thevaluesindicated that a modest, but highly variable, initial reduction of microorganismswas followed by some renewed microbial growth or acquisition of moremicrobes.

When pathogens were inoculated onto beef, reductions in the numbers ofmicrobesweremodest,approximatelylog100.5to1.0morethanreductionsafterwashingwithwateronly.ThespecificresultsaresummarizedinTable5.Therela-tivereductionsreportedweremodest,rangingfromlog100.5to1.3(unpublisheddatafromthesubmitter).

Microbial contamination primarily occurs on the surface of meats. Varioussprayinganddippingmethods,usuallytransientinnature,areemployedtoremovesurfacebacteria.Althoughseveralchemicalsareemployedinthesemethods,thelevels of reduction of microbes, with respect to resident bacteria and specificpathogens,aretypicallylow.Inarecentpublication,theuseofoneoftheseprod-uctswascomparedwithothermethods(Gill&Badoni,2004);theresultsindicatedthat use of a solution containing 0.02% peroxyacetic acid was associated withmodest reductions in thenumberofpathogens from log100.5 to1.0 lcomparedwithmeat treatedwithwateronly,but reductionsafter treatmentwith lacticacidwerelog10>1.

PEROXYACID ANTIMICROBIAL SOLUTIONS  101

K2Tab

le 4

. M

ean

lo

g10

red

uct

ion

s o

f m

icro

bes

on

po

ult

ry c

arca

sses

tre

ated

wit

h w

ater

or

wit

h a

nti

mic

rob

ial

was

h s

olu

tio

n A

Pou

ltry

Aer

obic

pla

tec

ount

sE

. co

liC

olifo

rms

proc

ess

(log 1

0re

duct

ion)

(lo

g 10

redu

ctio

n)

(log 1

0re

duct

ion)

W

ater

S

olut

ion

A

Net

red

uctio

nW

ater

S

olut

ion

A

Net

red

uctio

nW

ater

S

olut

ion

A

Net

red

uctio

n

Sub

mer

ged

0.53

1.

21

0.68

0.

56

1.37

0.

81

0.6

1.27

0.

67S

pray

edo

nly

0.46

0.

62

0.16

0.

46

0.84

0.

38

0.33

0.

64

0.31

Sub

mer

ged

0.84

1.

33

0.49

0.

85

1.44

0.

59

0.78

1.

31

0.53

th

ens

pray

ed

Fro

mu

npub

lishe

dda

taf

rom

the

sub

mitt

er.

102  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

(c) Solution C

TheproposeduseofantimicrobialwashsolutionCisforadditiontowaterusedforprocessingvegetables forpost-harvest, fresh-cut,and furtherprocessedfruitandvegetables.Peroxyaceticacidataconcentrationof10–30mg/kgwasaddedtowaterforprocessingvegetables.Therewasareductionofupto4-log(log104)intherelativeconcentrationsofmicroorganismsfoundinthetreatedwashwater,compared with the untreated wash water; this correlated with the amount ofresidualperoxyaceticacid(Table6)(unpublisheddatafromthesubmitter).

(d) Solution D

TheproposeduseofantimicrobialwashsolutionDisforreductionofcontami-nation,eitherfororganismsonsurfacesorforcross-contaminationinwashwater,onthesurfaceofprocessedfruitandvegetables.Totestthereductionofcontami-nation,tomatosurfaceswereinoculatedwithE. coli O157:H7,L. monocytogenes, andS.javianaandtreatedwitheithertapwaterorTsunami200.Theresultsindi-catedthatsolutionDeffectivelyreducednumbersofthesepathogens(Table7).

Totestfortheeliminationofcross-contamination,cherrytomatoeswereinocu-latedwiththesametargetpathogens,whichwereallowedtoattachfor24h.Inocu-lated and non-inoculated cherry tomatoes were then submerged in solution D(Tsunami200)or in tapwater.Thenon-inoculated tomatoeswereremoved toa

Table 6. Mean log10 reductions in microorganisms found in water treated with antimicrobial wash solution C relative to untreated water

Residualperoxyaceticacid(mg/kg) Log10reduction(log10CFU)

<3 ≤210–30 2–440–50 5–6

Fromunpublisheddatafromthesubmitter.CFU,colony-formingunits.

Table 5. Mean log10 reductions in specific pathogens inoculated onto beef washed with water or with antimicrobial wash solution B

Pathogen Averagelog10reduction Relativelog10reduction,

Water SolutionBsolutionBrelativetowater

L. monocytogenes 0.7 1.22 0.52S. typhimurium 0.32 1.62 1.3E. coli 0.4 1.48 1.08

Fromunpublisheddatafromthesubmitter.

PEROXYACID ANTIMICROBIAL SOLUTIONS  103

K2

neutralizingsolution,whichwasvortexedtoremovebacteriafromthetomatoes,thendilutedandplated.Therewasareductionofgreaterthan2-log(log102)inallthree pathogens transferred by cross-contamination (unpublished data from thesubmitter).

2.5 Observations in humans

ThedisodiumsaltofHEDP,whichisknownclinicallyassodiumetidronate,isusedtotreatPagetdisease,whichisanidiopathicdiseasecharacterizedbyaccel-eratedbonemetabolism.Fracturesandotherabnormalitiesofbonearecommonin patients with Paget disease. Due to its high affinity for solid-phase calciumphosphate,HEDPpreventshydroxyapatitecrystalgrowthanddissolutiononcrystalsurfacesofbone.Itsmechanismofaction,however,isnotfullyunderstood.

