jeff russell

Upload: timganesan8668

Post on 06-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Jeff Russell

    1/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 248

    11. The Structure of Gunk: Adventures

    in the Ontology of Space

    Jeffrey T. Russell

    1. points and gunk

    Here are two ways space might be (not the only two): (1) Space

    is pointy. Every finite region has infinitely many infinitesimal,

    indivisible parts, called points. Points are zero-dimensional atomsof space. In addition to points, there are other kinds of thin bound-

    ary regions, like surfaces of spheres. Some regions include their

    boundariesthe closed regionsothers exclude themthe open

    regionsand others include some bits of boundary and exclude

    others. Moreover, space includes unextended regions whose size

    is zero. (2) Space is gunky.1 Every region contains still smallerFN:1

    regions there are no spatial atoms. Every region is thick there

    are no boundary regions. Every region is extended.

    Pointy theories of space and space-time such as Euclidean space

    or Minkowski spaceare the kind that figure in modern physics.

    A rival tradition, most famously associated in the last century with

    A. N. Whitehead, instead embraces gunk.2 On the WhiteheadianFN:2view, points, curves, and surfaces are not parts of space, but rather

    abstractions from the true regions.

    Three different motivations push philosophers toward gunky

    space. Thefirst is that thephysical space (space-time)of ouruniverse

    might be gunky. In Quinean terms, spatial regions are posits,

    invoked to explain what goes on with physical objects; the main

    reason to believe in point-sized regions is the role they play in our

    Dean Zimmerman has been a relentless source of suggestions and criticismthroughout the writing of this chapter. Thanks are also due to Frank Arntzenius,Kenny Easwaran, Peter Forrest, Hilary Greaves, and John Hawthorne for helpful

    comments.1 David Lewis coined the term gunk to describe infinitely divisible atomlessobjects (1991).

    2 For historical background, see Zimmerman 1996b.

  • 8/3/2019 Jeff Russell

    2/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 249

    The Structure of Gunk 249

    physical theories. So far it looks like points are doing well in that

    regard despite their uncanniness: all of our most successful theories

    representspace-time as a manifold of points. But do the points really

    do important theoretical work, or are they mere formal artefacts,

    scaffolding to be cast off of our final theory? Modern physics does

    offer some evidence for the latter. Frank Arntzenius observes that

    the basic objects of quantum mechanics are not fields in pointy

    space, but instead equivalence classes of fields up to measure zero

    differences: point-sized differences between fields are washed out

    of the theory (2007). This is suggestive: perhaps the points dont

    belong in the theory in the first place.

    A second motivation is interest in possibility rather than actuality.

    For some metaphysicians, whether or not our own universes spaceis pointy or gunky is of only incidental interest; the real question

    is what ways space could bein the sense of metaphysical rather

    than epistemic possibility. This question is pressing due to the

    role of material gunk in recent debates. Many philosophers have

    the intuition that atomless material objects are genuinely possible,

    even if atomism happens to be true in the actual world, and certain

    views have beencriticized for failing to accommodatethis intuition.3FN:3

    Furthermore, there are reasons to think that gunky space is the right

    environment for material gunk. One road to that conclusion is by

    way of harmony principles that link the composition of material

    objects to the composition of the spatial regions they occupy.4FN:4

    Another route to gunky space is by way of contact puzzles.5

    FN:5

    Suppose two blocks are in perfect contact. If space is pointy, then

    there is a region of space at the boundary between the two blocks.

    Either this region is empty which apparently contradicts the claim

    that the two blocks are touchingor else it is occupied by both

    blocks which looks like disturbing co-location or else some

    strange asymmetry is at work. Perfect contact may not take place

    in the actual world, but to the extent that one thinks it a genuine

    (metaphysical) possibility, this should incline one toward gunk. (Its

    plausible, for instance, that gunky space is the right environment

    for corpuscular Newtonian mechanics, where collisions are taken

    seriously.)

    3 E.g. in Sider 1993.4 Cf. Gabriel Uzquiano, Mereological Harmony (unpublished draft).5 Cf. Zimmerman 1996a.

  • 8/3/2019 Jeff Russell

    3/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 250

    250 Jeffrey T. Russell

    A third reason to investigate gunky space is to formalize the

    psychology of space. Regardless of whether phenomena like perfect

    contact are physically or even metaphysically possible, they surely

    play into common sense spatial reasoning. Rigorously capturing

    this kind of reasoning is important for formal semantics, cognitive

    science, and artificial intelligence (Cohn and Varzi 2003).

    These different motivations all call for a clear account of space

    without points. My interest is in framing theories of gunky space

    that are as formally adequate and precise as the theories of pointy

    space on offeran ambition many share. One pioneer is Alfred

    Tarski, who presents an elegant formalization of Whiteheadian

    geometry, which he describes as a system of geometry destitute

    of such geometrical figures as points, lines, and surfaces, andadmitting as figures only solidsthe intuitive correlates of open

    (or closed) regular sets of three-dimensional Euclidean geometry

    (1956). (Note, though, that the issues in this chapter are independent

    of spaces particular dimension or curvature.)

    In addition to framing precise theories, it is useful to construct

    models of gunky space. The open regular sets are a model for

    Tarskis geometry, since they satisfy his axioms.6 This demonstratesFN:6

    that his theory is logically consistentas long as the Euclidean

    theory, in whose terms the model is couched, is consistent. (Of

    course, the model is not meant to show what space really is. If

    gunky space were really an abstraction from pointy space, then the

    gunky space would only exist if the pointy space did as wellthiswould make things awfully crowded.)

    Recently, though, Whiteheadian space has come under fire:

    Peter Forrest (1996) and Frank Arntzenius (2007) have indepen-

    dently offered parallel arguments that challenge the coherence

    of some gunky accounts.7 Theories like Tarskis run into seri-FN:7

    ous trouble when we ask questions about the precise sizes of

    regions. In this chapter I present a generalization of the For-

    rest Arntzenius argument that makes clear which features of

    6 An open regular set is an open set which is the interior of its closure. The interiorof x (int x) is the largest open set contained in x (equivalently, the set of xs interior

    points). The closure of x (cl x) is the smallest closed set that contains x (equivalently,the set of xs limit points). For example: the open interval (0, 1) is an open regular set;the union of open intervals (0,1) (1,2) is not.

    7 John Hawthorne and Brian Weatherson present a related argument (2004).

  • 8/3/2019 Jeff Russell

    4/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 251

    The Structure of Gunk 251

    space are incompatible. The objection thus sharpened, I take up

    gunks defense, considering three responses: Arntzeniuss, For-

    rests, and a new response. The Forrest Arntzenius argument

    requires some concessions, but it does not force us to give up

    gunky space.

    2. three kinds of spatial structure

    Before presenting the main argument in Section 3, I need to

    lay some formal groundwork for the relevant spatial structures.

    Along the way I isolate three different constraints on Whiteheadian

    space.

    2.1 Mereology

    The first of these structures is mereology: a region x may be part of

    a region y (for short, x y); synonymously: y contains x, or x is a

    subregion of y (in the weak sense where every region is a subregion

    of itself).8 My main argument only requires two properties of thisFN:8

    relation (x, y, and z are arbitrary regions throughout):

    (1) x x. (Reflexivity)

    (2) If x y and y z, then x z. (Transitivity)

    These are very weak conditions: any two-place relation at all has a

    transitive and reflexive extension.Some results besides the main argument depend on slightly more

    structure. Adding one further proposition yields the axiom system

    of Ground Mereology (M):

    (3) If x y and y x, then x = y. (Antisymmetry)

    Throughout this chapter I invoke the three axioms of M without

    apology. I dont make use of any mereological principles beyond

    these without due warning.

