sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/foriaea/...15dec2018…  · web viewi....

60
Version 61 0 0 15-25Dec 19Oct 2018 AP/BJ/JJ IAEA TECDOC On Seismic Soil Structure Interaction for Design and Assessment of Nuclear Installations Pecker, Johnson, Jeremić Table of Contents TABLE OF CONTENTS.................................................. 1. INTRODUCTION........................ERROR! BOOKMARK NOT DEFINED. 1.1 BACKGROUND...................ERROR! BOOKMARK NOT DEFINED. 1.2 OBJECTIVES...................ERROR! BOOKMARK NOT DEFINED. 1.3 SCOPE OF THE TECDOC..........ERROR! BOOKMARK NOT DEFINED. 1.3.1 Design Considerations: General Framework.....Error! Bookmark not defined. 1.3.2 U.S. Practice...........Error! Bookmark not defined. 1.3.3 French Practice.........Error! Bookmark not defined. 1.3.4 Canada Practice.........Error! Bookmark not defined. 1.3.5 Japan...................Error! Bookmark not defined. 1.3.6 Russia..................Error! Bookmark not defined. 1.3.7 Other Member States.....Error! Bookmark not defined. 1.3.8 EU practice.............Error! Bookmark not defined. 1.3.9 IAEA Guidance...........Error! Bookmark not defined. i

Upload: others

Post on 17-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

Version 6100 15-25Dec19Oct2018AP/BJ/JJ

IAEA TECDOC

On

Seismic Soil Structure Interaction for Design and Assessment of Nuclear Installations

Pecker, Johnson, Jeremić

Table of Contents

TABLE OF CONTENTS...............................................................................................................................

1. INTRODUCTION.....................................................................ERROR! BOOKMARK NOT DEFINED.

1.1 BACKGROUND.......................................................ERROR! BOOKMARK NOT DEFINED.1.2 OBJECTIVES............................................................ERROR! BOOKMARK NOT DEFINED.1.3 SCOPE OF THE TECDOC..........................................ERROR! BOOKMARK NOT DEFINED.

1.3.1 Design Considerations: General Framework.......Error! Bookmark not defined.1.3.2 U.S. Practice........................................................Error! Bookmark not defined.1.3.3 French Practice...................................................Error! Bookmark not defined.1.3.4 Canada Practice..................................................Error! Bookmark not defined.1.3.5 Japan..................................................................Error! Bookmark not defined.1.3.6 Russia..................................................................Error! Bookmark not defined.1.3.7 Other Member States.........................................Error! Bookmark not defined.1.3.8 EU practice.........................................................Error! Bookmark not defined.1.3.9 IAEA Guidance....................................................Error! Bookmark not defined.

1.4 STRUCTURE OF TECDOC.........................................ERROR! BOOKMARK NOT DEFINED.1.5 REFERENCES...........................................................ERROR! BOOKMARK NOT DEFINED.

2 ELEMENTS OF SSI ANALYSIS..................................................ERROR! BOOKMARK NOT DEFINED.

2.1 FREE-FIELD GROUND MOTION..............................ERROR! BOOKMARK NOT DEFINED.2.2 MODELING SOIL, STRUCTURES, FOUNDATIONS....ERROR! BOOKMARK NOT DEFINED.

i

Page 2: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

Version 6100 15-25Dec19Oct2018AP/BJ/JJ

2.2.1 Modelling of soil for DBE and BDBE....................Error! Bookmark not defined.2.2.2 Modelling structures and SSI models.................Error! Bookmark not defined.2.2.3 Modelling decisions to be made.........................Error! Bookmark not defined.

2.3 UNCERTAINTIES.....................................................ERROR! BOOKMARK NOT DEFINED.2.3.1 Aleatory and epistemic uncertainties.................Error! Bookmark not defined.2.3.2 Avoiding double counting of uncertainties.........Error! Bookmark not defined.2.3.3 Treating uncertainties in the SSI analyses: explicit inclusion and sensitivity

studies................................................................Error! Bookmark not defined.2.5 REFERENCES...........................................................ERROR! BOOKMARK NOT DEFINED.

3 SITE CONFIGURATION AND SOIL PROPERTIES.......................ERROR! BOOKMARK NOT DEFINED.

3.1 SITE CONFIGURATION AND CHARACTERIZATION. .ERROR! BOOKMARK NOT DEFINED.3.2 SOIL BEHAVIOR......................................................ERROR! BOOKMARK NOT DEFINED.3.3 EXPERIMENTAL DESCRIPTION OF SOIL BEHAVIOURERROR! BOOKMARK NOT DEFINED.

3.3.1 Linear viscoelastic model....................................Error! Bookmark not defined.3.3.2 Nonlinear one-dimensional model.....................Error! Bookmark not defined.3.3.3 Nonlinear two and three-dimensional models...Error! Bookmark not defined.

3.4 LIMITATIONS OF EQUIVALENT LINEAR MODELS....ERROR! BOOKMARK NOT DEFINED.3.5 PHYSICAL PARAMETERS.........................................ERROR! BOOKMARK NOT DEFINED.3.6 FIELD AND LABORATORY MEASUREMENTS...........ERROR! BOOKMARK NOT DEFINED.

3.6.1 Site instrumentation...........................................Error! Bookmark not defined.3.6.2 Field investigations.............................................Error! Bookmark not defined.3.6.3 Laboratory investigations...................................Error! Bookmark not defined.3.6.4 Comparison of field and laboratory tests...........Error! Bookmark not defined.3.6.5 Summary of required parameters and measurements techniques..........Error!

Bookmark not defined.3.7 CALIBRATION AND VALIDATION............................ERROR! BOOKMARK NOT DEFINED.3.8 UNCERTAINTIES.....................................................ERROR! BOOKMARK NOT DEFINED.3.9 SPATIAL VARIABILITY.............................................ERROR! BOOKMARK NOT DEFINED.3.10 REFERENCES...........................................................ERROR! BOOKMARK NOT DEFINED.

4 SEISMIC HAZARD ANALYSIS (SHA).........................................ERROR! BOOKMARK NOT DEFINED.

4.1 OVERVIEW.............................................................ERROR! BOOKMARK NOT DEFINED.4.2 INTERFACES BETWEEN SHA TEAM AND SSI ANALYSTS TEAMERROR! BOOKMARK NOT

DEFINED.4.3 REFERENCES...........................................................ERROR! BOOKMARK NOT DEFINED.

5 SESIMIC WAVE FIELDS AND FREE FIELD GROUND MOTIONS ERROR! BOOKMARK NOT DEFINED.

5.1 SEISMIC WAVE FIELDS...........................................ERROR! BOOKMARK NOT DEFINED.

ii

Page 3: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

Version 6100 15-25Dec19Oct2018AP/BJ/JJ

5.1.1 Perspective and spatial variability of ground motion.......Error! Bookmark not defined.

5.1.2 Spatial variability of ground motions..................Error! Bookmark not defined.5.2 FREE FIELD GROUND MOTION DEVELOPMENT.....ERROR! BOOKMARK NOT DEFINED.5.3 RECORDED DATA...................................................ERROR! BOOKMARK NOT DEFINED.

5.3.1 3D versus 1D Records/Motions..........................Error! Bookmark not defined.5.3.2 Analytical and numerical (synthetic) earthquake models Error! Bookmark not

defined.5.3.3 Uncertainties......................................................Error! Bookmark not defined.

5.4 SEISMIC WAVE INCOHERENCE...............................ERROR! BOOKMARK NOT DEFINED.5.4.1 Introduction........................................................Error! Bookmark not defined.5.4.2 Incoherence modeling........................................Error! Bookmark not defined.

5.5 REFERENCES...........................................................ERROR! BOOKMARK NOT DEFINED.

6 SITE RESPONSE ANALYSIS AND SEISMIC INPUT.....................ERROR! BOOKMARK NOT DEFINED.

6.1 OVERVIEW.............................................................ERROR! BOOKMARK NOT DEFINED.6.2 SITE RESPONSE ANALYSIS......................................ERROR! BOOKMARK NOT DEFINED.

6.2.1 Perspective.........................................................Error! Bookmark not defined.6.2.2 Foundation Input Response Spectra (FIRS).........Error! Bookmark not defined.

6.3 SITE RESPONSE ANALYSIS APPROACHES................ERROR! BOOKMARK NOT DEFINED.6.3.1 Idealized Site Profile and Wave Propagation MechanismsError! Bookmark not

defined.6.3.2 Non-idealized Site Profile and Wave Propagation MechanismsError! Bookmark

not defined.6.3.3 Analysis Models and Modelling Assumptions.....Error! Bookmark not defined.

6.4 STANDARD AND SITE SPECIFIC RESPONSE SPECTRAERROR! BOOKMARK NOT DEFINED.6.4.1 Introduction........................................................Error! Bookmark not defined.6.4.2 Standard response spectra.................................Error! Bookmark not defined.6.4.3 Site specific response spectra.............................Error! Bookmark not defined.

6.5 TIME HISTORIES.....................................................ERROR! BOOKMARK NOT DEFINED.6.6 UNCERTAINTIES.....................................................ERROR! BOOKMARK NOT DEFINED.6.7 LIMITATIONS OF TIME AND FREQUENCY DOMAIN METHODS FOR FREE FIELD

GROUND MOTIONS...............................................ERROR! BOOKMARK NOT DEFINED.6.8 REFERENCES...........................................................ERROR! BOOKMARK NOT DEFINED.

7 METHODS AND MODELS FOR SSI ANALYSIS..........................ERROR! BOOKMARK NOT DEFINED.

7.1 BASIC STEPS FOR SSI ANALYSIS..............................ERROR! BOOKMARK NOT DEFINED.7.1.1 Preparatory activities..........................................Error! Bookmark not defined.7.1.2 Site specific modelling........................................Error! Bookmark not defined.

7.2 DIRECT METHODS..................................................ERROR! BOOKMARK NOT DEFINED.

iii

Page 4: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

Version 6100 15-25Dec19Oct2018AP/BJ/JJ

7.2.1 Linear and nonlinear discrete methods..............Error! Bookmark not defined.7.2.2 Finite Element Method.......................................Error! Bookmark not defined.7.2.3 Finite Difference Method...................................Error! Bookmark not defined.7.2.4 Nonlinear discrete methods...............................Error! Bookmark not defined.7.2.5 Inelasticity, Elasto-Plasticity................................Error! Bookmark not defined.7.2.6 Nonlinear Dynamics Solution Techniques:.........Error! Bookmark not defined.

7.3 SUB-STRUCTURING METHODS...............................ERROR! BOOKMARK NOT DEFINED.7.3.1 Principles............................................................Error! Bookmark not defined.7.3.2 Rigid or flexible boundary method.....................Error! Bookmark not defined.7.3.3 The flexible volume method...............................Error! Bookmark not defined.7.3.4 The subtraction method.....................................Error! Bookmark not defined.7.3.5 SASSI: System for Analysis of Soil-Structure Interaction. .Error! Bookmark not

defined.7.3.6 CLASSI: Soil-Structure Interaction - A Linear Continuum Mechanics

Approach............................................................Error! Bookmark not defined.7.3.7 Attributes of two programs SASSI and CLASSI for considerationError! Bookmark

not defined.7.4 SSI COMPUTATIONAL MODELS..............................ERROR! BOOKMARK NOT DEFINED.