The recommendeddoseofsodiumetidronate is5–10mg/kgbwgivenorallyoncedailyfor6monthsorless,or11–20mg/kgbwperdayfor3monthsorless.Dosesinexcessof20mg/kgbwperdayarenotrecommended.Thedosemustbereducedincasesofrenalinsufficiency.Sodiumetidronateisgenerallywelltoler-ated and the incidence of side-effects is low (Center for Drug Evaluation andResearch,2001;Physician’sDeskReference,2004).Initialtherapywithadoseof5mg/kgbwperdayofsodiumetidronateappearstomaximizebenefitsforpatientswith Paget disease while minimizing possible adverse effects (Canfield et al.,1977).

Numerousabstracts/citationsaddressingtheuseofHEDPincancertherapy,osteoporosis,nuclear imaging,andhypercalcaemiaassociatedwithmalignancy,and other disorders of calcium and phosphorus balance have been published.Suchstudieswerenotconsidered toberelevant to foodsafetyandarebeyondthescopeofthisassessment.

3. INTAKE

3.1 Residues on foods

Theuseofthefoursolutionsofperoxyacidinantimicrobialwaterwashesforthe processing of meat, poultry, fruits, and vegetables results in predictable

Table 7. Mean log10 reductions in pathogens on tomato surfaces treated with water only or with antimicrobial wash solution D

Pathogen Pathogensontomatosurfaces (log10CFU)

Water SolutionD Log10reduction

L. monocytogenes 4.73 0.00 4.73E. coli 5.00 0.87 4.13S. javiana 2.62 0.00 2.62

Fromunpublisheddatafromthesubmitter.

104  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

residuesontreatedfoods.Thehydrogenperoxideinthesolutionandtheperoxy-aceticandperoxyoctanoicacidsformedinsituareinherentlyunstable,especiallyin the presence of oxidizable organic material. Therefore, there would be noexpectedresiduesofthesesubstancesontreatedfoods.Aceticandoctanoicacidpresent in the solution and as by-products from the corresponding peroxyacidswouldbeexpectedtoremainonanytreatedfoodsthatarenotwashedorfurtherprocessedaftertreatment,aswouldHEDP,whichisstableandnon-reactiveundertheconditionsofuse.

Aceticandoctanoicacidsarecomponentsofmanyfoodsandarealsousedas flavouringagents in foods.TheCommitteehaspreviouslyevaluatedbothofthesesubstances.Theminorresiduesofthesesubstancesremainingontreatedfoodsresult inexposuresthatare insignificant incomparisontothosefromcon-sumption of foods containing the substances naturally, or as added flavouringagents.ThemeanintakeofoctanoicacidfromfoodsconsumedaspartofthedietintheUSAwasestimatedtobeapproximately200mg/day.Ahighlyconservativeestimateofexposureforoctanoicacidof1.9mgperdayresultingfromtheuseoftheantimicrobialsolutionswasnotedby theCommittee.Thisestimatewaspre-paredemployingWHOGlobalEnvironmentMonitoringSystem—FoodContami-nationMonitoringandAssessmentProgramme(GEMS/Food)internationaldiets.Intake of acetic acid was not explicitly analysed, but its use in and on foods(vinegar) would result in a greater food exposure than that from octanoic acid.Exposure to these common food acids was not further considered in thisevaluation.

HEDP isexpected to remainon foods thatare treatedwith theantimicrobialwashesandnotfurtherwashed,processed,orcooked.TheCommitteeconsideredsubmittedinformationconcerningresiduesofHEDPonfoods.Studieswerecon-ducted with meats, poultry, fruits, and vegetables, each treated with one of thesolutions under typical conditions of use. The foods were allowed to drain, butwerenot furtherprocessedorcooked. Itwasassumedthatalladditionalweightinthemeatstreatedwasattributabletotheantimicrobialwash;theconcentrationof HEDP in the solutions was used to determine the residual concentration ofHEDP present in the meat. Poultry was further treated to recover any HEDPpresent.Fruitandvegetableswerewashedwithdeionizedwater to recover theresidualHEDP.Forvegetables,lower-andupper-boundestimatesofintakeweremadebasedonthedifferingsurfaceareasofthetreatedfoods.Broccoli,avegeta-ble with a high surface area, provided the data for the upper-bound estimates,while tomato was used to provide the lower-bound estimates. Furthermore, forprocessedfruitandvegetables,itwasassumedthateachwouldbetreatedtwice;beforecuttingorprocessingandagainafterwards.Thus,themeasuredresiduesweredoubled,assumingnolossfromeithertreatment.TheresultsarereportedinTable8(unpublisheddatafromthesubmitter).

3.2 International estimates of intake

TheCommitteeconsideredinternationalestimatesofintakeofHEDP,preparedusingfoodinformationtakenfromtheGEMS/FoodregionaldietsandthedataonHEDPresiduesfromTable8.Theintakeofeveryfoodthatcouldbetreatedwith

PEROXYACID ANTIMICROBIAL SOLUTIONS  105

K2

HEDPwascombinedwith theappropriate residueconcentration foreachof thefiveregionaldiets.Twoestimateswereprepared foreachregion;oneusing theresidueconcentrationforavegetablewithalowsurfaceareaandtheotherusingtheresidueconcentrationforavegetablewithahighsurfacearea.Itwasassumedthat there would be no reduction in HEDP residues after washing or cooking.Further,itwasassumedthatallfruitandvegetableswouldbetreatedthreetimeswiththeantimicrobialsolutionwithnoloss;onceontherawcommodityandtwiceduringfurtherprocessing.

