jim holte university of minnesota12/7/02 feed sideward applications to biological & biomedical...

48
Jim Holte University of Minnesota 1 2/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Upload: cleopatra-reynolds

Post on 30-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 1 2/7/02

Feed Sideward

Applications to Biological &

Biomedical SystemsSession 2

Jim Holte

2/7/2002

Page 2: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 2 2/7/02

Sessions

• Session 1 - Feed Sideward – Concepts and Examples, 1/15

• Session 2 – Feed Sideward – Applications to Biological & Biomedical Systems, 2/7

• Session 3 – Chronobiology, 2/21 ? Franz Hallberg and Germaine Cornelissen

Page 3: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 3 2/7/02

Biomedical Devices• Pacemakers - Companies are introducing

circadian rhythm based pacemakers. The pacing strategy (amplitude & timing of pacing stimulus) for effective cardiac capture depends on the time of day. (eg. work & sleep).

• Drug Delivery - Medtronic/Minimed’s insulin pump has a drug delivery strategy. It is preprogrammed for continuous insulin delivery which depends on exercise, food intake, patient endogenous performance, may now use adjustment of dose as a function of time of day.

Page 4: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 4 2/7/02

Summary• Dynamical systems analysis provides a technique for

designing rate-control biomedical devices for therapeutic diagnosis & intervention.

• Rate-control provides direct access to bio-rhythms.• Rate control techniques can apply the extensive

knowledge of heart rate variability without requiring knowledge of the causes.

• The above builds on the extensive modeling of controllability and extensibility - opaque-box techniques.

DS <-> Rate Control <-> bio-rhythm rate variability knowledge<-> opaque-box engineering techniques

Page 5: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 5 2/7/02

Feed Sideward

Terms Simple Example• Feed Back Reinvesting dividends

• Feed Foreward Setting money aside

• Feed SidewardMoving money to

another account

β

OutIn

G Σ OutIn

G1

G2

Control

OutIn

Page 6: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 6 2/7/02

IntroductionFeed Sideward is a coupling that shifts resources from one

subsystem to another

• Feed Sideward #1 – feeds values of other variables into the specified variable

• Feed Sideward #2 – feeds changes of parameters into the specified variable. (time varying parameters)

• Feed Sideward #3 – feeds changes of topology by switch operations (switched systems)

Tool for global analysis especially useful for biological systems

Page 7: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 7 2/7/02

References• Colin Pittendrigh & VC Bruce, An Oscillator

Model for Biological Clocks, in Rhythmic and Synthetic Processes in Growth, Princeton, 1957.

• Theodosios Pavlidis, Biological Oscillators: Their mathematical analysis, Princeton, 1973, Chapter 5, Dynamics of Circadian Oscillators

• J.D. Murray, Mathematical Biology, Springer-Verlag, 1993, Chapter 8 “Perturbed and Coupled Oscillators …”

• Arthur Winfree, The Timing of Biological Clocks, Scientific American Books, 1987

Page 8: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 8 2/7/02

Inherent Biological Rhythms

• Biosystems Rhythms– second cycles (sec) - cardiac

– circadian (day) - sleep cycle) - melatonin (pineal)

– circaseptan (week) - mitotic activity of human bone marrow, balneology, bilirubin cycle neonatology

– circalunar cycles (month) - menstrual cycle

– annual (year) cycles - animal’s coats – weight loss & gain by the season.

Page 9: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 9 2/7/02

Synchronizers• Exogenous (external)

– stimulated by light, temperature & sleep/wake, barometric pressure & headaches/joint aches,

• Endogenous (internal): – heart rates

• escape beats• preventricular contractions - ectopic beats • Sino-atreal node (associations of myocardial fibers on basis of

enervation by vagus nerve)• SA node beats spontaneously, governed by nerve & chemical, SA

node stimulates the AV node providing a time delay. • AV node sends excitation through conduction system to the purkinje

fibers which stimulate the heart walls to contract.

– EEG rhythms (4-30 Hz, alpha, beta, theta & delta)

Page 10: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 10 2/7/02

Mathematics

• Mathematical linkage to synchronizers– Endogenous rhythms refer to the eigenvectors.– Exogenous rhythms refer to the particular

integrals (forcing function).

dX/dt = AX +B, B provides a forcing function.

AX provides the eigenvectors.

Page 11: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 11 2/7/02

Viewpoint Challenge

• Traditional view – biological rhythms are exogenous– Focus on particular integrals (heterogenous eqn, x’=ax+b)

• Blood pressure variation is interpreted as an activity variation, thus external.

• Now, many claim that biological rhythms are endogenous – Focus on eigenvectors (homogeneous eqn, x’=ax). – Chronobiology viewpoint

• Blood pressure variation is interpreted as a hormonal variation, thus internal.