7.4.1 Introduction........................................................Error! Bookmark not defined.7.4.2 Soil/Rock Linear and Nonlinear Modelling..........Error! Bookmark not defined.7.4.3 Drained and Undrained Modeling......................Error! Bookmark not defined.7.4.4 Linear and Nonlinear Elastic Models..................Error! Bookmark not defined.7.4.5 Structural models, linear and nonlinear: shells, plates, walls, beams,

trusses, solids.....................................................Error! Bookmark not defined.7.4.6 Contact Modeling...............................................Error! Bookmark not defined.7.4.7 Structures with a base isolation system.............Error! Bookmark not defined.7.4.8 Foundation models.............................................Error! Bookmark not defined.7.4.9 Deeply Embedded Structures.............................Error! Bookmark not defined.7.4.10 Buoyancy Modeling............................................Error! Bookmark not defined.7.4.11 Domain Boundaries............................................Error! Bookmark not defined.7.4.12 Seismic Load Input..............................................Error! Bookmark not defined.7.4.13 Liquefaction and Cyclic Mobility Modeling.........Error! Bookmark not defined.7.4.14 Structure-Soil-Structure Interaction...................Error! Bookmark not defined.7.4.15 Simplified models...............................................Error! Bookmark not defined.

7.5 PROBABILISTIC RESPONSE ANALYSIS.....................ERROR! BOOKMARK NOT DEFINED.7.5.1 Overview............................................................Error! Bookmark not defined.7.5.2 Simulations of the SSI Phenomena.....................Error! Bookmark not defined.

7.6 LIMITATIONS OF NUMERICAL MODELING.............ERROR! BOOKMARK NOT DEFINED.

8 SEISMIC RESPONSE ASPECTS FOR DESIGN AND ASSESSMENTERROR! BOOKMARK NOT DEFINED.

iv

Page 5: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

Version 6100 15-25Dec19Oct2018AP/BJ/JJ

8.1 INTRODUCTION.....................................................ERROR! BOOKMARK NOT DEFINED.8.2 FREE-FIELD GROUND MOTION..............................ERROR! BOOKMARK NOT DEFINED.

8.2.1 Introduction........................................................Error! Bookmark not defined.8.2.2 Design process (DBE)..........................................Error! Bookmark not defined.8.2.3 Assessment (BDBE).............................................Error! Bookmark not defined.8.2.4 Uncertainties......................................................Error! Bookmark not defined.

8.3 SOIL MATERIAL BEHAVIOUR.................................ERROR! BOOKMARK NOT DEFINED.8.3.1 Introduction........................................................Error! Bookmark not defined.8.3.2 Design Basis Earthquake.....................................Error! Bookmark not defined.8.3.3 Beyond Design Basis Earthquake........................Error! Bookmark not defined.8.3.4 Uncertainties......................................................Error! Bookmark not defined.

8.4 STRUCTURE MODELLING.......................................ERROR! BOOKMARK NOT DEFINED.8.4.1 Introduction........................................................Error! Bookmark not defined.8.4.2 Design Basis Earthquake.....................................Error! Bookmark not defined.8.4.3 Beyond Design Basis Earthquake........................Error! Bookmark not defined.8.4.4 Uncertainties......................................................Error! Bookmark not defined.

8.5 FOUNDATION MODELLING...................................ERROR! BOOKMARK NOT DEFINED.8.5.1 Introduction........................................................Error! Bookmark not defined.8.5.2 Foundation modelling for conventional foundation/structure systems...Error!

Bookmark not defined.8.5.2.4 Uncertainties......................................................Error! Bookmark not defined.8.5.3 Foundation modelling for non-conventional foundation/structure systems

– pile founded, caissons.....................................Error! Bookmark not defined.8.5.4 Deep Embedment...............................................Error! Bookmark not defined.

8.6 SSI MODELS (TO BE ADDED)..................................ERROR! BOOKMARK NOT DEFINED.8.6.1 Introduction........................................................Error! Bookmark not defined.8.6.2 Design Basis Earthquake (DBE)...........................Error! Bookmark not defined.8.6.3 Beyond Design Basis Earthquake (BDBE)............Error! Bookmark not defined.8.6.4 Uncertainties......................................................Error! Bookmark not defined.

8.7 UNCERTAINTIES.....................................................ERROR! BOOKMARK NOT DEFINED.Uncertainties in all aspects of SSI need to be taken into account. Methods to do

so are probabilistic and deterministic.................Error! Bookmark not defined.8.8 SENSITIVITY STUDIES AND BENCHMARKING........ERROR! BOOKMARK NOT DEFINED.8.9 DETERMINISTIC ANALYSES (LINEAR AND NONLINEAR).......ERROR! BOOKMARK NOT

DEFINED.8.10 PROBABILISTIC ANALYSES (LINEAR AND NONLINEAR)........ERROR! BOOKMARK NOT

DEFINED.8.11 STRUCTURAL DESIGN QUANTITIES.......................ERROR! BOOKMARK NOT DEFINED.8.12 SEISMIC INPUT TO SUBSYSTEMS..........................ERROR! BOOKMARK NOT DEFINED.EXTRA MATERIAL TO BE INSERTED AS APPLICABLE.............ERROR! BOOKMARK NOT DEFINED.

v

Page 6: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

Version 6100 15-25Dec19Oct2018AP/BJ/JJ

8.3 ASSESSMENT METHODOLOGIES...........................ERROR! BOOKMARK NOT DEFINED.8.3.1 Free Field (probabilistic and/or deterministic).......Error! Bookmark not defined.8.3.2 Site response (probabilistic and/or deterministic)Error! Bookmark not defined.8.3.3 Foundation modeling – for assessment:.............Error! Bookmark not defined.8.3.4 Structure modeling.............................................Error! Bookmark not defined.8.3.5 SSI models (considerations)................................Error! Bookmark not defined.8.3.6 Uncertainties in all aspects of SSI need to be taken into account. Methods

to do so are probabilistic and deterministic.......Error! Bookmark not defined.8.5 DETERMINISTIC ANALYSIS (LINEAR AND NON-LINEAR).......ERROR! BOOKMARK NOT

DEFINED.8.6 PROBABILISTIC ANALYSIS (LINEAR AND NON-LINEAR)........ERROR! BOOKMARK NOT

DEFINED.8.7 STRUCTURAL DESIGN QUANTITIES.......................ERROR! BOOKMARK NOT DEFINED.8.2 SEISMIC INPUT TO SUB-SYSTEMS (EQUIPMENT, DISTRIBUTION SYSTEMS, ETC.)ERROR!

BOOKMARK NOT DEFINED.

9 AVAILABLE SOFTWARE..........................................................ERROR! BOOKMARK NOT DEFINED.

9.1 EXAMPLES OF COMMERCIALLY AVAILABLE, OPEN SOURCE, OPEN USE AND PUBLIC DOMAIN, ETC.........................................................ERROR! BOOKMARK NOT DEFINED.9.1.1 Available Software..............................................Error! Bookmark not defined.

9.2 SOFTWARE SUPPORT.............................................ERROR! BOOKMARK NOT DEFINED.9.2.1 Documentation...................................................Error! Bookmark not defined.9.2.2 Online Support...................................................Error! Bookmark not defined.

9.3 EDUCATION AND TRAINING...................................ERROR! BOOKMARK NOT DEFINED.9.4 QUALITY ASSURANCE.............................................ERROR! BOOKMARK NOT DEFINED.

9.4.1 Verification & Validation (V&V) Introduction.....Error! Bookmark not defined.9.4.2 Introduction to Verification and Validation........Error! Bookmark not defined.9.4.3 Detailed Look at Verification and Validation......Error! Bookmark not defined.9.4.4 Examples of V&V................................................Error! Bookmark not defined.

10 BIBLIOGRAPHY............................................................................................................................

11 BIBLIOGRAPHY AND REFERENCES..............................................................................................

11 ACRONYMS AND DEFINITIONS........................................................................................................

APPENDIX I. PRACTICAL EXAMPLES...............................ERROR! BOOKMARK NOT DEFINED.

I.1. THREE DIMENSIONAL SEISMIC MOTIONS AND THEIR USE FOR 3D AND 1D SSI MODELINGERROR! BOOKMARK NOT DEFINED.

vi

Page 7: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

Version 6100 15-25Dec19Oct2018AP/BJ/JJ

I.2. SEISMIC WAVE PROPAGATION AND DAMPING OUT HIGH FREQUENCIES OF MOTIONS. .ERROR! BOOKMARK NOT DEFINED.

I.5. APPROACH 3, - DRAFT..........................................................ERROR! BOOKMARK NOT DEFINED.

I.6. INCHOERENCE: CASE HISTORY - U.S. (IN PROGRESS - TO BE COMPLETED)ERROR! BOOKMARK NOT DEFINED.

I.7. SITE RESPONSE ANALYSIS......................................................ERROR! BOOKMARK NOT DEFINED.

1.1 SOIL BELOW THE WATER TABLE............................ERROR! BOOKMARK NOT DEFINED.

I.8. NALYSIS OF A PILE FOUNDATION (FOR A BRIDGE) BY THE SUBSTRUCTURE METHOD......ERROR! BOOKMARK NOT DEFINED.

I.9. NONLINEAR RESESPONSE OF SOIL ADJACENT TO THE NPP FOUNDATIONS, ISSUES OF DILATANCY............................................................................ERROR! BOOKMARK NOT DEFINED.

I.10. APPENDIX, EXAMPLES SEISMIC RESPONSE OF AN NPP ON NONLINEAR SOIL AND CONTACT (SLIP AND UPLIFT).................................................................ERROR! BOOKMARK NOT DEFINED.

I.11. SEISMIC RESPONSE OF AN NPP WITH DRY AND SATURATED CONTACT AND (NONLINEAR) BUOYANT FORCE EFFECTS....................................................ERROR! BOOKMARK NOT DEFINED.

I.12. , NONLINEAR ANALYSIS OF A DEEPLY EMBEDEED SMALL MODULAR REACTOR (SMR)..............

I.13. NONLINEAR, TIME DOMAIN, 3D, EARTHQUAKE SOIL STRUCTURE INTERACTION (ESSI) ANALYSIS OF NPP, ANALYSIS PROCEDURES (DETAILED, EDUCATIONAL EXAMPLE!).........ERROR! BOOKMARK NOT DEFINED.