ThehighestestimateofintakewasfromtheEuropeandiet;3.6mg/kgbwperdayfortheupper-boundestimateusingamodelforavegetablewithahighsurfacearea.AlltheestimatesaresummarizedinTables9and10.

3.3 National estimates of intake

TheCommitteeconsideredthreenationalestimatesofintake.ThefirstwasatotaldietstudyfromtheCzechRepublic.ThetworemainingstudieswerebasedonindividualdietaryrecordsintheUSAandtheUK,respectively.

Completedin1995,theCzechtotaldietstudyconsidered160foodstuffs.Thefoodswerepreparedusingstandardrecipes.Eachfoodthatmightbetreatedwiththeantimicrobialsolutionwasconsidered,withafoodintakematchedtoanHEDPconcentrationfromTable8.Lower-boundandupper-boundestimatesweremadeusing thedata forvegetableswith lowsurfaceareaanddata for thevegetableswith high surface area separately. Average daily food consumption valuesfor the Czech Republic were used.The lower-bound estimate of exposure was0.405mg/kg bw per day and the upper-bound estimate was 2.224mg/kg bw perday.

TheestimatesfromtheUSAandtheUKweremadeinasimilarmanner.Foreachindividualsurveyed,all foodsthatcouldhavebeentreatedwiththeantimi-crobialsolutionwereconsidered.TheappropriateconcentrationofHEDPresiduewasmultipliedbythe intakeofeachfoodandthetotal intakeofHEDPforeach

Table 8. Residues of HEDP in treated foods

Typeoffoodtreated ResidueofHEDP(mg/kg,ppb)

Meats Carcasses 58 Parts/trim 161Poultry 198Fruitandvegetables(singletreatment) Lowsurfacearea 4.2 Highsurfacearea 67.5Fruitsandvegetables(doubletreatment) Lowsurfacearea 8.4 Highsurfacearea 135

Fromunpublisheddatafromthesubmitter.

106  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

Table 9. International estimates of intake of HEDP (lower bound)

GEMS/ Food HEDP IntakeofHEDP(mg/kgbwperday)inGEMS/Food residue Foodregionaldietcode (mg/kg,ppb)

Middle Far Africa Latin Europe East East America

VR75 Roots 12.6 0.013 0.023 0.067 0.033 0.051VD70 Pulses 12.6 0.005 0.004 0.004 0.005 0.003VD70 Nuts 12.6 0.003 0.011 0.007 0.012 0.006VD70 Vegetablefat 12.6 0.008 0.003 0.005 0.005 0.008HS93 Spices 12.6 0.001 0.001 0.000 0.000 0.000HS93 Vegetables 12.6 0.049 0.038 0.016 0.032 0.078PE112 Fruit 12.6 0.043 0.018 0.020 0.057 0.045MO105 Offal 68 0.005 0.002 0.003 0.007 0.014MO105 Meat 68 0.042 0.037 0.027 0.053 0.176PM110 Poultry 198 0.102 0.044 0.018 0.083 0.175PO111 Poultryoffal 198 0.000 0.000 0.000 0.001 0.001PF111 Poultryfat 198 0.010 0.004 0.002 0.008 0.017MF95 Mammalian 68 0.001 0.002 0.001 0.005 0.009 fat

Totalintake 0.321 0.222 0.114 0.211 0.753

Table 10. International estimates of intake of HEDP (upper bound)

GEMS/ Food HEDP IntakeofHEDP(mg/kgbwperday)inGEMS/Food residue Foodregionaldietcode

(mg/kg,ppb)

Middle Far Africa Latin Europe East East America

VR75 Roots 202.4 0.208 0.366 1.084 0.537 0.816VD70 Pulses 202.4 0.083 0.067 0.060 0.078 0.041VD70 Nuts 202.4 0.043 0.169 0.115 0.194 0.101VD70 Vegetablefat 202.4 0.136 0.048 0.079 0.074 0.130HS93 Spices 202.4 0.008 0.010 0.006 0.002 0.002HS93 Vegetables 202.4 0.786 0.604 0.260 0.508 1.254PE112 Fruit 202.4 0.689 0.288 0.319 0.915 0.716MO105 Offal 68 0.005 0.002 0.003 0.007 0.014MO105 Meat 68 0.042 0.037 0.027 0.053 0.176PM110 Poultry 198 0.102 0.044 0.018 0.083 0.175PO111 Poultryoffal 198 0.000 0.000 0.000 0.001 0.001PF111 Poultryfat 198 0.010 0.004 0.002 0.008 0.017MF95 Mammalian 68 0.001 0.002 0.001 0.005 0.009 fat

Totalintake 2.153 1.676 1.994 2.515 3.623

PEROXYACID ANTIMICROBIAL SOLUTIONS  107

K2

foodwascalculatedforeachindividual.Themeanand90th-percentileintakesforthewholepopulationwerecomputedfromtheindividualrecords.ThedataonfoodintakefromtheUSAweretakenfromtheUSADepartmentofAgricultureContinu-ingSurveyofFoodIntakesbyIndividuals,1994–6,1998.Thedataonfoodintakefrom the UK were taken from the Ministry of Agriculture, Food, and FisheriesDietaryandNutritionalSurveyofBritishAdults,1986–7.Hereagain,lower-boundand upper-bound estimates were made using the data for vegetables with lowsurfaceareaandvegetableswithhighsurfaceareaseparately.