Page 12: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 12 2/7/02

Nollte Model• Variation of Pavlidis, Eqns 5.4.1 & 5.4.2

• Dynamical Systemr’=r-cs+b, r>=0

s’=r-as s>=0

r is heart rate, r’ is dr/dt

s is blood pressure, s’ is ds/dt

b is ambient temperature

Page 13: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 13 2/7/02

Σ ∫

r(0)

b

∫Σ

-c

-a

s(0)

r’

s’ s

-as

-cs

rr

r

r

A half- oscillator

B half- oscillator

r’=r-cs+b

s’=r-as

Dynamical System – Circuit Map

Page 14: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 14 2/7/02

Limit Cycler’=r-cs+b, r>=0

s’=r-as s>=0

r is heart rate, r’ is dr/dt

s is blood pressure, s’ is ds/dt

b is ambient temperature

a = 0.5, c = 0.6, e = 0.5, ep = 0.1, b = 0.3 Initial r = 0, s = 25, file = CIRC-CL10.ODX

s-r : Blood Pressure vs Heart Rate -- Limit Cycle

0 40 80 120 160 200s - Blood Pressure (mmHg)

0

20

40

60

80

100

r -

He

art

Ra

te (

be

ats

pe

r m

in)

t-r : Time vs Heart Rate

0 24 48 72 96 120t : Time (hrs)

0

20

40

60

80

100

r :

He

art

Ra

te (

be

ats

pe

r m

in)

t-s : Time vs Blood Pressure

0 24 48 7296120

t : Time (hrs)

0

40

80

120

160

200

s : B

loo

d P

ress

ure

(m

mH

g)

Page 15: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 15 2/7/02

Effect of Increased Heart Rate

s-r : Limit Cycle

0 60 120 180 240 300s : Blood Pressure (mmHg)

0

32

64

96

128

160

r :

He

art

Ra

te (

be

ats

pe

r m

in)

t-r : Time vs Heart Rate

0 16 32 48 64 80t : Time (hrs)

0

32

64

96

128

160

r :

He

art

Ra

te (

be

ats

pe

r m

in)

t-s : Time vs Blood Pressure

0 16 32 48 64 80t : Time (hrs)

0

60

120

180

240

300

s :

Blo

od

Pre

ssu

re (

mm

Hg

)

r’=r-cs+b, r>=0

s’=r-as s>=0

r is heart rate, r’ is dr/dt

s is blood pressure, s’ is ds/dt

b is ambient temperature

a = 0.5, c = 0.6, e = 0.5, ep = 0.1, b = 0.3

Initial r = 36, s = 40, file = CIRC-CL11.ODX

Page 16: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 16 2/7/02

Effect ofDecreased Heart Rater’=r-cs+b, r>=0

s’=r-as s>=0

r is heart rate, r’ is dr/dt

s is blood pressure, s’ is ds/dt

b is ambient temperature

a = 0.5, c = 0.6, e = 0.5, ep = 0.1, b = 0.3

Initial r = 30, s = 40, file = CIRC-CL12.ODX

s-r : Limit Cycle

0 40 80 120 160 200s : Blood Pressure (mmHg)

0

20

40

60

80

100

r :

He

art

Ra

te (

be

ats

pe

r m

in)

t-r : Time vs Heart Rate

0 24 48 72 96 120t : Time (hrs)

0

20

40

60

80

100

r :

He

art

Ra

te (

be

ats

pe

r m

in)

t-s : Time vs Blood Pressure

0 24 48 72 96 120t : Time (hrs)

0

40

80

120

160

200

s :

Blo

od

Pre

ssu

re (

mm

Hg

)

Page 17: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 17 2/7/02

Effect of Critical Heart Rate & Pressure

r’=r-cs+b, r>=0

s’=r-as s>=0

r is heart rate, r’ is dr/dt

s is blood pressure, s’ is ds/dt

b is ambient temperature

a = 0.5, c = 0.6, e = 0.5, ep = 0.1, b = 0.3 Initial r = 1.5, s = 3, file = CIRC-CL13.ODX

1

s-r : Limit Cycle

1 2.8 4.6 6.4 8.2 10s : Blood Pressure (mmHg)

1

2.8

4.6

6.4

8.2

10

r :

He

art

Ra

te (

be

ats

pe

r m

in)

1

t-r : Time vs Heart Rate

1 2.8 4.6 6.4 8.2 10t : Time (hrs)

1

2.8

4.6

6.4

8.2

10

r :

He

art

Ra

te (

be

ats

pe

r m

in)

1

t-s : Time vs Blood Pressure

1 2.8 4.6 6.4 8.2 10t : Time (hrs)