I.14. STRUCTURE TO STRUCTURE INTERACTION ANALYSIS...........ERROR! BOOKMARK NOT DEFINED.

vii

Page 8: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

Version 6100 15-25Dec19Oct2018AP/BJ/JJ

LIST OF FIGURES

Figure 1-1. Effect of soil stiffness on structure response of a typical nuclear power plant structure; rock (Vs = 1830 m/s), stiff soil (Vs = 762 m/s), medium soil (Vs = 305 m/s), and soft soil (Vs = 152 m/s) (Courtesy of James J. Johnson and Associates)............Error! Bookmark not defined.Figure 1-2. Recorded motions at the Kashiwazaki-Kariwa Nuclear Power Plant in Japan, due to the Niigataken-chuetsu-oki (NCO) earthquake (16 July 2007) in the free-field (top of grade) and in the Unit 7 Reactor Building basement, and third floor (IAEA, KARISMA program [1-4])........................................................................................................Error! Bookmark not defined.Figure 2-1 Flow chart of elements of SSI analyses correlated with text.....Error! Bookmark not defined.Figure 3-1. Predicted pure shear response of soil at two different shear strain amplitudes, from Pisano` and Jeremic (2014)............................................................Error! Bookmark not defined.Figure 3-2. Cyclic response of soils: (left) no volume change; (middle) compressive response with decrease in stiffness; (right) dilative response with increase in stiffness. (from Jeremic 2016 (CNSC report)................................................................................Error! Bookmark not defined.Figure 3-3. Idealized stress cycle during an earthquake...............Error! Bookmark not defined.Figure 3-4. Experimental stress-strain curves under cyclic loading: nonlinear shear behaviour (left); volumetric behaviour (right)...............................................Error! Bookmark not defined.Figure 3-5. Threshold values for cyclic shear strains...................Error! Bookmark not defined.Figure 3-6. Shear stress-shear strain curves for constant amplitude cyclic loading..............Error! Bookmark not defined.Figure 3-7. One-dimensional viscoelastic model..........................Error! Bookmark not defined.Figure 3-8. Example of nonlinear characteristics of soil..............Error! Bookmark not defined.Figure 3-9. Rheological models for Iwan’s nonlinear elastoplastic model. Error! Bookmark not defined.Figure 4-1 Seismic Hazard Assessment Steps (IAEA, SSG-9[4-1]- revision in progress)...Error! Bookmark not defined.Figure 5-1 Propagation of seismic waves in nearly horizontal local geology, with stiffness of soil/rock layers increasing with depth, and refraction of waves toward the vertical direction. Figure from Jeremic (2016)............................................................Error! Bookmark not defined.Figure 5-2 Propagation of seismic waves in inclined local geology, with stiffness of soil/rock layers increasing through geologic layers, and refraction of waves away from the vertical direction. Figure from Jeremic (2016)...........................................Error! Bookmark not defined.Figure 5-3 Acceleration time history LSST07 recorded at SMART-1 Array at Lotung, Taiwan, on May 20th, 1986. This recording was at location FA25. Note the (almost complete) absence of vertical motions. signifying absence of Rayleigh waves. Figure from Tseng et al. (1991).........Error! Bookmark not defined.

viii

Page 9: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

Version 6100 15-25Dec19Oct2018AP/BJ/JJ

Figure 5-4 Acceleration time history LSST12 recorded at SMART-1 Array at Lotung, Taiwan, on July 30th, 1986. This recording was at location FA25. Figure from Tseng et al. (1991). Error! Bookmark not defined.Figure 5-5 Four main sources contributing to the lack of correlation of seismic waves as measured at two observation points. Figure from Jeremic (2016).....Error! Bookmark not defined.Figure 5-6 Uniform Hazard Response Spectra (UHRS) – annual frequency of exceedance = 10-4

- for a rock site in the U.S. (Courtesy of James J. Johnson and Associates)Error! Bookmark not defined.Figure 5-7 Comparison of ground motion coherency functions for soil [5-7] and hard rock [5-8] sites................................................................................................Error! Bookmark not defined.Figure 6-1 Definition of FIRS for idealized site profiles..............Error! Bookmark not defined.Figure 7-1: Summary of substructuring methods..........................Error! Bookmark not defined.Figure 7-2 Schematic representation of the elements of soil-structure interaction – sub-structure method............................................................................................Error! Bookmark not defined.Figure 7-3: Schematic representation of a sub-structure model....Error! Bookmark not defined.Figure 7-4: 3-step method for soil structure interaction analysis (after Lysmer, 1978)........Error! Bookmark not defined.Figure 7-5: Substructuring in the subtraction method...................Error! Bookmark not defined.Figure 7-6 AREVA Finite Element Model of the EPR Nuclear Island (Johnson et al., 2010)........................................................................................................Error! Bookmark not defined.Figure 7-7 Absorbing boundary consisting of dash pots connected to each degree of freedom of a boundary node.............................................................................Error! Bookmark not defined.Figure 7-8 Large physical domain with the source of load Pe(t) and the local feature (in this case a soil-structure system....................................................................Error! Bookmark not defined.Figure 7-9 Symmetric mode of deformation for two NPPs near each other......Error! Bookmark not defined.Figure 7-10 Anti-symmetric mode of deformation for two NPPs near each other...............Error! Bookmark not defined.Figure 7-11 Nuclear Power Plant – Ensemble of free-field ground motion response spectra – X-direction, 5% damping...................................................................Error! Bookmark not defined.Figure 7-12 Example Nuclear Power Plant – Ensemble of in-structure response spectra (ISRS) – X-direction, 5% damping – median and 84% NEP....................Error! Bookmark not defined.Figure 9-1 Role of Verification and Validation per Oberkampf et al. (2002).. .Error! Bookmark not defined.Figure 9-2 Detailed view of V&V...............................................Error! Bookmark not defined.Figure 9-3 Detailed view of Verification......................................Error! Bookmark not defined.Figure 9-4 : Detailed view of Validation......................................Error! Bookmark not defined.Figure 0-1 : Analyzed problem......................................................Error! Bookmark not defined.Figure 0-2 : Cyclic simple shear tests on sandy gravel at 5m depth (drained test) and at 20m depth (undrained test)....................................................................Error! Bookmark not defined.

ix

Page 10: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

Version 6100 15-25Dec19Oct2018AP/BJ/JJ

Figure 0-3 : Cyclic undrained shear test on stiff clay at 40m........Error! Bookmark not defined.Figure 0-4 : Sandy gravel – Drained triaxial compression test at 5m depth Error! Bookmark not defined.Figure 0-5 : Acceleration time history...........................................Error! Bookmark not defined.Figure 0-6 : Velocity time history..................................................Error! Bookmark not defined.Figure 0-7 : Displacement time history.........................................Error! Bookmark not defined.Figure 0-8 : 5% damped response spectrum..................................Error! Bookmark not defined.

x

Page 11: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

Version 6100 15-25Dec19Oct2018AP/BJ/JJ

LIST OF TABLES

Table 2-1 Summary of elements of SSI analysis with reference to chapters covering topicsError! Bookmark not defined.

Table 2-2 Partitioning of uncertainties...................................Error! Bookmark not defined.Table 3-1: Strain thresholds and modelling assumptions........Error! Bookmark not defined.Table 3-2: Characteristics of equivalent viscoelastic linear constitutive models.............Error! Bookmark not defined.Table 3-3: Required Constitutive Parameters..........................Error! Bookmark not defined.TABLE 4-1 ELEMENTS OF DETERMINISTIC SEISMIC HAZARD ANALYSIS (DSHA) (IAEA SSG-9 [4-1])........................................................Error! Bookmark not defined.TABLE 4-2 TYPICAL OUTPUT SPECIFICATION OF PROBABILISTIC SEISMIC HAZARD ANALYSES [4-1]........................................................Error! Bookmark not defined.TABLE 4-3 TYPICAL OUTPUT OF PROBABILISTIC SEISMIC HAZARD ANALYSES [4-1] Error! Bookmark not defined.TABLE 5-1 ARRAYS USED TO DEVELOP THE COHERENCY MODELS [5-7].........Error! Bookmark not defined.TABLE 5-2 EARTHQUAKES IN THE ARRAY DATA SETS [5-7].......Error! Bookmark not defined.TABLE 7-1 RAYLEIGH WAVE LENGTH AS A FUNCTION OF WAVE SPEED [M/S] AND WAVE FREQUENCY [HZ]............................................................Error! Bookmark not defined.TABLE 0-1 ARRAYS USED TO DEVELOP THE COHERENCY MODELS..................Error! Bookmark not defined.TABLE 0-2 EARTHQUAKES IN THE ARRAY DATA SETS. Error! Bookmark not defined.

xi

Page 12: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

1. BibliographyI. Babuˇska and J. T. Oden. Verification and validation in computational

engineering and science: basic concepts. Computer Methods in Applied Mechanics and Engineering, 193(36-38):4057–4066, Sept

2004.

R. J. Budnitz and M. W. Mieler. Toward a more risk-informed and performance-based framework for the regulation of the seismic safety of nuclear power plants. NUREG/CR 7214, United States Nuclear Regulatory Commission, Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, May 2016.

L. Hatton. The T experiments: Errors in scientific software. IEEE Computational Science and Engineering, 4(2):27–38, April–June 1997.

L. Hatton and A. Roberts. How accurate is scientific software? IEEE Transaction on Software Engineering, 20(10):185–797, October 1994.

B. Jeremi´c. Development of analytical tools for soil-structure analysis. Technical Report R444.2, Canadian Nuclear Safety Commission – Comission canadiene de suˆret´e nucl´eaire, Ottawa, Canada, 2016.

B. Jeremi´c, Z. Yang, Z. Cheng, G. Jie, K. Sett, N. Tafazzoli, P. Tasiopoulou, J. A. A. Mena, F. Pisan`o, K. Watanabe, Y. Feng, and S. K. Sinha. Lecture notes on computational geomechanics: Inelastic finite elements for pressure sensitive materials. Technical Report UCD-CompGeoMech–01–2004, University of California, Davis, 1989-2016.

B. Jeremi´c, G. Jie, Z. Cheng, N. Tafazzoli, J. A. Abell, Y. Feng, and S. K. Sinha. The Real ESSI Simulator System. University of California, Davis and Lawrence Berkeley National Laboratory, 2016.http://sokocalo.engr.ucdavis.edu/~jeremic/ESSI_Simulator/.

W. Oberkampf. Material from the short course on verification and validation in computational mechanics.

Albuquerque, New Mexico, July 2003.

W. L. Oberkampf, T. G. Trucano, and C. Hirsch. Verification, validation and predictive capability in computational engineering and physics. In Proceedings of the Foundations for Verification and Validation on the 21st Century

12

Page 13: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

Workshop, pages 1–74, Laurel, Maryland, October 22-23 2002. Johns Hopkins University / Applied Physics Laboratory.

J. T. Oden, I. Babuˇska, F. Nobile, Y. Feng, and R. Tempone. Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty. Computer Methods in Applied Mechanics and Engineering, 194(2-5):195–204, February 2005.

T. Oden, R. Moser, and O. Ghattas. Computer predictions with quantified uncertainty, part i. SIAM News,, 43(9), November 2010a.

T. Oden, R. Moser, and O. Ghattas. Computer predictions with quantified uncertainty, part ii. SIAM News,, 43(10), December 2010b.

P. J. Roache. Verif ication and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque, New Mexico, 1998. ISBN 0-913478-08-3.

C. J. Roy and W. L. Oberkampf. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Computer Methods in Applied Mechanics and Engineering, 200(25-28):2131 – 2144, 2011. ISSN 0045-7825. doi: 10.1016/j.cma.2011.03.016. URL http://www.sciencedirect.com/science/article/pii/S0045782511001290.

1 BIBLIOGRAPHY AND REFERENCES

[7-1] F. Abedzadeh and R. Y. S. Pak. Continuum mechanics of lateral soil-pile interaction. ASCE Journal of Engineering Mechanics, 130(11):1309–1318, November 2004.

J. A. Abell, S. K. Sinha, and B. Jeremi´c. Wavelet based synthetic earthquake sources

for path and soilstructure interaction modeling: Stress testing of nuclear power plants.

In Y. Fukushima and L. Dalguer, editors, Best Practices in Physicsbased Fault

Rupture Models for Seismic Hazard Assessment of Nuclear Installations. IAEA,

2015.

K. J. A. Abell, N. Orbovic, D.B. McCallen, and B. Jeremic. Earthquake soil structure

interaction of nuclear power plants, differences in response to 3-D, 3×1-D, and 1-D

13

Page 14: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

excitations. Earthquake Engineering and Structural Dynamics, 47(6):1478–1495, May

2018.

L. Aki and P. G. Richards. Quantitative Seismology. University Science Books, 2nd

edition, 2002.

J. Allen. p − y Curves in Layered Soils. PhD thesis, The University of Texas at Austin, May 1985.

J. Allmond and B. Kutter. Fluid effects on rocking foundations in difficult soil. In Tenth

U.S. National Conference on Earthquake EngineeringFrontiers of Earthquake

Engineering, July 2014.