Themeanestimateof intake for theUSAwas0.357 (lowerbound)or2.235(upperbound)mg/kgbwperday.Thecorrespondingintakesforindividualsatthe90thpercentileofconsumptionwere0.740and4.706mg/kgbwperday,respec-tively.ThemeanestimateofintakefortheUKwas0.243(lowerbound)or1.795(upper bound) mg/kg bw per day. The corresponding intakes for individuals atthe 90th percentile of consumption were 0.458 and 3.263mg/kg bw per day,respectively.

Table11summarizes theestimatesof intakeofHEDPused inantimicrobialwashsolutions.

3.4 Non-food uses of HEDP

HEDPisusedasananti-scalingagentforwatertreatmentandinboilers.TheregulatorylimitforthisuseintheUSAis25mg/l.However,HEDPisknowntobeusedintherestoftheworld,includingChina.It isalsousedasadrugfortreat-ment of Paget disease (a disease of excessive bone turnover) and in someover-the-counter cosmetic and pharmaceutical formulations. The EnvironmentalProtectionAgencyintheUSAhasestimatedexposuretoHEDPfromtheseusestobenomorethan6mg/kgbwperday, including0.04mg/kgbwperdayfromitsuseonfood(EnvironmentalProtectionAgency,1998).TheCommitteenotedthatthisestimateofexposureforfoodusesofHEDPwasmuchlessconservativethanthat evaluated herein, assuming that cooking and further processing of treatedfoodswouldresultinconcentrationsofHEDPofnogreaterthan1mg/kgonfoodasconsumed.

Table 11. Estimates of intakes of HEDP used in antimicrobial wash solutions

Estimates Exposure(mg/kgbwperday)

GEMS/Food 3.6(Europeanregionaldiet)CzechTotalDietStudy 2.224(mean)USAdietaryrecords 4.706(90thpercentile,upper

bound)UKdietaryrecords 3.263(90thpercentile,upper

bound)

108  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

4. STUDIES ON THE QUALITY, NUTRITIONAL VALUE, OR OTHER PROPERTIES OF FOOD TREATED WITH ANTIMICROBIAL SOLUTIONS

4.1 Thiobarbituric acid and fatty acid profiles of meat and poultry products

The antimicrobial wash solution identified as solutionA was added to waterusedforsprayinganddippingpoultrycarcassesinastudytodeterminewhetherthe treatment resulted in significant differences in thiobarbituric acid (TBA) andfattyacidprofilesof raworcookedpoultryproducts.Nodifferenceswere foundwhencomparedwithtreatmentwithwater(Ecolab,Inc.,2000).

Samplesof freshbeefwereexposedtoantimicrobialwashsolutionB,whichcontainstotalperoxyacidsataconcentrationof200mg/kg,todeterminewhetherthe treatment resulted insignificantdifferences inTBAand fattyacidprofilesofcookedanduncookedmeat(Ecolab,Inc.,1999a,1999b).Cookingtoaninternaltemperatureof175°FincreasedtheTBAvaluebyeightfoldrelativetouncookedsamples.NodifferencesinTBAorfattyacidprofilescomparedwithtreatmentwithwaterwerefound.Therewasaslightdifference(p=0.54) invaluesformyristicacidbetweenrawmeatandcookedmeattreatedwithperoxyacid;thiswasattrib-utedtocookingorvariationinthemeatsamplestested.

ThereagentTBAiscommonlyusedtodeterminetheextent towhichanimaland vegetable fats and oils (including fatty acids, their esters, and related sub-stances) are oxidized. Thus TBA values provide a measure of rancidicity. Theresultsof testing forTBAand thedeterminationsof fattyacidprofilesdescribedabove suggested that treating poultry or meat with solutions A or B did notadverselyimpactthequalityoftreatedpoultryormeatproducts,respectively.

4.2 The effect of the potential reactivity of hydrogen peroxide and peroxyacetic acid on meat and poultry products

InastudybyUpendraroaetal. (1972),vegetableoilsplaced incontactwith30% or 60% hydrogen peroxide and 5% or 17% peroxyacetic acid for 2–10hunderwentepoxidation.Otherstudiesthatusedhighconcentrationsofhydrogenperoxideandlongperiodsofcontactwerefoundintheliteratureandmainlyindi-catedpotentialreactionsofhydrogenperoxidewithotherfoodcomponents.Thelow concentrations of the components of antimicrobial solutions in ready-to-usewashsolutionsandsprays,andthetransientnatureof theircontactwith food isexpectedtopreventpotentialoxidationreactionsfromoccurringonfood.Thelowreactivity potential of solutions C and D has been confirmed in a study of theireffects,undertheintendedconditionofuse,onfruitandvegetables(Ecolab,Inc.,1995).

4.3 Nutritional tests to determine the effects of peroxyacetic acid and hydrogen peroxide on fruit and vegetables

A study was conducted to determine the effects of peroxyacetic acid andhydrogenperoxideon thenutrient contentof fruit andvegetables (Ecolab, Inc.,

PEROXYACID ANTIMICROBIAL SOLUTIONS  109

K2

1995).Tomatoes,potatoes,andbroccoliwerepreparedforconsumption,exposedtosolutionC(containingperoxyaceticacidat80mg/kgandhydrogenperoxideat59mg/kg)for5min(‘worse-case’conditionsofexposure),thenrinsed.Controlandtreatedsampleswereanalysedforeffectsonb-caroteneandvitaminC,nutrientschosenforanalysisbecauseoftheirsusceptibilitytooxidationandotherdegrada-tionreactions.Therewasnoeffectonb-carotenecontentintomatoesorbroccoli.TherewasnoeffectonvitaminCinpotatoesorbroccoli.Therewasatreatment-relateddecreaseof37%intheascorbicacidcontentoftomatoes,whichoccurredinconjunctionwithanequivalentincreaseindehydroascorbicacidcontent.Thus,theactivecontentofvitaminC(Sabryetal.,1958) in tomatoeswasunchanged(unpublisheddatafromthePillsburyCompany).Theseresults indicatedthat theuseofantimicrobialwashsolutionConfreshfruitsandvegetableswouldnotbeexpectedtoadverselyaffecttheirnutrientcontent.