1

2.8

4.6

6.4

8.2

10

s :

Blo

od

Pre

ssu

re (

mm

Hg

)

Page 18: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 18 2/7/02

Effect of Perturbed Equilibrium

1

s-r : Limit Cycle

0 40 80 120 160 200s : Blood Pressure (mmHg)

0

20

40

60

80

100

r :

He

art

Ra

te (

be

ats

pe

r m

in)

1

t-r : Time vs Heart Rate

0 24 48 72 96 120t : Time (hrs)

0

20

40

60

80

100

r :

He

art

Ra

te (

be

ats

pe

r m

in)

1

t-s : Time vs Blood Pressure

0 24 48 72 96 120t : Time (hrs)

0

40

80

120

160

200

s :

Blo

od

Pre

ssu

re (

mm

Hg

)

r’=r-cs+b, r>=0

s’=r-as s>=0

r is heart rate, r’ is dr/dt

s is blood pressure, s’ is ds/dt

b is ambient temperature

a = 0.5, c = 0.6, e = 0.5, ep = 0.1, b = 0.3 Initial r = 1.5, s = 2.5, file = CIRC-CL14.ODX

Page 19: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 19 2/7/02

Biomedical Devices• Pacemakers - Companies are introducing

circadian rhythm based pacemakers. The pacing strategy (amplitude & timing of pacing stimulus) for effective cardiac capture depends on the time of day. (eg. work & sleep).

• Drug Delivery - Medtronic/Minimed’s insulin pump has a drug delivery strategy. It is preprogrammed for continuous insulin delivery which depends on exercise, food intake, patient endogenous performance, may now use adjustment of dose as a function of time of day.

Page 20: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 20 2/7/02

Summary• Dynamical systems analysis provides a technique for

designing rate-control biomedical devices for therapeutic diagnosis & intervention.

• Rate-control provides direct access to bio-rhythms.• Rate control techniques can apply the extensive

knowledge of heart rate variability without requiring knowledge of the causes.

• The above builds on the extensive modeling of controllability and extensibility - opaque-box techniques.

DS <-> Rate Control <-> bio-rhythm rate variability knowledge<-> opaque-box engineering techniques

Page 21: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 21 2/7/02

Next Session

• Session 1 - Feed Sideward – Concepts and Examples, 1/15

• Session 2 – Feed Sideward – Applications to Biological & Biomedical Systems, 2/7

• Session 3 – Chronobiology, 2/21 ? Franz Hallberg and Germaine Cornelissen

Page 22: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 22 2/7/02

Thank you!

Page 23: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 23 2/7/02

Backup

Page 24: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 24 2/7/02

Solution

asrs

bcsrr

tan

])2

1([

2/)1(

)]}sin()1()cos([)sin(

1{)(

])sin(

)sin(1[)(

2/12ac

awhere

tte

ac

b

c

bts

ewt

ac

abtr

t

t

Source: Pavlidis, p. 109

Page 25: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 25 2/7/02

Nollte Model:Continuous Extension

2/,

],2/[,)2/(

)2/()]()[(

,

rifr

rifr

rcsrrr

rifcsr

sif

2/,

],2/[),2/

2/)](()[(

,

2/

rife

rifr

ecsrer

rifcsr

sif

2/),2/

2/)](([

],2/[),2/

2/)}](

2/

2/)](([{)[()}

2/

2/)](([{

,

],2/[

rifs

ree

rifrs

reecsrs

reer

rifcsr

sif

2

2

e

csr csr csr

r

s

r

y = a + (b-a)*[(x-a1)/(b1-a1)]

Page 26: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 26 2/7/02

ODE Architect Models

File DescriptionCIR-CL01CIR-CL02CIR-CL03 r'=r-cs CIR-CL04 r'=r-cs+b, b=0, initial r=0.6, s=0.5, interval=10CIR-CL05 r'=r+cs+b, b=0.3, initial r=0.6, s=0.5, interval=10CIR-CL06 r'=r+cs+b, b=0.3, interval=33.90, initial r=1, show the stable limit cycleCIR-CL07 r'=r+cs+b,b=0.3, interval =33.90, initial r=100, s=0, show stable limit cycleCIR-CL08 r'=r+cs+b,b=0.5, interval =35.00, show stable limit cycleCIR-CL09CIR-CL10 Limit Cycle, r=0, s=25, titles, colorsCIR-CL11 External approach to Limit CycleCIR-CL12 Internal approach to Limit CycleCIR-CL13 Critical PointCIR-CL14 Perturbation from Critical Point

Page 27: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 27 2/7/02

References• Colin Pittendrigh & VC Bruce, An Oscillator Model for

Biological Clocks, in Rhythmic and Synthetic Processes in Growth, Princeton, 1957.