K. Alvin, H. M. de la Fuente, B. Haugen, and C. A. Felippa. Membrane triangles with

corner drillingfreedoms – I. the EFF element. Finite Elements in Analysis and Design,

12:163–187, 1992.

B. Amadei. Rock anisotropy and the theory of stress measurements. Lecture notes in engineering. Springer-Verlag, 1983.

B. Amadei and R. E. Goodman. The influence of rock anisotropy on stress measurements by overcoring techniques. Rock Mechanics, 15:167–180, December 1982. 10.1007/BF01240588.

Y. Araki, T. Asai, and T. Masui. Vertical vibration isolator having piecewise-constant restoring force.

Earthquake Engineering & Structural Dynamics, 38(13):1505–1523, 2009.

P. Arduino and E. J. Macari. Multiphase flow in deforming porous media by the finite element method. In Y. K. Lin and T. C. Su, editors, Proceedings of 11th Conference, pages 420–423. EngineeringMechanics Division of the American Society of Civil Engineers, May 1996.

P. Arduino and E. J. Macari. Implementation of porous media formulation for geomaterials. ASCE Journal of Engineering Mechanics, 127(2):157–166, 2001.

J. Argyris and H.-P. Mlejnek. Dynamics of Structures. North Holland in USA Elsevier, 1991.

J. Atkinson. An Introduction to the Mechanics of Soils and Foundations. Series in Civil Engineering. McGraww–Hill, 1993. ISBN 0-07-707713-X.

14

Page 15: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

I. Babuska and P. Chatzipantelidis. On solving elliptic stochastic partial differential equations. Computer Methods in Applied Mechanics and Engineering, 191:4093–4122, 2002.

I. Babuˇska and J. T. Oden. Verification and validation in computational engineering and science: basic concepts. Computer Methods in Applied Mechanics and Engineering, 193(36-38):4057–4066, Sept 2004.

G. B. Baecher and J. T. Christian. Reliability and Statistics in Geotechnical Engineering. John Wiley

& Sons Ltd., The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2003. ISBN 0-471-49833-5.

J. P. Bardet and W. Choucair. A linearized integration technique for incremental constitutive equations. International Journal for Numerical and Analytical Methods in Geomechanics, 15(1):1–19, 1991.

Ushnish Basu and Anil K. Chopra. Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Computer Methods in Applied Mechanics and Engineering, 192(11-12):1337–1375, March 2003.

K.-J. Bathe. Finite Element Procedures in Engineering Analysis.Prentice Hall Inc., 1996a. ISBN 0-13-301458-4.

K.-J. Bathe. Finite Element Procedures. Prentice Hall, New Jersy, 1996b.

K.-J. Bathe and L. Wilson, Edward. Numerical Methods in Finite Element Analysis. Prentice Hall Inc., 1976.

P. G. Bergan and C. A. Felippa. A triangular membrane element with rotational degrees of freedom. Computer Methods in Applied Mechanics and Engineering, 50:25–69, 1985.

N. Bi´cani´c, R. de Borst, W. Gerstle, D. W. Murray, G. Pijaudier-Cabot, V. Saouma, K. J. Willam, and J. Yamazaki. Computational aspect of finite element analysis of reinforced concrete structures. Structural Engineering and Structural Mechanics Research Series Report CU/SR-93/3, Department of CEAE, University of Colorado at Boulder, February 1993.

J. Bielak, K. Loukakis, Y. Hisada, and C. Yoshimura. Domain reduction method for three–dimensional earthquake modeling in localized regions. part I: Theory. Bulletin of the Seismological Society of America, 93(2):817–824, 2003.

15

Page 16: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

M. F. Bransby. Differences between load–transfer relationships for laterally loaded pile groups: Active p − y or passive p − δ. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 122(12): 1015–1018, December 1996.

M. F. Bransby. Selection of p-y curves for the design of single laterally loaded piles. International journal for numerical and analysis methods in geomechanics, 23:1909–1926, 1999.

D. A. Brown and C.-F. Shie. Three dimensional finite element model of laterally loaded piles. Computers and Geotechnics, 10:59–79, 1990.

D. A. Brown and C.-F. Shie. Some numerical experiments with a three dimensional finite element model of a laterally loaded pile. Computers and Geotechnics, 12:149–162, 1991.

D. A. Brown, C. Morrison, and L. C. Reese. Lateral loaded behaviour of pile group in sand. Journal of Geotechnical Engineering, 114(11):1261–1277, November 1988.

I. Carol and K. Willam. Application of analytical solutions in elasto–plasticity to localization analysis of damage models. In COMPLAS 5, 17-20 March 1997.

N. Challamel. On the comparison of Timoshenko and shear models in beam dynamics. ASCE Journal of Engineering Mechanics, 132(10):1141–1145, October 2006.

Z. Cheng and B. Jeremi´c. Numerical modeling and simulations of piles in liquefiable soil. Soil Dynamics and Earthquake Engineering, 29:1405–1416, 2009.

E. Cosserat. Th´eorie des Corps D´eformables. Editions Jacques Gabay (2008), 151 bis rue Saint-Jacques,´

75005 Paris, France, 1909. ISBN 978-2-87647-301-0. (originally published in 1909, by Librairie Scientifique A. Herman et Fils, 6, rue de la Sorbonne, 6, Paris).

M. A. Crisfield. Accelerating and dumping the modified Newton–Raphson method. Computers & Structures, 18(3):395–407, 1984.

M. A. Crisfield. Consistent schemes for plasticity computation with the Newton Raphson method.

Computational Plasticity Models, Software, and Applications, 1:136–160, 1987.

M. A. Crisfield. Non–Linear Finite Element Analysis of Solids and Structures Volume 1: Essentials. John Wiley and Sons, Inc. New York, 605 Third Avenue, New York, NY 10158–0012, USA, 1991.

M. A. Crisfield. Non–Linear Finite Element Analysis of Solids and Structures Volume 2: Advanced

16

Page 17: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

Topics. John Wiley and Sons, Inc. New York, 605 Third Avenue, New York, NY 10158–0012, USA, 1997.

Y. F. Dafalias and M. T. Manzari. Simple plasticity sand model accounting for fabric change effects. ASCE Journal of Engineering Mechanics, 130(6):622–634, June 2004.

Y. F. Dafalias, M. T. Manzari, and A. G. Papadimitriou. SANICLAY: simple anisotropic clay plasticity model. International Journal for Numerical and Analytical Methods in Geomechanics, 30(12):1231– 1257, 2006.

J. D’Alembert. Trait´e de Dynamique. Editions Jacques Gabay, 151 bis rue Saint-Jacques, 75005 Paris,´ France, 1758. ISBN 2-87647-064-0. (originally published in 1758), This edition published in 1990.

R. de Borst. Non - Linear Analysis of frictional Materials. PhD thesis, Delft University of Technology, April 1986.

R. de Borst. Computation of post–biffurcation and post–failure behaviour of strain–softening solids. Computers & Structures, 25(2):211–224, 1987.

R. de Borst. Smeared cracking, plasticity, creep, and thermal loading - a unified approach. Computer Methods in Applied Mechanics and Engineering, 62:89–110, 1987.

R. de Borst and P. H. Feenstra. Studies in anysotropic plasticity with reference to the hill criterion. International Journal for Numerical Methods in Engineering, 29:315–336, 1990.

R. de Borst and P. A. Vermeer. Possibilities and limitations of finite elements for limit analysis. Geotechnique, 34(2):199–210, 1984.

R. de Borst, L. J. Sluys, H.-B. Mu¨hlhaus, and J. Pamin. Fundamental issues in finite element analysis of localization of deformation. Engineering Computations, 10:99–121, 1993.

M. K. Deb, I. M. Babuska, and J. T. Oden. Solution of stochastic partial differential equations using Galerkin finite element techniques. Computer Methods in Applied Mechanics and Engineering, 190:6359–6372, 2001.

B. J. Debusschere, H. N. Najm, A. Matta, O. M. Knio, and R. G. Ghanem. Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation. Physics of Fluids, 15:2238–2250, 2003.

17

Page 18: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

A. Der Kiureghian and B. J. Ke. The stochastic finite element method in structural reliability. Journal of Probabilistic Engineering Mechanics, 3(2):83–91, 1988.

C. S. Desai and H. J. Siriwardane. Constitutive Laws for Engineering Materials With Emphasis on Geologic Materials. Prentice–Hall, Inc. Englewood Cliffs, NJ 07632, 1984.

A. Dietsche and K. J. Willam. Localization analysis of elasto-plastic cosserat continua. In J. W. Wu and K. C. Valanis, editors, Damage Mechanics and Localization, volume AMD-142, MD-34, pages 109 – 123, The 345 East 47th street New York, N.Y. 10017, November 1992. The American Society of Mechanical Engineers.

J. M. Duncan and C.-Y. Chang. Nonlinear analysis of stress and strain in soils. Journal of Soil Mechanics and Foundations Division, 96:1629–1653, 1970.

A. Elgamal, Z. Yang, and E. Parra. Computational modeling of cyclic mobility and post–liquefaction site response. Soil Dynamics and Earthquake Engineering, 22:259–271, 2002.

A. Elgamal, J. Lu, and D. Forcellini. Mitigation of liquefaction-induced lateral deformation in a sloping stratum: Three-dimensional numerical simulation. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 135(11):1672–1682, November 2009.

A. C. Eringen and J. D. Ingram. A continuum theory of chemically reacting media – I. International Journal of Engineering Science, 3:197–212, 1965.

G. Etse and K. Willam. A fracture energy – based constitutive formulation for inelastic behaviour of plain concrete. Technical Report CU/SR-93/13, Universtity of Colorado, Department of Civil, Environmental & Architectural Engineering, December 1993.

F. Fadi and M. C. Constantinou. Evaluation of simplified methods of analysis for structures with triple friction pendulum isolators. Earthquake Engineering & Structural Dynamics, 39(1):5–22, January 2010.

P. H. Feenstra. Computational aspects of biaxial stress in plain and reinforced concrete. PhD thesis,

Delft University of Technology, November 1993.

P. H. Feenstra and R. de Borst. A constitutive model for reinforced concrete based on stress decomposition. In S. Sture, editor, Proceedings of 10th Conference, pages 643–646. Engineering Mechanics Division of the American Society of Civil Engineers, May 1995.

C. A. Felippa. Nonlinear finite element methods. Lecture Notes at CU Boulder, 1993.

18

Page 19: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

C. A. Felippa and S. Alexander. Membrane triangles with corner drilling freedoms – III. implementation and performance evaluation. Finite Elements in Analysis and Design, 12:203–239, 1992.

C. A. Felippa and C. Militello. Membrane triangles with corner drilling freedoms – II. the ANDES element. Finite Elements in Analysis and Design, 12:189–201, 1992.

G. A. Fenton. Estimation for stochastic soil models. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 125(6):470–485, June 1999.

A. Gens, I. Carol, and E. E. Alonso. An interface element formulation for the analysis of soil–reinforcement interactions. Computers and Geotechnics, 7:133–151, 1988.

A. Gens, I. Carol, and E. Alonso. A constitutive model for rock joints formulation and numerical implementation. Computers and Geotechnics, 9(1-2):3–20, 1990.

M. Georgiadis. Development of p-y curves for layered soils. In Geotechnical Practice in Offshore Engineering, pages 536–545. Americal Society of Civil Engineers, April 1983.

R. G. Ghanem. Ingredients for a general purpose stochastic finite elements implementation. Computer Methods in Applied Mechanics and Engineering, 168:19–34, 1999.