5. COMMENTS

Antimicrobialsolutionsareequilibriumsolutionsthataredilutedinwaterbeforeuseinfoodprocessing.Hydrogenperoxideinthesesolutionswilldissociateintowaterandoxygen.Bothperoxyaceticacidandperoxyoctanoicacidarealsoinher-entlyunstableandwillbreakdownintoaceticacidandoctanoicacid,respectively,althoughtheirstabilityisenhancedbyHEDP.Lowresidualamountsofthesesimpleorganicacidspresenton foodat the timeofconsumptionwouldposenosafetyconcern. It isnotexpected that residuesofperoxyaceticacidorperoxyoctanoicacidfromthesesolutionswillbepresentontreatedfoodsatthetimeofconsump-tion.Theperoxidecomponentsoftheperoxyacidantimicrobialsolutionsthusposenotoxicologicalconcernswithregardto theusesconsideredbytheCommittee.TheCommitteeconcludedthatHEDP,whichsequestersmetalions,therebysta-bilizing the peroxy compounds in peroxyacid antimicrobial solutions, is the onlycomponentofpotentialtoxicologicalconcern.

DatareviewedbytheCommitteeindicatedthatabsorptionofHEDPfromthegastrointestinaltractisverylimitedandthatitsmetabolismisnegligible.Thelimitedamount of data available to the Committee suggested that absorption may berelated toageandspecies.Theskeleton is the targetsite for thedispositionofHEDPinallspecies.

HEDPdidnotshowevidenceofmutagenicactivityinassaysinfivestrainsofSalmonella or inanassay formutation inmouse lymphomaL51718Tk+/- cells,withandwithoutmetabolicactivationfrommammalianmicrosomes.

Intwo90-daystudiesoftoxicity,ratswerefeddietscontainingHEDPatdosesrangingfrom100to2500mg/kgbwperday.Thehighestdosetestedineachstudy(i.e.1500or2500mg/kgbwperday)causedmortalityandsignsoftoxicity,butnoeffectswerereportedatlowerdosesineitherstudy.TheNOELwas500mg/kgbwperdayinbothstudies.

Ina90-daystudyoftoxicityindogs,HEDPwasadministeredorallyatadoseequivalentto0,25,75,or250mg/kgbwperday.NoadverseeffectsattributabletotreatmentwerereportedandtheNOELforHEDPwas250mg/kgbwperday.TheCommitteealsoevaluatedtheresultsofa long-termstudytodeterminethe

110  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

skeletal effects of daily subcutaneous injections of HEDP administered to adultfemaledogsforvaryingperiodsrangingfrom1to2years.Someeffectsonboneparameterswereobservedatalldoses.Profoundskeletaleffectswereassociatedwith theadministrationofdailysubcutaneousdosesofHEDPof2–10mg/kgbwperday for1year.Spontaneousbone fractureswereslightly increased indogsgivendailysubcutaneousdosesof0.5mg/kgbw for2years,butnopermanentskeletalchangeswereobservedatthisdoseandhealingwasnormal.Nofractureswereobservedatadailysubcutaneousdoseof0.1mg/kgbwafter2years.Assum-ingthat10–20%oftheadministereddosewereabsorbedfromthegutindogs,asubcutaneousdoseof0.1mg/kgbwperdaywouldcorrespondtoanoraldoseof0.5–1mg/kgperday. Inconsidering thesestudies, theCommitteenoted that90daysmightnotbelongenoughtoobserveskeletaleffectsindogsandthattheremight be differences in the disposition of HEDP in bone that are related to therouteofadministration.

Inacombinedtwo-generationstudyofreproductivetoxicityandteratogenicity,ratsweregivenHEDP(disodiumsalt) in thedietatconcentrationsequivalent to0,50or250mg/kgbwperdayeitherduringtheirlifetimeoronlyondays6–15ofgestation, for twogenerations.No fetalabnormalities indicativeofa teratogeniceffectwerereportedateitherdosetested.HEDPwasembryotoxicwhenadminis-tered at a dose of 250mg/kg bw per day during organogenesis.The NOEL forHEDPwas50mg/kgbwperday.

TheeffectsofHEDP(disodiumsalt)weredeterminedinacombinedstudyofreproductivetoxicityandteratogenicityinrabbits.Twoexperimentswereperformedbecauseof theobservationof toxicityat the lowestandhighestdoses,adminis-teredbygavage,inthefirstexperiment.Inthesecondexperiment,rabbitsreceivedHEDPatadoseof0,25,50,or100mg/kgbwperdayinthediet,or100mg/kgbwperdaybygavage.FetusesfromdamsreceivingHEDPatadoseof100mg/kgbwperdaybygavageweresignificantlysmallerthanthosefromuntreatedcon-trols. No fetal abnormalities indicative of a teratogenic effect in rabbits wereobservedineitherexperiment.TheNOELwas50mg/kgbwperday.