    I also use the following definitions:

    (D1) x and y overlap iff there is a region z such that z x and

    z y. Regions that do not overlap are disjoint.

    (D2) x is a proper part of y (x < y) iff x y and x = y.

    8 The definitions and axioms in this section are adapted from Varzi 2006.

  • 8/3/2019 Jeff Russell

    5/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 252

    252 Jeffrey T. Russell

    Intuitively, a proper part must have something left oversome-

    thing that supplements it. This intuition has formalizations of

    various strengths:

    (4) If x < y, then y has a part that is disjoint from x. (Weak

    Supplementation)

    (5) Unless x y, y has a part that is disjoint from x. (Strong

    Supplementation)

    An even stronger formulation is that x must have some remainder in

    ysome part which exactly makes up the difference between them.

    (D3) A region z is the remainder of x iny (or the mereological

    difference ofy and x, denotedy x) iff: for every region

    w, w z iff w is a part of y that is disjoint from x.

    A remainder is a maximal supplement. This gives rise to the third

    and strongest supplementation principle:

    (6) Unless x y, x has a remainder iny. (Remainder Closure)

    Besides taking differences between regions, we can also take sums

    of regions.

    (D4) A region f is a fusion (or mereological sum) of a set of

    regions S iff: for every region x, x overlapsf iff x overlaps

    some y S.

    Intuitively, the fusion of the ys is the region that includes all of the

    ys and nothing more. If Strong Supplementation holds, then any

    set of regions has at most one fusion. As we have various supple-mentation principles, we also have various composition principles.

    This is one standard principle:

    (7) For any x andy, someregion isa fusionof x andy (denoted

    x y). (Sum Closure)

    The principles listed so far are together equivalent to the axioms of

    Closure Extensional Mereology (CEM). A much stronger composition

    principle is the following:

    (8) Any set of regions has a fusion. (Unrestricted Composi-

    tion)

    Under this principle, mereological sums exist for arbitrary finite

    or infinite collections of regions. Adding Unrestricted Compositionto CEM yields the system of General Extensional Mereology (GEM),

    also called simply standard mereology. Euclidean and Tarskian

  • 8/3/2019 Jeff Russell

    6/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 253

    The Structure of Gunk 253

    geometry both satisfy GEM, but (to reiterate) I dont assume

    standard mereology in what follows.

    Points have a distinctive mereological feature: they are atoms,

    regions with no proper parts. Pointless space has a corresponding

    feature: it is atomless.

    (9) Every region has a proper part. (Mereological Gunk)

    2.2 Topology

    Topology describes general shape properties such as connected-

    ness, continuity, and having a boundary. Mathematical orthodoxy

    casts topological structure in terms of properties of point-sets:

    the open sets are taken as primitive, and other structures aredefined in terms of them. This is of little use if there are no

    points. Instead Ill follow the tradition of Whitehead, Bowman

    Clarke (1981), and Peter Rper (1997), which instead character-

    izes topology in terms of a primitive relation of connectedness.

    Intuitively, two regions x and y are connected (x y) if they are

    adjacent, including if they overlap. The corresponding notion in

    point-set topology is sharing a limit point; i.e. having overlapping

    closures.9FN:9With connectedness on hand, we can define a number of other

    important notions.10FN:10

    (D5) x is a boundary of y iff every part of x is connected to y

    and also to some region disjoint from y.A boundary region is tightly sandwiched between some region and

    its complement.

    (D6) x is open iff no part of x is a boundary of x.

    9 Tarski does not take connection as primitive in his geometry. Instead, Tarskitreats sphericality as a primitive property of regions. The spheres impose a metricstructure on the space, which induces a topology. Tarski (with some ingenuity)frames a purely mereological condition for two spheres to be concentric. Then wecan define x and y are connected as There exists some sphere s such that everysphere concentric with s overlaps both x and y. This parallels sharing a limit point inpoint-set topology: the set of concentric spheres is an ersatz point.

    10 The following connection axioms suffice to prove the claims in this section:

    (i) x x. (Reflexivity)(ii) If x y, then y x. (Symmetry)(iii) If x y and y z, then x z. (Monotonicity)

  • 8/3/2019 Jeff Russell

    7/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 254

    254 Jeffrey T. Russell

    (D7) A region x is an interior part of y iff x y and x is not

    connected to any region disjoint from y.11FN:11

    It follows from the definitions that for any x y, either x is a

    boundary of y, or else x contains an interior part of y. In particular,

    every open region has an interior part. Moreover, except when a

    region is disconnected from the rest of space, every interior part is

    a proper part.

    Whiteheadian space isnt just mereologically distinctive, but also

    topologically distinctive: there are no boundary regions. We can

    formulate this as a second condition on gunk:

    (10) No region is a boundary. (No Boundaries)

    Or equivalently,

    (11) Every region is open.

    This entails, and in the presence of Strong Supplementation is

    equivalent to,

    (12) Every region has an interior part.12FN:12

    I call space that satisfies No Boundaries topologically gunky. Topo-

    logical Gunk is a natural extension of Mereological Gunk: not only

    does every region have a proper part, it has a part which is strictly

    inside of it.

    I draw on one further topological notion. A topological basis is

    a collection of open regions with which all of the open regions

    can be characterized: any open region is a mereological sum of

    basis regions. An important topological basis in Euclidean space

    is the set of rational spheres: the open spheres with rational center

    coordinates and rational radii. This basis is countable. Any space

    that is shaped like Euclidean space, whether pointy or gunky, has a

    countable basis. For instance, the regions in Tarskis geometry that

    correspond to the rational spheres make up a countable basis there.

    Since in topologically gunky space every region is open,

    11 When Strong Supplementation holds, the clause x y is redundant.12 (11) entails (10) because if x is a boundary of an open region y, then x is disjoint

    from y and connected to y at every part, hence not open. (12) entails (10) by thefollowing argument. Suppose x is a boundary of y. First case: x y. By Strong Sup-

    plementation, some z x is disjoint from y. But every part of xand so every part ofzis connectedtoy, so z hasno interior part. Second case:x y. Every z x is connect-edtosome w disjoint fromy, andthusdisjoint from x aswellso x hasnointeriorpart.

  • 8/3/2019 Jeff Russell

    8/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 255

    The Structure of Gunk 255

    (13) If space is topologically gunky and B is a topological

    basis, every region contains an element of B.

    This is important.

    2.3 Measure

    Besides mereology and topology, regions have sizes. This feature

    is formalized using a measure function, m, which assigns sizes (rep-

    resented by non-negative real numbers up to infinity) to regions

    of space (Munroe 1953). A measure function should satisfy this

    condition:

    (14) If x and y are disjoint and f= x y, then m(f) = m(x)+

    m(y). (Finite Additivity)FiniteAdditivity has an important generalization, which is an axiom

    of standard measure theory:

    (15) For any countable set of pairwise-disjoint regions S, if

    f is a fusion of S then m(f) =

    xS m(x). (Countable

    Additivity)

    With Remainder Closure, this has an important consequence:

    (16) For any countable set of regions S, if f is a fusion of S

    then m(f)

    xS m(x). (Countable Subadditivity)

    The whole is no larger than the sum of its parts. I discuss this

    condition in Section 4.2.