R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, 1991. (Reissued by Dover Publications, 2003).

A. Green and P. Naghdi. A dynamical theory of interacting continua. International Journal of Engineering Science, 3:231–241, 1965.

M. A. Gutierrez and R. De Borst. Numerical analysis of localization using a viscoplastic

regularizations: Influence of stochastic material defects. International Journal for

Numerical Methods in Engineering, 44:1823–1841, 1999.

A. Haraldsson and P. Wriggers. A strategy for numerical testing of frictional laws with

application tocontact between soil and concrete. Computer Methods in Applied

Mechanics and Engineering, 190:

963–977, 2000.

B. O. Hardin. The nature of stress–strain behaviour of soils. In Proceedings of the

Specialty Conference on Earthquake Engineering and Soil Dynamics, volume 1, pages

3–90, Pasadena, 1978.

19

Page 20: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

C. N A Haskell. The dispersion of surface waves on multilayered media. Bulletin of the

seismological Society of America, 43(1):17–34, 1953.

K. Hijikata, M. Takahashi, T. Aoyagi, and M. Mashimo. Behaviour of a base-isolated building at Fukushima Dai-Ichi nuclear power plant during the Great East Japan Earthquake. In Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, March 1-4 2012.

H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation for time

integration algorithms in structural dynamics. Earthquake Engineering and Structure

Dynamics, 5(3):283–292, 1977.

E. Hoek, C. Carranza-Torres, and B. Corkum. Hoek-Brown failure criterion: 2002 edition.In 5th

North American Rock Mechanics Symposium and 17th Tunneling Association of

Canada Conference: NARMS-TAC, pages 267–271, 2002.

Y.-N. Huang, A. S. Whittaker, and N. Luco. Seismic performance assessment of base-isolated safetyrelated nuclear structures. Earthquake Engineering and Structures Dynamics, Early View: 20 SEP 2010 — DOI: 10.1002/eqe.1038:1–22, 2010.

T. Hughes. The Finite Element Method ; Linear Static and Dynamic Finite Element

Analysis. Prentice Hall Inc., 1987.

A. Ibrahimbegovic, R. L. Taylor, and E. L. Wilson. A robust quadrilateral membrane

finite element with drilling degrees of freedom. International Journal for Numerical

Methods in Engineering, 30:445–457, 1990.

J. D. Ingram and A. C. Eringen. A continuum theory of chemically reacting media – II constitutive equations of reacting fluid mixtures. International Journal of Engineering Science, 5:289–322, 1967.

N. Janbu. Soil compressibility as determined by odometer and triaxial tests. In Proceedings of European Conference on Soil Mechanics and Foundation Engineering, pages 19–25, 1963.

B. Jeremic. Line search techniques in elastic–plastic finite element computations in geomechanics. Communications in Numerical Methods in Engineering, 17(2):115–125, January 2001.

20

Page 21: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

B. Jeremic. Development of analytical tools for soil-structure analysis. Technical Report R444.2, Canadian Nuclear Safety Commission – Comission canadiene de suˆret´e nucl´eaire, Ottawa, Canada, 2016.

B. Jeremic and K. Sett. On probabilistic yielding of materials. Communications in Numerical Methods in Engineering, 25(3):291–300, 2009.

B. Jeremic and S. Sture. Implicit integrations in elasto–plastic geotechnics. International Journal of Mechanics of Cohesive–Frictional Materials, 2:165–183, 1997.

B. Jeremic, Z. Yang, Z. Cheng, G. Jie, K. Sett, N. Tafazzoli, P. Tasiopoulou, J. A. A. Mena, F. Pisan`o, K. Watanabe, Y. Feng, and S. K. Sinha. Lecture notes on computational geomechanics: Inelastic finite elements for pressure sensitive materials. Technical Report UCD-CompGeoMech–01–2004, University of California, Davis, 1989-2016.

B. Jeremic, K. Sett, and M. L. Kavvas. Probabilistic elasto-plasticity: formulation in 1D. Acta Geotechnica, 2(3):197–210, October 2007.

B. Jeremic, Z. Cheng, M. Taiebat, and Y. F. Dafalias. Numerical simulation of fully saturated porous materials. International Journal for Numerical and Analytical Methods in Geomechanics, 32(13): 1635–1660, 2008.

H. D. Kang and K. J. Willam. Finite element analysis of discontinuities in concrete. In Y. K. Lin and T. C. Su, editors, Proceedings of 11th Conference, pages 1054–1057. Engineering Mechanics Division of the American Society of Civil Engineers, May 1996.

K. Karapiperis, K. Sett, M. L. Kavvas, and B. Jeremi´c. Fokker-planck linearization for non-gaussian stochastic elastoplastic finite elements. Computer Methods in Applied Mechanics and Engineering, 307:451–469, 2016.

K. Karhunen. Uber lineare methoden in der wahrscheinlichkeitsrechnung.¨ Ann. Acad. Sci. Fennicae. Ser.

A. I. Math.-Phys., (37):1–79, 1947.

A. Keese and H. G. Matthies. Efficient solvers for nonlinear stochasticproblem. In

H. A. Mang, F. G. Rammmerstorfer, and J. Eberhardsteiner, editors, Proceedings of

the Fifth World Congress on Computational Mechanics, July 7-12, 2002, Vienna,

Austria,

http://wccm.tuwien.ac.at/publications/Papers/fp81007.pdf, 2002.

21

Page 22: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

J. Kelly and S. Hodder. Experimental study of lead and elastomeric dampers for base isolation systems in laminated neoprene bearings. Bulletin of the New Zealand National Society for EarthquakeEngineering,, 15(2):53–67, 1982.

J. M. Kelly. A long-period isolation system using low-damping isolators for nuclear facilities at soft soil sites. Technical Report UCB/EERC-91/03, Earthquake Engineering Research Center, University of California at Berkeley, March 1991a.

J. M. Kelly. Dynamic and failure characteristics of Bridgestone isolation bearings. Technical Report UCB/EERC-91/04, Earthquake Engineering Research Center, University of California at Berkeley, March 1991b.

M. Kleiber and T. D. Hien. The Stochastic Finite Element Method: Basic Perturbation Technique and

Computer Implementation. John Wiley & Sons, Baffins Lane, Chichester, West Sussex PO19 1UD , England, 1992.

A. W. A. Konter. Advanced finite element contact benchmarks. Technical report, Netherlands Institute for Metals Research, 2005.

S. L. Kramer. Geotechnical Earthquake Engineering. Prentice Hall, Inc, Upper Saddle River, New Jersey, 1996.

M. Kumar, A. S. Whittaker, and M. C. Constantinou. An advanced numerical model of elastomeric seismic isolation bearings. Earthquake Engineering & Structural Dynamics, 43(13):1955–1974, 2014. ISSN 1096-9845. doi: 10.1002/eqe.2431. URL http://dx.doi.org/10.1002/eqe.2431 .

P. V. Lade. Model and parameters for the elastic behaviour of soils. In Swoboda, editor, Numerical Methods in Geomechanics, pages 359–364, Innsbruck, 1988. Balkema, Rotterdam.

P. V. Lade. Single–hardening model with application to NC clay. ASCE Journal of Geotechnical Engineering, 116(3):394–414, 1990.

P. V. Lade and M. K. Kim. Single hardening constitutive model for soil, rock and concrete. International Journal of Solids and Structures, 32(14):1963–1995, 1995.

P. V. Lade and R. B. Nelson. Modeling the elastic behaviour of granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 4, 1987.

R. Larsson and K. Runesson. Discontinuous displacement approximation for capturing plastic localization. International Journal for Numerical Methods in Engineering, 36:2087–2105, 1993.

22

Page 23: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

H. K. Law and I. P. Lam. Application of periodic boundary for large pile group. Journal of Geotechnical and Geoenvironmental Engineering, 127(10):889–892, Oct. 2001.

M. Lo`eve. Fonctions al´eatoires du second ordre. Suppl´ement to P. L´evy,

Processus Stochastiques etMouvement Brownien, Gauthier-Villars, Paris, 1948.

N.Lu and W. J. Likos. Unsaturated Soil Mechanics. John Wiley & Sons, May 2004.

ISBN 978-0-47144731-3.

M. T. Manzari and Y. F. Dafalias. A critical state two–surface plasticity model for sands. G´eotechnique, 47(2):255–272, 1997.

H. G. Matthies, C. E. Brenner, C. G. Bucher, and C. Guedes Soares. Uncertainties in probabilistic numerical analysis of structures and soilds - stochastic finite elements. Structural Safety, 19(3): 283–336, 1997.

C. R. McGann, P. Arduino, and P. Mackenzie-Helnwein. Applicability of conventional p-y relations to the analysis of piles in laterally spreading soil. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 137(6):557–567, 2011.

Y. Mei Hsiung. Theoretical elastic–plastic solution for laterally loaded piles. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 129(6):475–480, June 2003.

Y. Mei Hsiung, S. Shuenn Chen, and Y. Chuan Chou. Analytical solution for piles

supporting combined lateral loads. ASCE Journal of Geotechnical and

Geoenvironmental Engineering, 132(10):1315–1324, October 2006.

R. Mellah, G. Auvinet, and F. Masrouri. Stochastic finite element method applied to non-linear analysis of embankments. Probabilistic Engineering Mechanics, 15:251–259, 2000.

P. Menetrey and K. J. Willam. Triaxial failure criterion for concrete and its generalization. ACI Structural Journal, 92(3):311–318, May–June 1995.

C. Militello and C. A. Felippa. The first ANDES elements: 9-dof plate bending triangles. Computer Methods in Applied Mechanics and Engineering, 93:217–246, 1991.

Z. Mroz and V. A. Norris. Elastoplastic and viscoplastic constitutive models for soils with application to cyclic loadings. In G. N. Pande and O. C. Zienkiewicz, editors, Soil Mechanics – Transient and Cyclic Loads, pages 173–217. John Wiley and Sons Ltd., 1982.

23

Page 24: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

Z. Mr´oz, V. A. Norris, and O. C. Zienkiewicz. Application of an anisotropic hardening model in the analysis of elasto–plastic deformation of soils. G´eotechnique, 29(1):1–34, 1979.

D. Muir Wood. Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, 1990.

G. Myionakis and G. Gazetas. Lateral vibration and internal forces of grouped piles in layered soil. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 125(1):16–25, 1999.

N. M. Newmark. A method of computation for structural dynamics. ASCE Journal of the Engineering Mechanics Division, 85:67–94, July 1959.

W. Oberkampf. Material from the short course on verification and validation in computational mechanics. Albuquerque, New Mexico, July 2003.

W. L. Oberkampf, T. G. Trucano, and C. Hirsch. Verification, validation and predictive capability in computational engineering and physics. In Proceedings of the Foundations for Verification andValidation on the 21st Century Workshop, pages 1–74, Laurel, Maryland, October 22-23 2002. Johns Hopkins University / Applied Physics Laboratory.

J. T. Oden, I. Babuˇska, F. Nobile, Y. Feng, and R. Tempone. Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty. Computer Methods in Applied Mechanics and Engineering, 194(2-5):195–204, February 2005.

T. Oden, R. Moser, and O. Ghattas. Computer predictions with quantified uncertainty, part i. SIAM News,, 43(9), November 2010a.

T. Oden, R. Moser, and O. Ghattas. Computer predictions with quantified uncertainty, part ii. SIAM News,, 43(10), December 2010b.

R. W. Ogden. Non–Linear Elastic Deformations. Series in mathematics and its

applications. Ellis Horwood Limited, Market Cross House, Cooper Street, Chichester,

West Sussex, PO19 1EB, England, 1984.