Use of HEDP to treat Paget disease

ThedisodiumsaltofHEDP,knownclinicallyassodiumetidronate,isadminis-teredorallyatastartingdoseof5mg/kgbwperday,fornotlongerthan6months,totreatpatientswithPagetdisease.Pagetdiseaseisanidiopathicdiseasechar-acterizedbyacceleratedbonemetabolism; fracturesandotherabnormalitiesofthebonearecommoninpatientswithPagetdisease.Owingtoitshighaffinityforsolid-phase calcium phosphate, HEDP prevents the growth and dissolution ofhydroxyapatite crystals on crystal surfaces of bone. The mechanism of action,however,isnotfullyunderstood.

Antimicrobial efficacy

InformationavailabletotheCommitteeindicatedthatsolutionsofperoxyaceticacidenhancetheactionofwatersprayedonfoodsurfacestoreducenumbersofbacteria.While reductions innumbersofmicrobesweredemonstrated,someof

PEROXYACID ANTIMICROBIAL SOLUTIONS  111

K2

thedataprovidedsuggestthattheresultsofreplicatetestswereratherinconsis-tent,withstandarddeviationsclosetoorgreaterthanthevalueofthereductionsthemselves.Testing of food surfaces showed modest reductions in numbers ofmicrobes,wheneitherendogenousmicroorganisms(representedbytotalaerobicplatecounts)orinoculated(‘spiked’)pathogens(commonlyL. monocytogenes, E. coli O157:H7,andsomeSalmonellaserotypes)weremonitored.Datafromlabora-toryandin-planttestsindicatedthattheuseofthesesolutionswouldminimizethepossibilityofcross-contamination,althoughtheyareunabletoremovealladherentviablebacteriafromfoodsurfaces.

TheCommitteedidnotfurtherconsidertheantimicrobialefficacyofperoxyacidantimicrobialsolutionscontainingHEDP.

Intake

TheCommitteeevaluatedestimatesofintakeofeachcomponentusedintheperoxyacidsolutionson thebasisof residualamountsanticipated tobepresentontreatedfoodatthetimeofconsumption.Consistentwithwhatwasknownaboutthechemistryofperoxycompounds,no residuesofhydrogenperoxide,peroxy-aceticacid,orperoxyoctanoicacidwereanticipatedtobepresentonfoodsthathavebeenwashedin,sprayedwith,orotherwisetreatedusingthesesolutions.

Aceticandoctanoicacidpresentinthesolutionsandasby-productsfromthecorrespondingperoxyacidswouldbeexpectedtoremainonanytreatedfoodsthatarenotwashedor furtherprocessedafter treatment.TheCommitteenoted thattheestimateofexposuretooctanoicacidresultingfromtheuseoftheantimicrobialsolutions,1.9mg/day,washighlyconservative.ThemeanintakeofoctanoicacidfromfoodsconsumedaspartofthedietintheUSAwasestimatedtobeapproxi-mately200mg/day.Intakeofaceticacidwasnotexplicitlyanalysed,butitsuseinandonfoods(vinegar)wouldresultinagreaterexposurethanthatfromtheuseof peroxyacid antimicrobial solutions. The Committee did not further considerexposuretothesecommonfoodacids.

HEDPisexpectedtoremainonfoodsthataretreatedwithantimicrobialsolu-tionsandthatarenotfurtherwashed,processed,orcooked.Thehighestestimateof intakeofHEDPpreparedusingGEMS/Fooddietswas that for theEuropeandiet:3.6mg/kgbwperdayfortheupper-boundestimateusingamodelforvegeta-bleswithahighsurfacearea.TheCommitteealsoconsiderednationalestimatesofintakefromtheCzechRepublic,theUSA,andtheUK.Theupper-boundesti-mateofintakewas2.2mg/kgbwperdayfortheCzechRepublic.Themeanand90thpercentileupper-boundestimatesofintakefortheUSAwere2.2and4.7mg/kgbwperday, respectively.Themeanand90thpercentileupper-boundestimatesof intake for the UK were 1.8mg/kg bw per day and 3.3mg/kg bw per day,respectively.

The Committee was aware of the non-food uses of HEDP. It is used as ananti-scalant forwater treatmentand inboilersworldwide (the regulatory limit forthisuseis25mg/lintheUSA).HEDPisalsousedasadrugtotreatPagetdisease,andinsomeover-the-countercosmeticandpharmaceuticalformulations.TheUSAEnvironmentalProtectionAgencyestimatedthatexposuretoHEDPfromallthese

112  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

useswasnotmorethan6mg/kgbwperday,including0.04mg/kgbwperdayfromitsuseon food (EnvironmentalProtectionAgency,1998).TheCommitteenotedthat thisestimateofexposureresultingfromfoodusesofHEDPwasmuchlessconservativethanthatusedinthepresentevaluation.

Assessment of the effects on food quality and nutritional value

LimiteddataonthequalityandnutritionalvalueoffoodstreatedwithperoxyacidantimicrobialsolutionswereprovidedtotheCommittee.Studieswereconductedtodeterminewhether treatmentof foodswithperoxyacidantimicrobial solutionsresultedinsignificantdifferencesinconcentrationsofthiobarbituricacid(ameasureofrancidity),orinfatty-acidprofiletestingofraworcookedpoultryproductsandfreshbeefsamples,whencomparedwithtreatmentwithwateronly.Nodifferenceswerefound.