    Now we turn to measuring gunk. In pointy space, there are unex-tended regions regions (like points, curves, and surfaces) that have

    measure zero. Gunky space is supposed to be free of unextended

    regions:13FN:13

    (17) Every region has positive measure. (No Zero)

    Gunky space also shouldnt have discrete chunks, regions with

    no parts smaller than some finite size. Rejecting chunks means

    committing to the following principle:

    (18) Every region has an arbitrarily small part: i.e., for every

    region x, for any > 0 there is some y x such that

    m(y) . (Small Regions)

    13 Arntzenius and Hawthorne propose this condition (2005).

  • 8/3/2019 Jeff Russell

    9/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 256

    256 Jeffrey T. Russell

    Small Regions holds automatically in pointy space: every region

    contains a point with size zero. It also follows from Mereological

    Gunk, given Remainder Closure and Finite Additivity.14 The con-FN:14

    junction of No Zero and Small Regions entails (and again given

    Remainder Closure and Finite Additivity, it is equivalent to):

    (19) Every region has a strictly smaller part. (Measure-Theor-

    etic Gunk)

    As having an interior part is a natural topological elaboration on

    having a proper part, having a smaller part is a natural measure-

    theoretic elaboration. Note that since each of the three ways of

    being gunky constrains a different sort of structure, they need not

    all stand or fall together.

    3. disaster

    In fact, these structural constraints cant allhold.The followingargu-

    ment by Arntzenius (in this volume), gives a picture of why not.

    (Forrest (1996) offers a parallel argument using a different construc-

    tion.) For simplicity, consider one-dimensional gunky spacea

    lineand let the Big Interval be a one-inch interval in this space.

    Let a be the 14 -inch segment in the middle of the Big Interval. Then

    consider the two subregions of the Big Interval flanking a, and let b1and b2 be intervals

    12 of

    18 inch long (i.e.

    116 inch) in their respective

    middles. This divides r into a, b1, b2, and four equal regions sur-rounding them. In each of the latter four regions, pick out a region

    that is 14

    of 116

    inch long (i.e. 164

    inch); call these c1 through c4. And

    so on. Call a, b1, b2, . . . the Cantor Regions.

    The Cantor Regions include one 14 -inch interval, two whose

    lengths add up to 18 inch, four whose lengths add up to1

    16 inch, etc.

    So the sum of their lengths is 14 +18 +

    116 + . . . =

    12 inch strictly less

    than the length of the Big Interval. And yet: if space is topologically

    14 Except in the degenerate case where some infinite region only has infinitesubregions. Proof. Consider an arbitrary region x with positive finite measure. ByMereological Gunk, x has a proper part y, and by Remainder Closure (its easy toshow) x = y (xy), so by Finite Additivity m(x) = m(y)+ m(xy). It follows that

    at least one of m(y) and m(xy) must be less than or equal to 12 m(x). Repeating thisn times procures a part of x no larger than m(x)/2n, which is eventually smaller thanany positive .

  • 8/3/2019 Jeff Russell

    10/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 257

    The Structure of Gunk 257

    gunky, then the Big Interval is the fusion of the Cantor Regions (Ill

    defer the details to the main argument below). We have a set of

    regions whose lengths add up to half an inch, but whose fusion is a

    whole inch long: this is serious trouble.

    Before responding to this predicament, I want to sharpen the

    troubling feeling with my own more general argument.15FN:15

    Theorem. The following five theses are inconsistent:

    1. Space has a transitive and reflexive parthood relation.

    2. Space has a topology with a countable basis.

    3. Space is topologically gunky.

    4. Space has a non-trivial countably subadditive measure.16FN:16

    5. Every region has an arbitrarily small subregion.

    Proof. Consider a region with positive finite measure the BigRegionand call itsmeasureM.Letthe Insidersbethe basis elements

    that are parts of the Big Region. Since the basis is countable, there

    are countably many Insiders, so we can enumerate them. For

    i = 1,2, l . . ., pick a subregion of the ith Insider whose measure is

    less than M/2i+1; call these subregions the Small Regions. The Small

    Regions sizes add up to strictly less than M.

    Even so, the Big Region is a fusion of the set of Small Regions. To

    show this, we need to show that every region that overlaps a Small

    Region overlaps the Big Region, and vice versa. The first direction

    is obvious: each Small Region is part of the Big Region. Now let x

    be any region that overlaps the Big Region, so x and the Big Region

    have a part in common, y. By Topological Gunk y contains a basiselement b, which must be one of the Insiders, and so b contains a

    Small Region. Since b x, x overlaps a Small Region.

    Therefore the Big Region fuses the Small Regions, as advertised.

    But the Small Regions are too small for that! This means that Count-

    able Subadditivity fails.

    Standard mereology, topology, and measure theory, even when

    stripped to a bare skeleton, are inconsistent with topological gunk.

    15 My argument is more closely analogous to Forrests variant than ArntzeniussForrests construction, though, depends specifically on pointy representations ofregions: he appeals to regions that are well-represented by neighborhoods of points Q1

    with rational coordinates. Moreover, both Arntzeniuss and Forrests constructionsdepend on assumptions about the geometry of space. By contrast, my construction ispurely topological.

    16 By non-trivial I mean that at least one region has positive finite measure.

  • 8/3/2019 Jeff Russell

    11/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 258

    258 Jeffrey T. Russell

    Any account of gunk that commits to all five theses is incoherent

    so things look bad for Whiteheadian space.

    3.1 Aside: measurability

    My argument officially requires a measure function that is defined

    for every region of space. This may seem too strict a requirement;

    the Vitali theorem and the more notorious BanachTarski theorem

    show that in Euclidean space there are sets of points that cannot be

    consistently assigned a measure (these theorems require the Axiom

    of Choice). Thus the standard measure function in Euclidean space

    (Lebesgue measure) is defined only on a distinguished collection

    of sets, which are called measurable. Here are two metaphysical

    interpretations of the mathematics: one might say that some regions

    in Euclidean space have no sizes; or one might say that the true

    regions in Euclidean space correspond to just the measurable sets.17FN:17

    (On the latter interpretation, Unrestricted Composition fails: an

    arbitrary set of regions does not necessarily compose a regionfor

    there are sets of point-sized regions which do not. Fusions of

    arbitrary countable sets of regions still exist, but all bets are off for

    the uncountable sets.)

    We hope that gunky space will free us from such discomforts.

    Arntzenius and Hawthorne propose a requirement on gunk to this

    effect (they call it Definition) (2005):

    (20) Every region is measurable. (Measurability)Note that my argument requires no composition principles, so

    Measurability can be had cheaply by banishing any supposed

    exceptions, as in the latter response to BanachTarski. But even

    admitting non-measurable regions gives no relief from my argu-

    ment. Small Regions guarantees the existence of regions with small

    measures, which are a fortiori measurable, and this supplies enough

    measurable regions to make the argument work. Even if we revise

    this thesis to say only that every measurable region has an arbi-

    trarily small part (so we dont get measurable regions for free)

    the argument still succeeds with an unobjectionable extra premise:

    every basis element (e.g. every sphere) is measurable. This permits

    restricting the measure function far beyond what would suffice to

    17 Arntzenius discusses these (2007).

  • 8/3/2019 Jeff Russell

    12/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 259

    The Structure of Gunk 259

    accommodate BanachTarski, without escaping an inch from my

    argument. Measurability is not the culprit.