S. Ohya, T. Imai, and M. Matsubara. Relationship between N-value by SPT and LLT

pressuremeterresults. In Proceedings of the 2nd. European Symposium on Penetration

Testing, volume 1, pages 125–130, Amsterdam, 1982.

24

Page 25: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

O. A. Olukoko, A. A. Becker, and R. T. Fenner. Three benchmark examples for frictional contact modelling using finite element and boundary element methods. Journal of Strain Analysis, 28(4):293–301, 1993.

A. G. Papadimitriou, G. D. Bouckovalas, and Y. F. Dafalias. Plasticity model for sand under small and large cyclic strains. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 127(11): 973–983, 2001.

J. Peng, J. Lu, K. H. Law, and A. Elgamal. ParCYCLIC: finite element modelling of earthquake liquefaction response on parallel computers. International Journal for Numerical and Analytical Methods in Geomechanics, 28:1207–1232, 2004.

J. M. Pestana and A. J. Whittle. Compression model for cohesionless soils. G´eotechnique, 45(4):611–631, 1995.

K.-K. Phoon and F. H. Kulhawy. Characterization of geotechnical variability. Canadian Geotechnical Journal, 36:612–624, 1999a.

K.-K. Phoon and F. H. Kulhawy. Evaluation of geotechnical property variability. Canadian Geotechnical Journal, 36:625–639, 1999b.

J. H. Prevost and R. Popescu. Constitutive relations for soil materials. Electronic Journal of Geotechnical Engineering, October 1996. available at http://139.78.66.61/ejge/.

E. Rathje and A. Kottke. Procedures for random vibration theory based seismic site response analyses.

A White Paper Report Prepared for the Nuclear Regulatory Commission. Geotechnical Engineering Report GR08-09., The University of Texas., 2008.

L. C. Reese, S. T. Wang, W. M. Isenhower, and J. A. Arrellaga. LPILE plus 4.0 Technical Manual. ENSOFT, INC., Austin, TX, version 4.0 edition, Oct. 2000.

E. Rizzi, G. Maier, and K. Willam. On failure indicators in multi–dissipative materials. International Journal of Solids and Structures, 33(20-22):3187–3214, 1996.

P. J. Roache. Verif ication and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque, New Mexico, 1998. ISBN 0-913478-08-3.

C. Roy, A. J. Roffel, S. Bolourchi, L. Todorovski, and M. Khoncarly. Study of seismic structure-soilstructure interaction between two heavy structures. In Transactions, SMiRT-22, pages 1–7, SanFrancisco, August 2013. IASMiRT.

25

Page 26: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

C. J. Roy and W. L. Oberkampf. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Computer Methods in Applied Mechanics and Engineering, 200(25-28):2131 – 2144, 2011. ISSN 0045-7825. doi: 10.1016/j.cma.2011.03.016. URL http: //www.sciencedirect.com/science/article/pii/S0045782511001290 .

J. W. Rudnicki and J. R. Rice. Conditions for the localization of deformation in pressure–sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 23:371 to 394, 1975.

I. Sanchez-Salinero and J. M. Roesset. Static and dynamic stiffness of single piles. Technical Report Geotechnical Engineering Report GR82-31, Geotechnical Engineering Center, Civil Engineering Department, The University of Texas at Austin, 1982.

I. Sanchez-Salinero, J. M. Roesset, and J. L. Tassoulas. Dynamic stiffness of pile groupes: Approximate solutions. Technical Report Geotechnical Engineering Report GR83-5, Geotechnical Engineering Center, Civil Engineering Department, The University of Texas at Austin, 1983.

V. V. R. N. Sastry and G. G. Meyerhof. Flexible piles in layered soil under eccentric and included loads.

Soils and Foundations, 39(1):11–20, Feb. 1999.

M. Scott and G. Fenves. Plastic hinge integration methods for force–based beam–column elements. ASCE Journal of Structural Engineering, 132:244–252, 2006.

M. H. Scott, P. Franchin, G. L. Fenves, and F. C. Filippou. Response sensitivity for nonlinear beamcolumn elements. ASCE Journal of Structural Engineering, 130(9):1281–1288, 2004.

M. H. Scott, G. L. Fenves, F. McKenna, and F. C. Filippou. Software patterns for nonlinear beam-column models. ASCE JOURNAL OF STRUCTURAL ENGINEERING, 134(4):562–571, April 2008.

J. F. Semblat. Rheological interpretation of rayleigh damping. Journal of Sound and

Vibration, 206(5): 741–744, 1997.

J.-F. Semblat and A. Pecker. Waves and Vibrations in Soils: Earthquakes, Traffic, Shocks, Construction works. IUSS Press, first edition, 2009. ISBN ISBN-10: 8861980309; ISBN-13: 978-8861980303.

26

Page 27: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

K. Sett and B. Jeremic. Probabilistic yielding and cyclic behaviour of geomaterials.

International Journal for Numerical and Analytical Methods in Geomechanics,

34(15):1541–1559, 2010. 10.1002/nag.870

(first published online March 11, 2010).

K. Sett, B. Jeremi´c, and M. L. Kavvas. Probabilistic elasto-plasticity: Solution and verification in 1D. Acta Geotechnica, 2(3):211–220, October 2007.

K. Sett, B. Jeremi´c, and M. L. Kavvas. Stochastic elastic-plastic finite elements. Computer Methods in Applied Mechanics and Engineering, 200(9-12):997–1007, February 2011a. ISSN 0045-7825. doi: DOI:10.1016/j.cma.2010.11.021. URL http://www.sciencedirect.com/science/article/ B6V29-51N7RNC- 1/2/7d3ca12b0a9817a6ddc35f55f7b9df00 .

K. Sett, B. Unutmaz, K. Onder Cetin, S. Koprivica, and B. Jeremic. Soil uncertainty and its influence¨ on simulated G/Gmax and damping behaviour. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 137(3):218–226, 2011b. 10.1061/(ASCE)GT.1943-5606.0000420 (July 29, 2010).

H. Shahir, A. Pak, M. Taiebat, and B. Jeremic. Evaluation of variation of permeability in liquefiable soil under earthquake loading. Computers and Geotechnics, 40:74–88, 2012.

J. C. Simo and C. Miehe. Associative coupled thermoplasticity at finite strains:

Formulation, numerical analysis and implementation. Computer Methods in Applied

Mechanics and Engineering, 98:41–104, 1992.

J. C. Simo and K. S. Pister. Remarks on rate constitutive equations for finite deformations problems:

Computational implications. Computer Methods in Appliied Mechanics and

Engineering, 46:201–215, 1984.

C. Soize and R. G. Ghanem. Reduced chaos decomposition with random coefficients of vector-valued random variables and random fields. Computer Methods in Applied Mechanics and Engineering, 198: 1926–1934, 2009.

E. Spacone, F. C. Filippou, and F. F. Taucer. Fibre beam-column model for non-linear analysis of r/c frames: Part i. formulation. Earthquake Engineering & Structural Dynamics, 25(7):711–725, July 1996a.

27

Page 28: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

E. Spacone, F. C. Filippou, and F. F. Taucer. Fibre beam-column model for non-linear

analysis of r/c frames: Part ii. applicationss. Earthquake Engineering & Structural

Dynamics, 25(7):727–742, July 1996b.

S.S.Rajashree and T.G.Sitharam. Nonlinear finite element modeling of batter piles under lateral load.

Journal of Geotechnical and Geoenvironmental Engineering, 127(7):604–612, July 2001.

G. Stefanou. The stochastic finite element method: Past, present and future. Computer Methods in Applied Mechanics and Engineering, 198:1031–1051, 2009.

J. B. Stevens and J. M. E. Audibert. Re-examination of p-y curve formulations. In

Eleventh Annual Offshore Technology Conference, volume I, pages 397–403, Dallas,

TX, April 1979. Americal Society of Civil Engineers.

K. Sun. Laterally loaded piles in elastic media. Journal of Geotechnical Engineering,

120(8):1324– 1344, 1994. doi: 10.1061/(ASCE)0733-9410(1994)120:8(1324).

URL http://link.aip.org/ link/?QGE/120/1324/1 .

M. Taiebat and Y. F. Dafalias. SANISAND: Simple anisotropic sand plasticity model. International Journal for Numerical and Analytical Methods in Geomechanics, 2008. (in print, available in earlyview).

M. Taiebat, B. Jeremic, and Y. F. Dafalias. Prediction of seismically induced voids and pore fluid volume/pressure redistribution in geotechnical earthquake engineering. In Proceedings of Sixty Third Canadian Geotechnical Conference & Sixth Canadian Permafrost Conference, pages 233–237, Calgary, AB, Canada, September 12–16 2010a.

M. Taiebat, B. Jeremic, Y. F. Dafalias, A. M. Kaynia, and Z. Cheng. Propagation of seismic waves through liquefied soils. Soil Dynamics and Earthquake Engineering, 30(4):236–257, 2010b.

P. Tasiopoulou, M. Taiebat, N. Tafazzoli, and B. Jeremic. Solution verification procedures for modeling and simulation of fully coupled porous media: Static and dynamic behaviour. Coupled Systems Mechanics Journal, 4(1):67–98, 2015a. DOI: http://dx.doi.org/10.12989/csm.2015.4.1.067.

28

Page 29: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

P. Tasiopoulou, M. Taiebat, N. Tafazzoli, and B. Jeremic. On validation of fully coupled behaviour of porous media using centrifuge test results. Coupled Systems Mechanics Journal, 4(1):37–65, 2015b. DOI: http://dx.doi.org/10.12989/csm.2015.4.1.037.

K. Terzaghi, R. B. Peck, and G. Mesri. Soil Mechanics in Engineering Practice. John Wiley & Sons, Inc., third edition, 1996.

W T Thomson. Transmission of elastic waves through a stratified solid medium. Journal of applied Physics, 21(2):89–93, 1950.

H. Toopchi-Nezhad, M. J. Tait, and R. G. Drysdale. Lateral response evaluation of fiber-reinforced neoprene seismic isolators utilized in an unbonded application. ASCE Journal of Structural Engineering,134(10):1627–1637, October 2008.

S. Tower Wang and L. C. Reese. Design of pile foundations in liquefied soils. In P. Dakoulas, M. Yegian, and R. D. Holtz, editors, Proceedings of a Specialty Conference: Geotechnical Earthwuake Engineering and Soil Dynamics III, Geotechnical Special Publication No. 75, pages 1331–1343. ASCE, August 1998. 1998.

M. F. Vassiliou, A. Tsiavos, and B. Stojadinovi´c. Dynamics of inelastic base-isolated structures subjected

to analytical pulse ground motions. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 42:2043–2060, 2013.

O. Vorobiev. Generic strength model for dry jointed rock masses. International Journal of Plasticity, 24(12):2221 – 2247, 2008. ISSN 0749-6419. doi: DOI:10.1016/j.ijplas.

2008.06.009. URL http://www.sciencedirect.com/science/article/B6TWX-

4SWN0NB-2/2/ 625a61d1579ccd68673598e1cd15a2da .

A. Wakai, S. Gose, and K. Ugai. 3-d elasto-plastic finite element analysis of pile foundations subjected to lateral loading. Soil and Foundations, 39(1):97–111, Feb. 1999.

N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897–936, 1938.

J. K. Willam. Recent issues in computational plasticity. In COMPLAS, pages 1353–1377, 1989.

29

Page 30: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

K. J. Willam and E. P. Warnke. Constitutive model for the triaxial behaviour of concrete.

In Proceedings IABSE Seminar on Concrete Bergamo. ISMES, 1974.