The Committee was aware that studies in the literature indicated potentialreactionsofhydrogenperoxidewithcomponentsof food.TheCommitteenotedthat such studies are typically conducted using high concentrations and longperiods of exposure and that, under the conditions of their intended use, thepotentialreactivityofperoxyacidantimicrobialsolutionsisexpectedtobelimited.Studiesavailable to theCommitteeconfirmed the lowpotential reactivityof twoperoxyacidantimicrobialsolutionsindiluteready-to-usesolutionsthatareinbriefcontactwithfruitsandvegetables.

A study was conducted to determine the effects of peroxyacetic acid andhydrogenperoxideonthecontentofb-caroteneandvitaminCintomatoes,pota-toesandbroccoli.Thesefoodswerepreparedforconsumptionusing‘worst-case’exposureconditions,i.e.peroxyaceticacidat80mg/kgandhydrogenperoxideat59mg/kgfor5min,andthenrinsed.Whentreatedsampleswerecomparedwithcontrols,therewerenoeffectsontheb-carotenecontentoftomatoesorbroccoli,onthevitaminCcontentofpotatoesorbroccoli,orontheactivevitaminCcontentoftomatoes.

Onthebasisoftheavailabledata,theCommitteeconcludedthatperoxyacidantimicrobial solutionsareunlikely tohaveanadverseeffect on foodquality ornutritionalvalue,withregardtotheusesconsideredbytheCommittee.

6. EVALUATION

TheCommitteeconsidered thesafety,onacomponent-by-componentbasis,of antimicrobial solutions containing HEDP and three or more of the followingcomponents:peroxaceticacid,aceticacid,hydrogenperoxide,octanoicacidandperoxyoctanoic acid. These solutions are intended to be diluted before use toachieveperoxyacidconcentrationsintherangeof80to220mg/kg.TheCommitteeconcluded that the peroxy compounds in these solutions (hydrogen peroxide,peroxyaceticacidandperoxyoctanoicacid)wouldbreakdownintoaceticacidandoctanoicacid,andthatsmallresidualquantitiesoftheseacidsonfoodsatthetimeof consumption would not pose a safety concern. Therefore, the Committeefocused itsevaluationon the residuesofHEDP thatareexpected to remainon

PEROXYACID ANTIMICROBIAL SOLUTIONS  113

K2

foods treated, in accordance with manufacturers instructions, with peroxyacidantimicrobialsolutionsthatcontainHEDPatupto<1%.

The Committee compared the highest estimate of intake of HEDP from theuses of peroxyacid antimicrobial solutions considered by the Committee (i.e.0.004mg/kgbwperday)with thestartingoraldoseusedtotreatPagetdisease(i.e.5mg/kgbwperday)andnotedthatthemarginofexposureis>1000.Onthebasisofthismarginofexposure,theconservativenatureoftheestimatesofintakeofHEDP,andtheavailabletoxicitydata,theCommitteeconcludedthatHEDPdoesnotposeasafetyconcernat theconcentrationsof residue thatareexpected toremainonfoods.

TheCommitteenotedthattheuseofperoxyacidantimicrobialsolutionsdoesnot replace theneed for goodhygienic practices in handlingandprocessingoffood.

7. REFERENCES

Caniggia,A.&Gennari,C. (1977)Kineticsand intestinalabsorptionof 32P-EHDP inman.Calc. Tiss. Res.,22,428–429.

Cozens,D.D.(1965)AbnormalitiesoftheexternformandoftheskeletonintheNewZealandwhiterabbit.Food Cosmet. Toxicol.,3,695–700.

Canfield,R.,Rosner,W.,Skinner,J.,McWhorter,J.,Resnick,L.,Feldman,F.,Kammerman,S., Ryan, K., Kunigonis, M. & Bohne, W. (1977) Diphosphonate therapy of Paget’sdiseaseofbone.J. Clin. Endocrinol. Metab.,44,96–106.

CenterforDrugEvaluationandResearch(CDER),USFoodandDrugAdministration,CDERNewandGenericDrugApprovals:1998–2004(http://www.fda.gov/cder/approval/d.htm)andDidronel(etidronatedisodium)(http://www.fda.gov/cder/foi/label/2002/17831slr052lbl.pdf).

Ecolab,Inc.(1995)ReactivitystudyforPOAAandhydrogenperoxidewithfruitsandvege-tables.UnpublishedreportdatedFebruary7–8,1995fromtheEcolabResearchCenter,MendotaHeights,Minnesota,USA.SubmittedtoWHObyEcolab,Inc.

Ecolab, Inc. (1999a)EffectofKX-6110on fattyacid/lipidprofileof redmeat.Unpublishedreport dated October 6, 1999 from the Ecolab Research Center, Mendota Heights,Minnesota,USA.SubmittedtoWHObyEcolab,Inc.

Ecolab, Inc. (1999b). Effect of KX-6110 on thiobarbituric acid (TBA) values for red meat.UnpublishedreportdatedOctober26,1999fromtheEcolabResearchCenter,MendotaHeights,Minnesota,USA.SubmittedtoWHObyEcolab,Inc.

Ecolab, Inc. (2000). Effect of KX-6145 on thiobarbituric acid level and fatty acid profile.UnpublishedreportdatedSeptember12–22,2000fromtheUniversityofArkansasPoultryProcessing Research Facility, Fayetteville, Arkansas, USA and the Ecolab ResearchCenterinMendotaHeights,Minnesota,USA.SubmittedtoWHObyEcolab,Inc.