    4. escape

    The generalized ForrestArntzenius argument doesnt leave very

    many places for the gunk theorist to turn. One way out is to reject

    one of the three kinds of structure: in fact space does not have,

    or (for the theorist who only wants the possibility of gunk) does

    not necessarily have measure, topology, or mereology. Deleting

    any of these is dizzying; perhaps sizeless or shapeless spaces are

    broadly possible even so, but henceforth I assume that our gunk

    theorist wants to hold onto at least the rudiments of parthood, size,and shape. This theorist has to deny one of the five inconsistent

    conditions on these structures.

    The mereological conditionthat parthood is reflexive and tran-

    sitive is so weak as to be beyond reproach.

    What about givingup a countabletopology? There are topological

    spaces that do not have countablebases,but generallyspeaking they

    are exotic infinite dimensional affairs. Such space would be shaped

    nothing like Euclidean space or any other ordinary manifold. There

    may still be interesting possible spaces to be explored in this

    direction, but for now I leave that exploration to others.

    And Small Regions? We could imagine chunky space with some

    smallest volumesay on the Planck scalewhich is a floor onthe size of regions. But for space like this to be gunky it would

    have to be non-standardfor as I observed in Section 2.3, denying

    Small Regions while holding Mereological Gunk entails that either

    Remainder Closure or Finite Additivity fails. In what follows I

    consider some revisions to standard mereology and measure theory

    in their own right, but none of themgainappealfor the gunk theorist

    by being conjoined with the denial of Small Regions. So I pass over

    this route, too.

    This leaves two claims open to scrutiny: Topological Gunk and

    Countable Subadditivity. Rejecting either of these bears a serious

    cost, but does present live options for the gunk theorist. Arntze-

    niuss response denies Topological Gunk, while Forrests response(in a roundabout way involving non-standard mereology) denies

    Countable Subadditivity. I will discuss each of these avenues, as

  • 8/3/2019 Jeff Russell

    13/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 260

    260 Jeffrey T. Russell

    well as a third response that appeals more directly to non-standard

    measure theory.

    4.1 Gunk with boundaries

    Arntzenius (following Roman Sikorski and Brian Skyrms) propos-

    es a conception of gunky space that departs rather dramatically

    from Whiteheads (Arntzenius 2007; Sikorski 1964; Skyrms 1993).

    Arntzeniuss space obeys standard mereology, it has a topology

    with a countablebasis, it has a countably additive measure function,

    and moreover, it is both mereologically and measure-theoretically

    gunky. It is not, however, topologically gunky, and thus escapes

    the problem at hand.To motivate Arntzeniuss construction of a model for this kind

    of space, lets revisit Tarskis model the open regular sets from

    another angle. We start with orthodox pointy Euclidean space and

    then smudge it, leaving out some distinctions the pointy theory

    makes but retaining the most important structure. There is a gen-

    eral method for smudging certain unimportant elements out of a

    mereology18 Arntzeniuss metaphor for this is putting on blurryFN:18

    glasses. The method works as long as the unimportant elements

    form an ideal: any part of an unimportant element must be unim-

    portant, and the fusion of any two unimportant elements must be

    unimportant. To model Tarskis space,we smudgethe boundaries of

    regions; its not hard to check that the boundary regions are an ideal.Once we have picked an ideal of unimportant elements, we define

    an equivalence relation on the original space: two regions x and

    y are considered equivalent just in case xy and y x are both

    unimportant.19 (It is easy to show that for any ideal this is indeedFN:19

    an equivalence relation.) This presents us with a natural collection

    18 Assuming CEM, i.e. that the mereology forms a Boolean algebra. The result iscalled a quotient algebra (Sikorski 1964: 29 ff.).

    Note: a Boolean algebra conventionally includes bottom and top elements: anull region contained by everything and a universal region containing everything.There aretrivial translationsbetween mereologywith a null regionand without it:forinstance, in the presence of a null region, disjoint regions have exactly one common

    part. Introducing a null region is a technical convenience on par with introducing as a value for functionsthat increase without bound, or # to indicate truth-valuegaps.

    19 Including when xy (or y x) is null i.e., when x < y (or y < x).

  • 8/3/2019 Jeff Russell

    14/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 261

    The Structure of Gunk 261

    of smudged objects: the equivalence classes under this relation

    represent regions of gunky space.20 In the case of Tarskian space,FN:20

    this amounts to considering two Euclidean regions equivalent if

    they agree up to their boundary points.

    The representatives inherit mereology from the original space: if

    gunky regions r and s are represented by equivalence classes X and

    Y, then r s iff for every x X and y Y, xy is unimportant.

    They also inherit topological structure from the Euclidean topology:

    r s iff for every x X and y Y, x y. Showing that these satisfy

    the standard axioms is straightforward.21 (Choosing a measureFN:21

    for Tarskian space is more involved; I discuss this in Section 4.4.)

    Each Tarskian equivalence class contains a unique open regular set,

    which we can treat as a regions canonical representative; in fact,the model we have just constructed is isomorphic to Tarskis.

    This model gives primary importance to the topological gunk

    condition: we use blurry glasses that cant see boundaries, ensuring

    that the No Boundaries condition will be met. As we have seen,

    this condition is problematic. Arntzenius responds by instead priv-

    ileging the measure-theoretic features of gunk, in particular No

    Zero. His model is constructed using blurry glasses that are blind

    to Euclidean regions with (Lebesgue) measure zero. These regions

    also form an ideal, so we can follow exactly the same construction:

    gunky regions are represented by equivalence classes of regions that

    have measure zero differences. We obtain mereology and topology

    as in the preceding paragraph,22

    and we can set the size of a regionFN:22

    20 One of these equivalence classesthe ideal itselfrepresents the null region.This class can simply be discarded from the final structure.

    21 More carefully: in general this process results in a Boolean algebra; whetherthe algebra is completei.e., whether Unrestricted Composition holds needs to bechecked in individual cases. In the instances I consider, it does hold.

    Its not clear what the standard axioms are for connection, but at any rate thedefined relation is reflexive, symmetric, and monotonic (Footnote 9), as well asobeying Rpers decomposition principle,

    (iv) If x (y z) then x y or x z.

    Finding a full adequate set of topological axioms in terms of connection remainsa major undertaking. Rper offers a set of ten axioms, but his tenth axiom isequivalent to the problematic Topological Gunk condition (and thus is not satisfied

    by Arntzeniuss space); removing this axiom undoes his method of recovering pointsfrom pointless topology.

    22 Arntzenius uses a different definition of connection. Say p is a robust limitpoint of x iff for every open neighborhood u p, m(u x) > 0. (Measure-equivalent

  • 8/3/2019 Jeff Russell

    15/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 262

    262 Jeffrey T. Russell

    to be the (Lebesgue) measure of any member of its representative

    equivalence class, since equivalent regions have the same measure.

    This yields a model of measure-theoretically gunky space couched

    in the terms of standard pointy space. It follows that the consistency

    of the one reduces to the consistency of the other: the prospects look

    bright for Arntzenian space.