J. P. Wolf. Soil-Structure-Interaction Analysis in Time Domain. Prentice-Hall, Englewood Cliffs (NJ), 1988.

P. Wriggers. Computational Contact Mechanics. John Wiley & Sons, 2002.

D. Xiu and G. E. Karniadakis. A new stochastic approach to transient heat conduction modeling with uncertainty. International Journal of Heat and Mass Transfer, 46:4681–4693, 2003.

Z. Yang and B. Jeremic. Numerical analysis of pile behaviour under lateral loads in layered elasticplastic soils. International Journal for Numerical and Analytical Methods in Geomechanics, 26(14): 1385–1406, 2002.

Z. Yang and B. Jeremic. Numerical study of the effective stiffness for pile groups. International Journal for Numerical and Analytical Methods in Geomechanics, 27(15):1255–1276, Dec 2003.

Z. Yang and B. Jeremic. Soil layering effects on lateral pile behaviour. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 131(6):762–770, June 2005a.

Z. Yang and B. Jeremic. Study of soil layering effects on lateral loading behaviour of piles. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 131(6):762–770, June 2005b.

H. Yang, H. Wang, Y. Feng, F. Wang and B. Jeremić. Energy Dissipation in Solids due to Material Inelasticity, Viscous Coupling, and Algorithmic Damping. In print, ASCE Journal of Engineering Mechanics, 2018.

C. Yoshimura, J. Bielak, and Y. Hisada. Domain reduction method for three–dimensional earthquake modeling in localized regions. part II: Verification and examples. Bulletin of the Seismological Society of America, 93(2):825–840, 2003.

O. Zienkiewicz, A. Chan, M. Pastor, D. K. Paul, and T. Shiomi. Static and dynamic behaviour of soils: A rational approach to quantitative solutions. I. fully saturated problems. Procedings of Royal Society London, 429:285–309, 1990.

O. C. Zienkiewicz and T. Shiomi. Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics, 8:71–96, 1984.

30

Page 31: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, volume 1. McGraw - Hill Book Company, fourth edition, 1991a.

O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, volume 2. McGraw - Hill Book Company, Fourth edition, 1991b.

O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method – Volume 1, the Basis. ButterwortHeinemann, Oxford, fifth edition, 2000.

O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, B. A. Schrefler, and T. Shiomi. Computational Geomechanics with Special Reference to Earthquake Engineering. John Wiley and Sons., 1999. ISBN0-471-98285-7.

References for 6

[1] Kausel, E., and Roësset, J.M. (1974). Soil Structure Interaction Problems for Nuclear Containment Structures, Electric Power and the Civil Engineer, Proceedings of the ASCE Power Division Conference held in Boulder, Colorado.

[2] Tabatabaie-Raissi, M. (1982). The Flexible Volume Method for Dynamic Soil-Structure Interaction Analysis, Ph.D. Dissertation, University of California, Berkeley.

[3] Chin, C.C. (1998). Substructure Subtraction Method and Dynamic Analysis of Pile Foundations, Ph.D. Dissertation, University of California, Berkeley.

[4] Lysmer, J. (1978). Analytical procedures in soil dynamics, ASCE Specialty conference on Earthquake Engineering and Soil Dynamics, vol III, 1267-1316, Pasadena, California.

[5] Tajirian, F. (1981). Impedance Matrices and Interpolation Techniques for 3-D Interaction Analysis by the Flexible Volume Method, Ph.D. Dissertation, University of California, Berkeley.

[6] Ostadan, F. (2006). SASSI 2000, A System for Analysis of Soil-Structure Interaction, Theoretical manual

References for 6.3

1. Luco, J.E. and H.L. Wong, Soil-Structure Interaction: A Linear Continuum Mechanics Approach (CLASSI), Report No. CE79-03, University of Southern California, Los Angeles, CA, 1980.

31

Page 32: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

2. Johnson, J.J., ”Soil Structure Interaction,” Earthquake Engineering Handbook, Chap. 10, W-F Chen, C. Scawthorn, eds., CRC Press, New York, NY, 2003.

3. Ostadan, F., “SASSI2000, A System for Analysis of Soil-Structure Interaction,” Version 1, 1999.

4. Luco, J.E. et al., “Dynamic Response of Three-Dimensional Rigid Embedded Foundations,” Final Research Report, NSF Grant – NSF ENV 76-22632, University of California, San Diego, 1978.

References for 6.5

ELECTRIC POWER RESEARCH INSTITUTE, “A Methodology for Assessment of Nuclear Power Plant Seismic Margin,” Report EPRI-NP-6041-SL, Rev. 1, Palo Alto, California, 1991.

Johnson, J. J., Goudreau, G. L., Bumpus, S. E., and Maslenikov, O. R. (1981). “Seismic Safety Margins Research Program (SSMRP) Phase I Final Report—SMACS—Seismic Methodology Analysis Chain With Statistics (Project VII).” UCRL-53021, Lawrence Livermore National Laboratory, Livermore, CA (also published as U.S. Nuclear Regulatory Commission NUREG/CR-2015, Vol. 9).

Nakaki, D. K., Hashimoto, P. S., Johnson, J. J., Bayraktarli, Y., and Zuchuat, O. (2010). “Probabilistic seismic soil structure interaction analysis of the Muhleberg nuclear power plant reactor and SUSAN buildings.” ASME Pressure Vessel and Piping 2010 Conference, Bellevue, WA, July.

Wong, H.L., and Luco, J.E., 1980, “Soil-Structure Interaction: A Linear Continuum Mechanics Approach (CLASSI),” Report CE79-03, Dept. of Civil Engineering, University of Southern California, Los Angeles.

1.5 REFERENCES

[1] Johnson, J.J., “Soil Structure Interaction: The Status of Current Analysis Methods and Research,” Lawrence Livermore National Laboratory (LLNL), UCRL-53011,

32

Page 33: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

NUREG/CR-1780, prepared for the U.S. Nuclear Regulatory Commission, Washington, D.C., 1981.

[2] INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA), “Earthquake Preparedness and Response for Nuclear Power Plants,” Safety Reports Series No. 66, Vienna, 2011.

[3] INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA), “Review of Seismic Evaluation Methodologies for Nuclear Power Plants Based on a Benchmark Exercise,” IAEA-TECDOC-1722, Vienna, 2013.

[4] American Society of Civil Engineers (ASCE), “Seismic Analysis of Safety-Related Nuclear Structures and Commentary,” Standard ASCE 4-16, 2016. (currently in publication)

[5] American Society of Civil Engineers (ASCE), “Seismic Design Criteria for Structures, Systems and Components in Nuclear Facilities,” ASCE/SEI 43-05 (Revision in progress).

2.8 REFERENCES

[1] Johnson, J.J., “Soil-Structure Interaction,” Chapter 10, Earthquake Engineering Handbook, CRC Press, 2002.

[2] INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA), “Seismic Hazards in Site Evaluation for Nuclear Installations,” Specific Safety Guide SSG-9, Vienna, 2010.

[3] American Society of Civil Engineers (ASCE), “Seismic Analysis of Safety-Related Nuclear Structures and Commentary,” Standard ASCE 4-16, 2016. (currently in publication)

[4] Electric Power Research Institute, “Seismic Evaluation Guidance: Screening, Prioritization and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic,” EPRI 1025287, Electric Power Research Institute, Palo Alto, CA, 2012.

[5] American Society of Mechanical Engineers/American Nuclear Society (ASME/ANS), “Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications,” so-called ”Addendum B,” Standard ASME/ANS RA-Sb-2012, 2012.

3.8 REFERENCES

[1] IAEA (2003). Site Evaluation for Nuclear Installation. Safety Standard Series n° NS-R -3, Vienna, 28 pages.

33

Page 34: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

[2] IAEA (2010). Seismic Hazard in Site Evaluation for Nuclear Installations. Specific Safety Guide SSG-9.

[3] Woods, R.D. (1978). Measurement of Dynamic Soil Properties, Proc. ASCE Specialty Conference on Earthquake Engineering and Soil Dynamics, vol. 1, Pasadena, CA, 91–178.

[4] Vucetic, M., Dobry, R. (1991). Effect of soil plasticity on cyclic response, Journal of Geotechnical Engineering, ASCE, Vol. 117, n°1, 89-107.

[5] Seed, H.B., Idriss, I.M. (1970). Soil moduli and damping factors for dynamic response analysis, Report EERC 70-10. Earthquake Engineering Research Center.

[6] Dormieux, L., Canou, J. (1990). Determination of Dynamic Characteristics of a Soil based on Cyclic Pressumeter Test, 3rd Int. Symposium on Pressumeters, Oxford, 159-168.

[7] Ishihara K. (1996). Soil Behaviour in Earthquake Geotechnics. Oxford Engineering Science Series, Oxford University Press, UK, 342pp

[8] Masing, G. (1926). “Eigenspannungen und Verfestigung beim Messing”, Proc. 2nd International Congress of Applied Mechanics, Zurich, pp. 332-335.

[9] Konder, R. L. (1963). Hyperbolic stress-strain response: cohesive soils. Journal of the Soil Mechanics and Foundations Division (ASCE). Vol. 89, No. SM1, pp. 115-143.

[10] Hardin, B.O., Drnevich, V. P. (1972). Shear modulus and damping in soils: design equations and curves. Journal of the Soil Mechanics and Foundations Division (ASCE). Vol. 98, No. SM7, pp. 667 to 691.

[11] Ramberg, W., Osgood, W.R. (1943). “Description of stress-strain curves by three parameters”, Technical note 902, National Advisory Committee for Aeronautics, Washington D.C.

[12] Iwan, W.D. (1967). On a class of models for the yielding behavior of continuous composite systems. Journal of Applied Mechanics, 34(E3), 612-617.

[13] Pyke, R.M. (1979). Nonlinear soil models for irregular cyclic loadings, J. Geotech. Eng., ASCE, 105(GT6), 715-726.

[14] Vucetic, M. (1990). Normalized behavior of clay under irregular cyclic loading, Canadian Geotech. J., 27, 29-46.

34

Page 35: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

[15] Stewart, J.P., Hashash, Y.M.A., Matasovic, N., Pyke, R., Wang, Z., Yang, Z. (2008). Benchmarking of Nonlinear Geotechnical Ground Response Analysis Procedures, PEER report 2008/04, Berkeley, CA.

[16] Prevost, J.H. (1978). Plasticity theory for soil stress-strain behavior, J. Eng. Mech., 104 (EM5), 1177-1194.

[17] Prevost, J.H. (1985). A simple plasticity theory for frictional cohesionless soils, Soil Dyn. Earthquake Eng., 4(1), 9-17.

[18] Wang, Z.L., Y.F. Dafalias, C.K. Shen (1990). Bounding surface hypoplasticity model for sand, J. Eng. Mech., ASCE, 116 (5), 983-1001.

[19] Mroz, Z. (1967). On the Description of Antisotropic Workhardening, J. Mech. Phys. Solids, 15, 163-175.

[20] Dafalias, Y.F. (1986). Bounding Surface Plasticity: Mathematical Foundation and Hypo-plasticity, J.Eng. Mech., ASCE, 112(9), 966-987.

[21] Nakamura Y., (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Quarterly Report Railway Tech. Res. Inst., 30-1, 25-33, Tokyo, Japan.