Environmental ProtectionAgency (1998) Hydroxyethylidine diphosphonic acid: exemptionfromtherequirementofatolerance,Fed. Regist.,63,28253–28258.

Fischer,K.(1993)DistributionandeliminationofHEDPinaquatictestsystems.Water Res.,27,485–493.

Flora,L.,Hassing,G.S.,Cloyd,G.G.,Bevan,J.A.&Parfitt,A.M.(1981)Thelong-termskel-etaleffectsofEHDPindogs.Metab. Bone Dis. Rel. Res.,4 & 5,289–300.

114  PEROXYACID ANTIMICROBIAL SOLUTIONS

K2

Gill,C.O.&Badoni,M.(2004)Effectsofperoxyaceticacid,acidifiedsodiumchloriteorlacticacid solutions on the microflora of chilled beef carcasses. Int. J. Food Microbiol., 91,43–50.

Industrial Bio-Test Laboratories, Inc. (1975a) 90-day sub-acute oral toxicity study withDEQUEST2010inalbinorats.UnpublishedreportNo.622-05545,datedMay22,1975,to Monsanto Co. from Industrial Bio-Test Laboratories, Inc., Northbrook, Illinois, USA.SubmittedtoWHObyEcolab,Inc.Areportofanauditofthis90-daystudyinrats,con-ductedbyBoozAllen&Hamilton,Inc.,FlorhamPark,NJ,USA,anddatedNovember7,1978,wasavailable.

Industrial Bio-Test Laboratories, Inc. (1975b) 90-day sub-acute oral toxicity study withDEQUEST2010inbeagledogs.UnpublishedreportNo.611-05544,datedMay22,1975,to Monsanto Co. from Industrial Bio-Test Laboratories, Inc., Northbrook, Illinois, USA.SubmittedtoWHObyEcolab,Inc.Reportsofanauditofthis90-daystudyindogs,con-ducted by BoozAllen & Hamilton, Florham Park, NJ, USA, and dated September 28,1978andMarch7,1979,wereavailable.

Kitis,M. (2004)Disinfectionofwastewaterwithperaceticacid:a review.Environ. Int.,30,47–55.

LittonBionetics, Inc.(1978)MutagenicityevaluationofBio-77-401FA65184inthemouselymphomaforwardmutationassay(LBIprojectNo.20839).UnpublishedreporttoMon-santo Co from Litton Bionetics, Inc. Kensington, Maryland, USA. The test article wasDequest2010.

Michael,W.R.,King,W.R.&Wakim,J.M.(1972)Metabolismofdisodiumethane-1-hydroxy-1,1-diphosphonate(disodiumetidronate)intherat,rabbit,dogandmonkey.Toxicol. Appl. Pharmacol.,21,503–515.

MonsantoMaterialSafetyDataSheet.Dequest®2010Phosphonate—Forscaleandcorro-sion control, chelation, dispersion. Available at http://www.dequest.com/pages/safety/default.asp?re=na.

Monsanto,Co.(1977)Mutagenicityplateassay:Dequest2010(medicalprojectNo.LF-76-200). Unpublished report submitted to Ecolab, Inc. by Leonard J. Flowers, MonsantoIndustrialChemicalsCo,St.Louis,Missouri,USA.

Nixon,G.A.,Buehler,E.V.,Newman,E.A.(1972)Preliminarysafetyassessmentofdisodiumetidronateasanadditive toexperimentaloralhygieneproducts.Toxicol. Appl. Pharm.,22,661–671.

Nolen,G.A.&Buehler,E.V.(1971)TheeffectsofdisodiumetidronateonthereproductivefunctionsandembryogenyofalbinoratsandNewZealandrabbits.Toxicol. Appl. Pharm.,18,548–561.

ThePillsburyCompany(19??)Βeta-caroteneandascorbicacidcontentoftomatoes,potatoesandbroccoliwithandwithouttreatmentwithOXY-15.UnpublishedreporttoEcolab,Inc.fromDr.PatriciaH.Sackett,ResearchScientist,TPCLabs,PillsburyCompany,30Uni-versityAvenue,SE.,MN,USA.

Physician’sDeskReference(2004)Didronel.In:Physician’s desk reference: 2004,57thEd.,Versailles,KY:Thompson,p.2834.

Sabry,J.H.,Fisher,K.H.&Dodds,M.L.(1958)Humanutilizationofdehydroascorbicacid.J. Nut.,64,457–466.

Steber, J. & Wierich, P. (1986) Properties of hydroxyethane diphosphonate affecting itsenvironmentalfate:degradability,sludgeadsorption,mobilityinsoils,andbioconcentra-tion.Chemosphere, 15,929–945.

PEROXYACID ANTIMICROBIAL SOLUTIONS  115

K2

Sun,C.Q.,O’Connor,C.J.&Roberton,A.M. (2002)Theantimicrobialpropertiesofmilkfatafterpartialhydrolysisbycalfpregastriclipase.Chem. Biol. Interact.,140,185–198.

Upendraroa, A., Chandrasekhararoa, T. & Subbaroa, T. (1972) Comparative studies onthe epoxidation techniques of vegetable oils. Fette — Seifen — Anstrichmittel, 76,355–357.

YoungerLaboratories(1965)ToxicologicalinvestigationofDequest®2010(MonsantoProjectNo.Y-65-74).UnpublishedreporttoMonsantoCo.fromF.M.Younger,YoungerLabora-tories,St.Louis,Missouri,USA.