    On the other hand, this space has some surprises for the gunk the-

    orist. Consider again the Cantor Regions from Section 3. Arntzenian

    space harbors both the Big Interval and a proper part of it that fuses

    the Cantor Regionsthe Cantor Fusion. Moreover, it has a third

    region making up the difference between themthe Cantor Dust.

    This is a peculiar region. While it is extended (its size is positive),

    it has no interior, and it is a boundary of the Cantor Fusion: trueto form, Arntzenian space violates the topological gunk condition.

    Furthermore, the Cantor Dust is entirely scattered: every part is

    divisible into disconnected parts. It is tempting to describe the

    region as a fusion of uncountably many scattered pointsbut of

    course this is the wrong description, since there are no points.

    In Euclidean space, one can completely characterize a region in

    terms of the points that make itup: the points are a mereological basis.

    Likewise in Tarskian space, the rational spheres are a mereological

    basis. Arntzenian space has no analog to either the points or

    the spheres in this respect. The points are an atomic basis for

    Euclidean space; the spheres are a countable basis for Tarskian

    space. If Arntzenian space has any set of fundamental parts itmust be neither atomic nor countable. This isnt a crippling deficit,

    but it helps explain why regions like the Cantor Dust are difficult

    to get an intuitive grip on.

    Arntzenian space is gunky, but in a weaker sense than full-

    blooded Whiteheadian space. Space could be gunky in a weaker

    sets have the same robust limit points; we can treat the robust closed sets ascanonical representatives.) Arntzeniuss condition for the connectedness of regionsrepresented by X and Y is that some p is a robust limit point of every x X and

    y Y. This is equivalent to my condition. (Say x and y have no robust limit points incommon. Then every point in clx cly has a neighborhood u such that m(u x) = 0or m(u y) = 0. Since the Euclidean topology has a countable basis, there are

    countable collections of open sets {vi} and {wi} such that clx cly

    vi

    wi andfor each i, m(vi x) = m(wi y) = 0. By countable additivity, x

    vi and y

    wi

    are measure-equivalent to x andy (respectively) and theyhave disjoint closures thatis, they are not connected. The converse is clear.)

  • 8/3/2019 Jeff Russell

    16/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 263

    The Structure of Gunk 263

    sense still, satisfying Mereological Gunk but neither the topological

    nor the measure condition. The now-familiar smudging method

    produces a model for such space: we look at Euclidean space

    through blurry glasses blind to regions made of finitely many points,

    and define mereology, topology, and measure in parallel fashion to

    Arntzeniuss space. The resulting space underscores how separate

    the different gunk conditions are from one another: this space is

    very much like ordinary Euclidean space in that it has bound-

    aries, unextended regions, zero-dimensional regions, distinctions

    between open and closed spheresbut even so, it has no atomic

    regionsno points. For those whose interest in gunk springs from

    purely mereological concerns, this bare-bones gunk should suffice.

    4.2 Interlude: foundations of measure

    One way to save gunk is to give up the topological condition and

    settle for a weaker kind of gunkiness. But some gunk theorists for

    instance, those who turn to gunk to solve contact puzzlesmay be

    less willing to admit violations of No Boundaries. For these theorists,

    the main alternative is to deny Countable Subadditivity. This is

    a natural response for those in the WhiteheadTarski tradition:

    the Forrest Arntzenius problem arises because Whitehead and

    Tarski simply didnt take measure into account in their theories.

    In particular, Tarskis geometry of solids satisfies four of the

    contradictory five theses, but breathes not a word of measure.Since in standard mereology Countable Subadditivity follows

    from Countable Additivity, I turn to the latter principle. Is there

    a plausible theory of full-fledged measurable space without this

    condition? Answering this question requires a detour into the

    philosophical foundations of measure theory. So far I have treat-

    ed sizes as if they were fundamental numerical tags on things.

    This is obviously a fiction; the numbers and arithmetic operations

    on them arise from other features of the world. Treating sizes

    as numbers is convenient, but can mislead: it gives the illusion

    that numerical operations are automatically meaningful, obscuring

    underlying assumptions.23 We must make sense of sums of sizes,FN:23

    and specifically infinite sums.

    23 Compare Ernest Nagels comments (1931: 313).

  • 8/3/2019 Jeff Russell

    17/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 264

    264 Jeffrey T. Russell

    Say we have some determinable property of regions. For this

    property to be size, it has to have quantitative structure. First, the

    determinates should at least be ordered: it must be sensible to say

    that this objects size is greater or less or the same as that objects

    size. This guarantees only a fairlyweak kind of quantitativeness in

    the medieval jargon, that of intensive qualities. Size, though, is an

    extensive quality: it has algebraic structure such that sizes can beadded. This operation isnt literally numerical addition, but its

    structurally analogous.

    The algebra of sizes does not float free: it must correspond to a

    natural relation on the objects that have sizes; Ill call this relation

    aggregation.24 Aggregation imposes an algebraic structure on thingsFN:24

    that have sizes; this structure is what underpins addition of sizes.The sum of two things sizes is the size of their aggregate.

    (21) If x is the aggregate of y and z, then the size of x is the

    sum of the size of y and the size of z. (Finite Additivity)

    This additivity condition, I claim, has the status of a conceptual

    truth: without it there is no intelligible talk of adding sizes at all.

    What is aggregation? Its natural to say its mereological structure:

    x is the aggregate of y and z just in case y and z are disjoint regions

    whose mereological sum is x. Then the Finite Additivity condition

    above amounts to the condition by that name in section 2.3: the sum

    of two sizes is the size of the mereological sum of disjoint regions

    that have those sizes. Composition is what gives additive structure

    to sizes. For now, though, Ill go on saying aggregation withoutcommitting to which relation it is.

    This accounts for finite sums of sizes; but before we can evaluate

    Countable Additivity, we need to make sense of infinite sums. One

    way would be to define infinite sums of sizes directly in terms

    of another primitive relation: aggregation of infinite collections of

    regions. This would put Countable Additivity on par with Finite

    24 Why think this? One reason is operationalism, the view that physical quantitieslike size must be defined in terms of measurement procedures, and operations likeaddition of sizes must likewise reduce to some mechanical procedure that can beperformed on the things that are measured. Another reason is nominalism: if size

    properties arent reified, then their algebraic structure must latch directly onto thethings that bear the properties, as there isnt anything else for that structure todescribe. I dont find either of those reasons compelling, but even so I think theprinciple is true.

  • 8/3/2019 Jeff Russell

    18/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 265

    The Structure of Gunk 265

    Additivity as a defining condition for sums of sizes. But theres

    another way of spelling out infinite sums of sizes, which is the stand-

    ard way of making sense of infinite sums of numbers. This way lever-

    ages the account we already have of finite sums. First we precisely

    explicate the limit of a sequence of determinates.25 Then we defineFN:25

    the value of an infinite sum of sizes to be the limit of the sequence

    of finite sums. Using numbers to represent sizes and operating on

    them with the

    symbol tacitly calls on precisely this definition;

    so it was implicit in the original statement of Countable Additivity.

    This definition of an infinite sum of sizes makes no appeal at

    all to aggregation of infinitely many things. Still, there is such an

    infinite aggregation relationfor mereological sums, we have this

    in Definition 4. This raises a substantive question: is the size of anaggregate of infinitely many things always equal to the infinite sum

    of their sizes? That is, is the following true?

    (22) If x is the aggregate of a countable set of regions S, then

    the size of x is the sum of the sizes of the members of S.