[22] NERA: Network of European Research Infrastructures for Earthquake Risk Assessment and Mitigation (2014). Deliverable D11.5, Code cross-check, computed models and list of available results. http://www.orfeus-eu.org/organization/projects/NERA/Deliverables/

[23] Pitilakis K., Riga E., Anastasiadis A., Makra K. (2015). New elastic spectra, site amplification factors and aggravation factors for complex subsurface geometry towards the improvement of EC8; 6th International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand

[24] SESAME (2004). European research project WP12, Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations –measurements, processing and interpretation– Deliverable D23.12. European Commission – Research General Directorate Project No. EVG1-CT-2000-00026 SESAME.

[25] Renault P. (2009) PEGASOS / PRP Overview. Joint ICTP/IAEA Advanced Workshop on Earthquake Engineering for Nuclear Facilities. Abdus Salam International Center for Theoretical Physics, Trieste, Italy.

[26] ISSMFE Technical committee #10 (1994). Geophysical characterization of sites, R.D. Woods edt., XIII ICSMFE, New Delhi, India.

35

Page 36: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

[27] Pecker A. (2007). Determination of soil characteristics, in Advanced Earthquake Engineering Analysis, Chapter 2, Edt A. Pecker, CISM N°494, Springer.

[28] Foti S., Lai C.G., Rix G.J., Strobbia C. (2014). Surface Wave Methods for Near-Surface Site Characterization. CRC Press, Boca Raton, Florida (USA), 487 pp.

[29] Woods R.D. (1998). Measurement of dynamic soil properties, Proceedings of the Conference on Earthquake Engineering and Soil Dynamics, ASCE, Pasadena.

[30] Pecker A., Faccioli E., Gurpinar A., Martin C., Renault P. (2016). Overview & Lessons Learned from a Probabilistic Seismic Hazard Assessment for France and Italy. SIGMA project, to be published.

[31] Prevost J.H., Popescu R. (1996). Constitutive relations for soil materials, Electronic Journal of Geotechnical Engineering-ASCE, 1-39.

[32] ASCE/SEI 41-13 (2014). Seismic Evaluation and Retrofit of Existing Buildings.

[33] ASN/2/01 (2006). Prise en compte du risque sismique à la conception des ouvrages de génie civil d'installations nucléaires de base à 1'exception des stockages à long terme des déchets radioactifs.

[34] American Society of Civil Engineers (ASCE), “Seismic Analysis of Safety-Related Nuclear Structures and Commentary,” Standard ASCE 4-98, 1998. (ASCE 4-16 currently in publication)

[35] Garofalo F., Foti S., Hollender F., Bard P.Y., Cornou C., Cox B.R., Dechamp A., Ohrnberger M., Perron V., Sicilia D., Teague D., Vergniault C. (2016), InterPACIFIC project: comparison of invasive and non-invasive methods for seismic site characterization, Part II: inter-comparison between surface-wave and borehole methods, Soil Dyn. and Earthq. Eng., 82, 241-254.

[36] Assimaki D., Pecker A., Popescu R., Prevost J.H. (2003). Effects of Spatial Variability of Soil Properties on Surface Ground Motion, Journ. Earthq. Eng. Vol7, special issue 1, 1-44.

[37] Popescu R. (1995). Stochastic variability of soil properties: data analysis, digital simulation, effects on system behavior, PhD thesis, Princeton University, Princeton, New Jersey.

5.7 REFERENCES

B. T. Aagaard, R. W. Graves, A. Rodgers, T. M. Brocher, R. W. Simpson, D. Dreger, N. A. Petersson, S. C. Larsen, S. Ma, and R. C. Jachens. Ground-motion modeling of hayward fault

36

Page 37: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

scenario earth- quakes, part II: Simulation of long-period and broadband ground motions. Bulletin of the Seismological Society of America, 100(6):2945–2977, December 2010.

C. Larsen, S. Ma, and R. C. Jachens. Ground-motion modeling of hayward fault scenario earth- quakes, part II: Simulation of long-period and broadband ground motions. Bulletin of the Seismological Society of America, 100(6):2945–2977, December 2010.

J. A. Abell, N. Orbovi´c, D. B. McCallen, and B. Jeremi´c. Earthquake soil structure interaction of nuclear power plants, differences in response to 3-d, 3×1-d, and 1-d excitations. Earthquake Engineering and Structural Dynamics, In Review, 2016.

N. Abrahamson. Spatial variation of earthquake ground motion for application to soil-structure interaction. EPRI Report No. TR-100463, March., 1992a.

N. Abrahamson. Generation of spatially incoherent strong motion time histories. In A. Bernal, editor, Earthquake Engineering, Tenth World Conference, pages 845–850. Balkema, Rotterdam, 1992b. ISBN 90 5410 060 5.

N. Abrahamson. Spatial variation of multiple support inputs. In Proceedings of the First U.S. Seminar, Seismic Evaluation and Retrofit of Steel Bridges, San Francisco, CA, October 1993. UCB and CalTrans.

N. Abrahamson. Updated coherency model. Report Prepared for Bechtel Corporation, April, 2005.

N. Abrahamson. Sigma components: Notation & initial action items. In Proceedings of NGA-East “Sigma” Workshop, University of California, Berkeley, February 2010. Pacific Earthquake Engineering Research Center. (http://peer.berkeley.edu/ngaeast/2010/02/sigma-workshop/).

N. A. Abrahamson. Estimation of seismic wave coherency and rupture velocity using the Smart 1 strong- motion array recordings. Technical Report EERC-85-02, Earthquake Engineering Research Center, University of California, Berkeley, 1985.

N. A. Abrahamson. Hard rock coherency functions based on Pinyon Flat data. unpublished data report, 2007.

37

Page 38: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

11 REFERENCES

[1] Zerva, A., Spatial Variation of Seismic Ground Motions: Modeling and Engineering Applications, CRC Press, 2009, New York, NY, ISBN-13: 978-0-8493-9929-9.

[2] Johnson, J.J., “Soil Structure Interaction,” Earthquake Engineering Handbook, Chap. 10, W-F Chen, C. Scawthorn, eds., CRC Press, New York, NY, 2003.

[3] Abrahamson, N. A., “Program on Technology Innovation: Spatial Coherency Models for Soil Structure Interaction,” EPRI, Palo Alto, CA and the U.S. Department of Energy, Germantown, MD, 1014101, December 2006.

[4] Abrahamson, N., “Hard Rock Coherency Functions Based on the Pinyon Flat Data,” April 2007.

[5] Short, S.A., Hardy, G.S., Merz, K.L., and Johnson, J.J., “Program on Technology Innovation: Validation of CLASSI and SASSI Codes to Treat Seismic Wave Incoherence in Soil-Structure Interaction (SSI) Analysis of Nuclear Power Plant Structures,” EPRI, Palo Alto, CA and the U.S. Department of Energy, Germantown, MD, 1015111, 2007.

[6] Johnson, J.J., Short, S.A., Hardy, G.S., “Modeling Seismic Incoherence Effects on NPP Structures: Unifying CLASSI and SASSI Approaches,” Paper K05-5, 19th Structural Mechanics in Reactor Technology (SMiRT19), Toronto, Canada, 2007.

[7] Johnson, J.J., Schneider, O., Schuetz, W., Monette, P., Asfura, A.P., “Effects of SSI on EPR In-Structure Response Spectra for a Rock Site, Coherent and Incoherent High Frequency Ground Motion,” Proceedings of the ASME 2010 Pressure Vessels & Piping Division / K-PVP Conference, Paper PVP2010-26072, July 2010.

[8] INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA), “Review of Seismic Evaluation Methodologies for NPPs Based on a Benchmark Exercise,” IAEA-TECDOC 1722, 2013.

[9] Johnson, J.J., Godoy, A.R., Gürpinar, A., Kenneally, R.M., “Impacts of the Niigataken Chūetsu-Oki (NCO) Earthquake on the Kashiwazaki-Kariwa Nuclear Power Plant, Post-Earthquake Response, and Lessons Learned: U.S. Perspective,”

38

Page 39: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

(manuscript completed 2015; review completed 2015, expected to be published as a U.S. NRC internal report 2018).

39

Page 40: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

I.3.

I.3.1. References

J. Bielak. Modal analysis for building-soil interaction. Journal of the Engineering Mechanics Division, 102

(5):771–786, 1976.

J. Bielak, K. Loukakis, Y. Hisada, and C. Yoshimura. Domain reduction method for three-dimensional earthquake modeling in localized regions, part i: Theory. Bulletin of the Seismological Society of America, 93(2):817–824, 2003.

R. Boulanger and K. Ziotopoulou. Formulation of a sand plasticity plane-strain model for earthquake engineering applications. Soil Dynamics and Earthquake Engineering, 53:254–267, 2013.

A. K. Chopra and J. A. Gutierrez. Earthquake response analysis of multistorey buildings including foundation interaction. Earthquake Engineering & Structural Dynamics, 3(1):65–77, 1974.

Y. F. Dafalias and M. T. Manzari. Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6):622–634, 2004.

M. Iguchi. Dynamic interaction of soil-structure with elastic rectangular foundation. In Proceedings of the 5th Japanese earthquake engineering symposium, Tokyo , pages 457–464, 1978.

B. Jeremi´c. Development of analytical tools for soil-structure analysis. Technical Report R444.2, Canadian Nuclear Safety Commission – Comission canadiene de suˆret´e nucl´eaire, Ottawa, Canada, 2016.

B. Jeremic, G. Jie, M. Preisig, and N. Tafazzoli. Time domain simulation of soil-

foundation-structure interaction in non-uniform soils. Earthquake Engineering &

Structural Dynamics, 38(5):699, 2009. S. S. K. 3-d contact modeling for soil structure

interaction. Elsevier.

S. Park and P. Byrne. Practical constitutive model for soil liquefaction. In Proc., 9th Int.

Symp. on Numerical Models in Geomechanics (NUMOG IX), pages 181–186. CRC Press, Boca Raton, FL, 2004. A. Rodgers. Private communications. SW4 – Real ESSI connection, 2017.

40

Page 41: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

B. Sj¨ogreen and N. A. Petersson. A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation. J. Sci. Comput., 52(1):17–48, 2011. ISSN 0885-7474. doi: 10.1007/s10915-011-9531-1. URL http://link.springer.com/10.1007/s10915-011-9531-1$\ delimiter"026E30F$nhttps://computation-rnd.llnl.gov/serpentine/pubs/wpp4th2011.pdf$\ delimiter"026E30F$nhttps://computation-rnd.llnl.gov/serpentine/publications.html.

K. Watanabe, F. Pisan`o, and B. Jeremi´c. A numerical investigation on discretization effects in seismic wave propagation analyses. Engineering with Computers, pages 1–27, 2016. ISSN 1435-5663. doi: 10.1007/ s00366-016-0488-4. URL http://dx.doi.org/10.1007/s00366-016-0488-4.

Z. Yang, A. Elgamal, and E. Parra. Computational model for cyclic mobility and associated shear deformation. Journal of Geotechnical and Geoenvironmental Engineering, 129(12):1119–1127, 2003.

C. Yoshimura, J. Bielak, Y. Hisada, and A. Fern´andez. Domain reduction method for three-dimensional earthquake modeling in localized regions, part ii: Verification and applications. Bulletin of the Seismological Society of America, 93(2):825–841, 2003.

Hall J.F. (2006). Problems encountered from the use (or misuse) of Rayleigh damping, Earthquake Engineering and Structural Dynamics, 35:525–545.

Chopra A.K. (2017). Dynamics of Structures: theory and applications in earthquake engineering, fifth edition, Pearson.

41

Page 42: sokocalo.engr.ucdavis.edusokocalo.engr.ucdavis.edu/~jeremic/forIAEA/...15Dec2018…  · Web viewI. Babuˇska and J. T. Oden. Verification and validation in computational engineering

8.8 Appendices

42