    (Countable Additivity)

    This principle could go either way. Infinite sums of sizes are defined

    apart from infinite aggregations of regions; there is no conceptual

    reason why the two need coincide. Unlike Finite Additivity, Count-

    able Additivity does not spring from the requirements for extensive

    qualities: it might fail and yet leave size structure intact.

    The present escape route involves denying Countable Additivity

    in the particular case where aggregation is the disjoint fusionrelation. One could deny this by rejecting additivitythe limit of

    a sequence of sizes might not reliably yield the size of an infinite

    aggregateor by rejecting fusionsthe mereological sum might

    not be the right relation to play the aggregation role for sizes. Ill

    consider each of these options.

    4.3 Non-standard mereology

    Forrest levels his version of the argument against standard mere-

    ology; in particular Weak Supplementation (2002). This move

    25 We can define limit in terms of the ordering of sizes. Denote this order , andlet the interval [p, q] be the set of sizes {r : p r q}. Then we say limpk = p

    iff forevery interval [q, r] that includes p (p = q = r, unless p is s bottom or top), thereexists some integer K such that for all k > K, pk [q, r].

  • 8/3/2019 Jeff Russell

    19/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 266

    266 Jeffrey T. Russell

    appears to miss the point: my strengthened argument does not

    depend on any supplementation principle, so how could rejecting

    Weak Supplementation constitute a response? Only if this denial is

    followed by another: denying that fusions have countably additive

    sizes. If Weak Supplementation fails, then the definition of fusion

    (Definition 4) pulls apart in many ways from its usual theoreti-

    cal roleand so in particular it becomes plausible that the fusion

    relation so defined does not play the aggregation role for measure

    theory.

    When Weak Supplementation fails, some sets of regions have

    more than one fusion; a region may fuse a set and yet fail to contain

    any of its members; indeed, the fusion may be a proper part of some

    member. These bizarre consequences suggest that in the absenceof Weak Supplementation, the standard definition of fusion fails

    to capture a theoretically important natural relation, and fails to

    capture the ordinary intuitive concept of composition.26 This is notFN:26

    terribly surprising, seeing as Definition 4 was framed with standard

    mereology in mind.

    Lets distinguish fusion from another, closely related concept:

    (D8) A region u is the least upper bound of S (for short: lubS)

    iff: for every region x, x u iff x contains every y S.

    (Antisymmetry guarantees uniqueness.) The least upper bound of S

    is the smallest region that contains every element of S. If Remainder

    Closure holds, then x is a fusion of S ifand only if x is the least upper

    bound of S. So in standard mereological contexts, the two conceptshave the same extension. This fact, I submit, is the main motivation

    for the standard definition of fusion. But when supplementation

    principles fail, these two concepts pull apart from one another, and

    so we lose the main reason for accepting the definition. In particular,

    we lose our reason for thinking that the definition captures the right

    relation to ground our measure theory.

    Instead we should turn to the least upper bound. This relation

    gets along without Weak Supplementation better than the fusion

    relation: a least upper bound is unique and contains its members,

    at least. This suggests that we should replace our original statement

    of Countable Additivity with this one:

    26 Cf. Forrest 2007. Kit Fine argues for a general conclusion along the same lines(2007).

  • 8/3/2019 Jeff Russell

    20/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 267

    The Structure of Gunk 267

    (23) For any countable set of pairwise-disjoint regions S,

    m(lubS) =

    xS m(x). (Lub Additivity)

    This revision makes room for a consistent theory of topologically

    gunky spaceat the price of adopting (in Forrests words) a semi-

    standard mereology.

    Forrests model for such space is the open sets with measure-

    zero differences smudged (i.e. measure-zero equivalence classes

    of open sets). The ontology of Forrests space is richer than Tarskis

    but poorer than Arntzeniuss. We can see this by considering the

    Cantor Regions from Section 3 once again. Arntzeniuss space

    includes the Big Interval, the Cantor Regions, the Cantor Fusion

    (the mereological sum of the Cantor Regions), and the Cantor Dust

    (the difference between the interval and the Cantor Fusion). Tarskisspace, meanwhile, includes the Big Interval and the Cantor Regions,

    but countenances neither the Cantor Fusion (as an entity distinct

    from the Big Interval) nor the Cantor Dust. Forrests space includes

    the Big Interval, the Cantor Regions, and the Cantor Fusion (better

    called the Cantor Lub)but there is no dusty region making

    up the difference between the Cantor Fusion and the interval. This

    might strike some as the right balance, since the Cantor Dust is the

    most bizarre of the regions under consideration. But accepting this

    ontology sacrifices Weak Supplementation: without the Dust, the

    interval has a proper part with nothing left over. If you paint each

    of the Cantor Regions in Forrests space, you thereby succeed in

    painting the Cantor Fusion but fail to paint the Big Intervalandtheres no way to finish the job without repeating some of your

    work, since every part of the Big Interval has paint on it. This is an

    unnecessarily drastic concession.

    4.4 Finitely additive gunk

    Returning to more hospitable mereology, why think that additivity

    holds for countably infinite fusions? One might motivate this with

    an infinite supertask, such as the Pudding Task.27 Say we have aFN:27

    countable set of disjoint regions r1, r2, . . . which together compose

    a finite region s, all in a world entirely free of pudding. At step

    27 Forrest argues along these lines (1996). For a more elaborate example, seeHawthorne and Weatherson 2004.

  • 8/3/2019 Jeff Russell

    21/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 268

    268 Jeffrey T. Russell

    one, fill r1

    with chocolate pudding; at step two fill r2

    , and so on.

    When all of the steps have been carried out, s is entirely filled with

    chocolatey goodness. So the total amount of pudding in the world

    is m(s). The total amount of pudding served is m(r1) +m(r2)+ . . ..

    So if m(s) is greater than the sum, then there is more pudding in the

    world than was served. Whence this extra pudding?

    Intuition presses us toward this principle: the sizes of the finite

    fusions should converge to the size of the infinite fusion. If we think

    of the regions involved as also forming a convergent sequencethe

    finite fusions converge to the infinite fusionthen theres anoth-

    er way to say this: intuitively, the measure function should be

    continuous.

    Intuition favors continuous functions, yet continuity often fails inour dealings with the infinite.28 Consider, for instance, the PaintingFN:28

    Task. Suppose we have an infinite sequence of blank pages labeled

    with the natural numbers, and a large can of paint. At step one,

    paint the first page; at step two paint the second page, and so on.

    After any finite number of steps, there are infinitely many blank

    pages. Yet when the supertask is complete, there are no blank

    pages left at all. Again continuity fails: the limit of a sequence of

    infinities is certainly not zero, so the limit gives the wrong result for

    this supertask. Why shouldnt the Pudding Task be similar to the

    Painting Task in this respect? As the number of steps carried out

    approaches infinity, the amount of pudding approaches a particular

    amountbut when the number of steps reaches infinity, there isa different amount. There is a break at infinity. Surprising, but

    hardly impossible.

    One might worry that completing such supertasks would make

    it possible to violate certain physical principles: a one-mile bridge

    could be built with only half a miles worth of concrete, by building

    it up from the right set of parts. One available reply is that such

    physical principles canbe violated: in worlds with the kind of space

    in question, it may be physically possible to build a bridge on

    the cheap in just this way. If the world has the right conservation

    laws, though, then the supertask cannot be carried out. It is a little

    puzzling that a law of physics might rule out an infinite sequence of

    operations without rulingout any finite subsetof them, but this kind

    28 This line of thought is influenced by conversation with Frank Arntzenius.

  • 8/3/2019 Jeff Russell

    22/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 269

    The Structure of Gunk 269

    of thing happens. For instance, in a Newtonian world, conservation

    of momentum rules out an infinite sequence of collisions between

    vanishingly small balls at vanishingly small distances from one

    another, without ruling out any particular collision (Laraudogoitia

    1996). The physical law is inconsistent with the initial conditions

    that give rise to the infinite collision scenarioand so the law

    rules the scenario out. Similarly, in worlds where conservation of

    concrete is a law of nature, the bridge-building supertask cant be

    carried out. Whatever initial conditions might give rise to it are

    physically impossible.

    One might also worry because measure supervenience fails. If the

    size of a region is not determined by the sizes of a collection of

    disjoint things that exhaustively compose it, doesnt that make itssize a sort of spooky, free-floating thing? One reply is tu quoque:

    we are already accustomed to exactly this situation in pointy space,

    since an uncountable collection of point-sized regions may be

    rearranged to make up a region of any size whatsoever. If this

    is acceptable, we might equally well learn to live without size

    supervenience for countably infinite fusions of gunky regions. But

    the spookiness worry might be raised more generally: what fixes

    the size of a region, if not the sizes of its parts? For pointy space, the

    answer to this question is written in the annals of classical measure

    theory. For topologically gunky space it turns out to be a difficult

    question.

    The natural place to look for a model for finitely additive, topo-logically gunky space is Tarskis open regular sets. Tarskian regions

    have the mereology and topology of their representative open sets;

    it would be nice to similarly fix the size of a region to be the

    (Lebesgue) measure of its representative. But this wont do.29 ToFN:29

    see why not, consider once more the Cantor Regions, labeled a, b1,

    b2, c1, c2, c3, c4, . . .. Recall: the size of a is14 , the combined sizes of

    the bs is 18 , the combined sizes of the cs is1

    16 , and so on; all of

    these together add up to 12 ; and the fusion of the Cantor Regions

    is the unit interval. Now let the Big Pieces be a, the cs, the es, etc.,

    and let the Little Pieces be the bs, the ds, the fs, etc. Since the Big

    Pieces are twice as big as the Little Pieces, and all together they

    add up to1

    2 , the Big Pieces sizes add up to1

    3 and the Little Pieces

    29 Thanks to John Hawthorne for forcing me to get clear on this.

  • 8/3/2019 Jeff Russell

    23/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 270

    270 Jeffrey T. Russell

    sizes add up to1

    6 . Now consider Big Cantor, the fusion of the BigPieces, and Little Cantor, the fusion of the Little Pieces. How big are

    they? According to the proposed rule, the measure of Big Cantor is13 and the measure of Little Cantor is

    16 .

    30 But note: the fusion of BigFN:30

    Cantor and Little Cantor is the unit interval. So on this account of

    size, Finite Additivity breaks down!

    Fixing sizes based on the open regular sets was a bad idea. The

    closed regular representatives do no better the closed representa-

    tive of Big Cantor has size 56 , and the closed representative of Little

    Cantor has size 23 ; these dont add up to 1 either.31 Appealing to

    FN:31

    a regions representative equivalence class is even less helpful: by

    adding and subtracting regions like the Cantor Dust, we can find

    members of each equivalence class with any given positive size.Which of these should we choose? The pointy representatives dont

    pin down the sizes of Big and Little Cantor.

    Heres another way of characterizing this problem: Tarskian

    space includes regions that are not Jordan-measurable.32 To defineFN:32

    Jordan measure, we start with a collection of elementary regions

    whose sizes are already well understoodtypically rectangles (in

    one dimension: intervals). We can calculate the measure of any

    finite fusion of disjoint rectangles by addition. Call these finite

    fusions the blocks. We then define the outer measure of a region x

    as the lower limit of the sizes of the blocks that contain x, and the

    inner measure as the upper limit of the sizes of the blocks that are

    part of x. If the outer and inner measure agree, then x is Jordan-measurable, and their common value is the Jordan measure of x.

    Jordan measure is finitely additive; in effect, Jordan measure starts

    with the sizes of elementary regions and unrolls the consequences

    of Finite Additivity for the rest. But there are regions whose sizes

    30 Let I, U1 , U2, . . ., and V1, V2, . . . be the representative open sets for the unitinterval, the Big Pieces, and the Little Pieces, respectively, and let U =

    Ui and

    V =

    Vi. U is an open regular set. This is because every point in I is either (i) amember of U, (ii) a member of V, or else (iii) a boundary point of both U andV. So the closure of U is IV, and the interior of clU is U. Thus U is BigCantors representative. Furthermore,since Lebesgue measure is countably additive,m(U) =

    m(Ui) =

    13 . Similar considerations hold for Little Cantor.

    31 The closed representatives of Big Cantor and Little Cantor are the closures oftheir open representatives: namely I V and IU, respectively.

    32 Jordan measure is to the Riemann integral as Lebesgue measure is to theLebesgue integral (Frink 1933).

  • 8/3/2019 Jeff Russell

    24/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 271

    The Structure of Gunk 271

    cant be determined in this wayand, sadly, Big Cantor and Little

    Cantor are among them. Big Cantors inner measure is 13

    , and its

    outer measure is 56 . In pointy space, Lebesgue measure captures

    these regions by going beyond finite collections of rectangles to

    countable collectionsbut since Countable Additivity fails here,

    this wont help.

    One response to this failure is to cut the offending regions loose,

    either by admitting that Tarskian space includes peculiar regions

    that lack sizes, or else by restricting the space to include just the

    Jordan-measurable regions. The latter option involves giving up

    Unrestricted Composition for infinite collections of regions. These

    are costs we hoped to escape in gunky space, but at any rate they

    arent much worse than the costs faced by points: these two optionsparallel the two responses to non-measurable sets in Section 3.1.

    For a model following the latter option, represent gunky regions

    with Jordan-measurable open regular sets, and assign regions the same

    parts, connection, and sizes as their representatives. The mereology

    of this space is not quite standard: while every finite set of regions

    has a fusion, some infinite sets do not: for instance, neither the Big

    Pieces nor the Little Pieces have a fusion.33FN:33A second response to the failure of Jordan measure is to introduce

    spooky sizes which are not pinned down by elementary regions

    and additivity considerations. In fact, there are infinitely many

    finitely additive measures that extend Jordan measure to all of the

    Tarskian regions.34

    We can assign Big Cantor any size between itsFN:34

    33 The mereology satisfies the system CEM: it forms a Boolean algebra, but not acomplete Boolean algebra.

    34 This is an application of a general result that Garrett Birkhoff (1967: 185 ff.) saysis due essentially to A. Tarski: if S is a subalgebra of a Boolean algebra A, then anyfinitely additive measure function defined on S has a finitely additive extension overall of A.

    If a A and a S, we can extend the measure on S to the larger subalgebra ofelements of the form (b a) (c a) (where b a = b (b a)). We set the size ofsuch an element to be outerm,S(b a)+ innerm,S(c a), where outerm,S(x) = inf{m(s) :x s S} and innerm,S(x) = sup{m(s) : x s S}. Birkhoff shows (it isnt difficult)that this is finitely additive and agrees with m on S. The measure is extended to theentire algebra A using an induction principle (When A is uncountable this relies onthe Axiom of Choice).

    Note that in this argument innerm,S(b a)+ outerm,S(c a) yieldsa measure justaswell, and any weighted average of measures is itself a measure. Therefore as long asthere is some element of A whose outer and inner measures disagree, m has infinitelymany finitely additive extensions.

  • 8/3/2019 Jeff Russell

    25/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 272

    272 Jeffrey T. Russell

    inner measure of1

    3 and its outer measure of5

    6 , and go on to fixsizes for the rest of the unsized regions in a consistent fashion.

    All of the measure functions we obtain agree on simple cases like

    rectangles, and all of them obey additivity. What could favor one

    of these measure functions over any other? For instance, what

    might determine that Big Cantor is truly bigger than Little Cantor,

    rather than the other way around? The truth about the sizes of

    such regions might be a matter of brute fact, but this introduces a

    host of brute facts where on the classical story about measure we

    have very few. There is, then, a model of Tarskian space with a

    finitely additive measure function; in fact, there are infinitely many

    non-isomorphic models. The problem is not that there is no way of

    assigning sizes it is that there are too many.This leaves us with two kinds of finitely additive space. The

    first kind requires giving up either Measurability or an infinite

    composition principle, and the second kind requires giving up

    a supervenience principle. These costs are considerable, but not

    unthinkableremember, the point lover faces analogous compro-

    mises. Besides these costs, merely finitely additive sizes lead to

    counter-intuitive discontinuities, but intuitions are untrustworthy

    when it comes to questions about continuity at infinity. Note finally:

    uncountable additivity (insofar as uncountable sums make sense) is a

    principle that pointy space has long since abandoned. Are countably

    infinite sets more sacred? Finitely additive space is closer to the

    Whiteheadian picture than either Arntzeniuss or Forrests alterna-tivesit is full-fledged gunk in the mereological, topological, and

    measure-theoretic senses. In it we have a reasonable candidate for

    at least some of the gunk theorists purposes.

    5. conclusion

    I have presented a strong argument against naive Whiteheadian

    space: a small set of independently plausible conditions on gunky

    space turns out to be inconsistent. The gunk theorist can respond

    in several ways. The options on the table include Arntzeniuss

    measure-theoretic gunk that violates the No Boundaries principle,Forrests space that introduces revisionary measure theory by way

    of revisionary mereology, and a version of Tarskis geometry where

  • 8/3/2019 Jeff Russell

    26/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 273

    The Structure of Gunk 273

    sizes disobey Countable Additivity. Each of these options goes

    against certain intuitions: roughly, Arntzeniuss space sacrifices

    an intuitive bit of topology, Forrests space an intuitive bit of

    mereology, and Tarskis space an intuitive bit of measure theory.

    ButI insist: theusualpointymodels of space violate intuitionas well,

    as curiosities like the BanachTarski theorem (among many others)

    go to show. We have to live with a bit of counter-intuitiveness in

    any case.

    How we choose among these theories will depend on what we

    are choosing them for. If the goal is a theory of space that is

    adequate for actual-world physics, Arntzeniuss measure-theoretic

    gunk seems far and away the most satisfactory. If on the other hand

    the main concern is capturing commonsense spatial reasoning, oneof the finitely additive models may be better. And if the question is

    what spatial structures are broadly possible, then (short of further

    argument to the contrary) possibilities abound.

    One lesson to draw from this discussion is a reminder that

    innocent-seeming premises can lead quickly into hidden incoheren-

    cieswe should heed Humes admonition to be modest in our

    pretensions.35 An account may be intuitive without being consis-FN:35

    tent, especially when extrapolations to infinity are involved. But

    there are babies as well as bath-water in intuitions tub: while the

    naive conception of gunk is problematic, the core idea displays a

    hardy resilience. In particular, my argument certainly does not rule

    out gunky space as a physically interesting candidate for our actualuniverses space-time, as a metaphysical possibility, or as a consis-

    tent framework for spatial reasoning. Avoiding contradictions does

    force certain counter-intuitive results on usany theory of space

    has its puzzles and surprisesbut we should expect that much.

    references

    Arntzenius, Frank (2007). Gunk, Topology, and Measure. In this vol-

    ume.

    and Hawthorne, John (2005). Gunk and Continuous Variation.Monist 88 (Oct.): 44165.

    Birkhoff, Garrett (1967). Lattice Theory. Colloquium publications. Provi-

    dence: American Mathematical society.

    35 An Enquiry Concerning Human Understanding. IV.ii

  • 8/3/2019 Jeff Russell

    27/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 274

    274 Jeffrey T. Russell

    Clarke, Bowman (1981). A Calculus of Individuals Based on Connec-

    tion. Notre Dame Journal of Formal Ligic 22 (July): 20418.

    Cohn, Anthony, and Varzi, Achille (2003). Mereotopological Connec-

    tion. Journal of Philosophical Logic 32: 35790.Fine, Kit (2007). Misuses of Mereology. Mereology, Topology, and

    Location. New Brunswick, NJ: Rutgers University, October.

    Forrest, Peter (1996). How Innocent is Mereology? Analysis 56 (July):

    12731.

    (2002). Nonclassical Mereology and Its Application to sets. NotreDame Journal of Formal Logic 43/2: 7994.

    (2007). Mereological Summation and the Question of UniqueFusion. Analysis 56 (July): 12731.

    Frink, Orrin (1933). Jordan Measure and Riemann Integration. Annals

    of Mathematics 34 (July): 51826.

    Hawthorne, John, and Weatherson, Brian (2004). Chopping up Gunk.

    Monist 87: 33950.

    Laraudogoitia, Jon Perez (1996). A Beautiful Supertask. Mind 105

    (January): 813.Lewis, David (1991). Parts of Classes. Cambridge: Blackwell.

    Munroe, M. E. (1953). Introduction to Measure and Integration. Reading:

    Addison-Wesley.

    Nagel, Ernest (1931). Measurement: Mit deutscher Inhaltsangabe.Erkenntnis 2: 31333.

    Rper, Peter (1997). Region-Based Topology. Journal of Philosophical

    Logic 26 (June): 251309.

    Sider, Ted (1993). Van Inwagen and the Possibility of Gunk. Analysis

    53: 285 9.

    Sikorski, Roman (1964). Boolean Algebras. Berlin: Springer Verlag.

    Skyrms, Brian (1993). Logical Atoms and Combinatorial Possibility.Journal of Philosophy 90 (May): 21932.

    Tarski, A. (1956). Foundations of the Geometry of Solids. In

    J. H. Woodger (ed.), Logic, Semantics, and Metamathematics. Oxford:

    Clarendon Press, 24 9.

    Varzi, Achille (2006). Mereology. In Edward N. Zalta (ed.), The Stanford

    Encyclopedia of Philosophy.

    Zimmerman, Dean (1996). Could Extended Objects Be Made Out of

    Simple Parts? An Argument for Atomless Gunk. Philosophy and

    Phenomenological Research 56 (March): 129.

    Indivisible Parts and Extended Objects: Some Philosophical

    Episodes from Topologys Prehistory. Monist 79 (Jan.): 14880.

  • 8/3/2019 Jeff Russell

    28/28

    Zimmerman run11.tex V1 - January 5, 2008 1:08pm Page 274

    Queries in Chapter 11

    Q1. Author correction is not clear.