• Theodosios Pavlidis, Biological Oscillators: Their mathematical analysis, Princeton, 1973, Chapter 5, Dynamics of Circadian Oscillators

• J.D. Murray, Mathematical Biology, Springer-Verlag, 1993, Chapter 8 “Perturbed and Coupled Oscillators …”

• Arthur Winfree, “The Temporal Morphology of a Biological Clock”, Amer Math Soc, Lectures on Mathematics in the Life Sciences, Gerstenhaber, 1970, p 111-150

• Arthur Winfree, “Integrated View of Resetting a Circadian Clock, Journ Theoretical Biology, Vol 28, pp 327-374, 1970

• Arthur Winfree, The Timing of Biological Clocks, Scientific American Books, 1987

Page 28: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 28 2/7/02

Feed Sideward - Topics (60 min)

Session 1 (14 slides)

• Background Concepts & Examples– Phase Space (1 slide)

– Singularities (2 slides) *

– Coupled Oscillators (2 slides)

– Phase Resetting (2 slides) *

– Oscillator Entrainment (1 slide)

• Feed Sideward as modulation (3 slides) **

• Summary (1 slide)

Session 2 (12 slides)• Applications to Biological

Systems– Circadian & other Rhythms

(2 slides)• Model & Simulation

Result (2 slides)

• Applications to Biomedical Systems– Blood Pressure

Application (2 slides)• Model & Simulation

Result (2 slides)

• Summary (1 slide) • Segue to Chronobiology

(1 slide)

Page 29: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 29 2/7/02

Feed Sideward

UnderstandingBiological Rhythms

Session 1

Jim Holte

1/15/2002

Page 30: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 30 2/7/02

Sessions

• Session 1 - Feed Sideward – Concepts and Examples, 1/15

• Session 2 – Feed Sideward – Applications to Biological & Biomedical Systems, 1/31

• Session 3 – Chronobiology, 2/12 Franz Hallberg and Germaine Cornalissen

Page 31: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 31 2/7/02

Feed Sideward

Terms Simple Example• Feed Back Reinvesting dividends

• Feed Foreward Setting money aside

• Feed SidewardMoving money to

another account

β

OutIn

G Σ OutIn

G1

G2

Control

OutIn

Page 32: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 32 2/7/02

IntroductionFeed Sideward is a coupling that shifts resources from one

subsystem to another

• Feed Sideward #1 – feeds values of other variables into the specified variable

• Feed Sideward #2 – feeds changes of parameters into the specified variable. (time varying parameters)

• Feed Sideward #3 – feeds changes of topology by switch operations (switched systems)

Tool for global analysis especially useful for biological systems

Page 33: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 33 2/7/02

Phase Space

• Laws of the physical world

• Ordinary differential equations

• Visualization of Solutions

• Understanding

Page 34: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 34 2/7/02

Phase SpaceThe Lotka-Volterra Equations for Predator-Prey Systems

H' = b*H - a*H*P P' = -d*P + c*H*P

H = prey abundance, P = predator

Set the parametersb = 2 growth coefficient of prey

d = 1 growth coefficient of predators

a = 1 rate of capture of prey per predator per unit time

c = 1 rate of "conversion" of prey to predators per unit time per predator. Source: ODE Architect, Wiley, 1999

H

t

P

t

P

H

With t markers

Page 35: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 35 2/7/02

Phase SpaceThe Lotka-Volterra Equations for

Predator-Prey Systems

H' = b*H - a*H*P

P' = -d*P + c*H*P

H = prey abundance, P = predator

Set the parameters

b = 2 growth coefficient of prey

d = 1 growth coefficient of

predators

a = 1 rate of capture of prey per

predator per unit time

c = 1 rate of "conversion" of prey

to predators per unit time

per predator.

Source: ODE Architect, Wiley, 1999

Page 36: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 36 2/7/02

Coupled Oscillators Model

• x and y represent the "phases“ of two oscillators.

Think of x and y:

– angular positions of two "particles"

– moving around the unit circle

• a1 = 0 x has constant angular rate

• a2 = 0 y has constant angular rate.

• Coupling when a1 or a2 non-zeroSource: ODE Architect, Wiley, 1999

Page 37: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 37 2/7/02

ExampleUncoupled Oscillators

Click Animate!

Plot of phase v versus phase u

0 1.26 2.52 3.785.046.3

u

0

1.26

2.52

3.78

5.04

6.3

v

Phases x and y and Phase Difference phi = x - y ( all mod 2pi)

0 4 8 12 162024

Time (t)

0

1.26

2.52

3.78

5.04

6.3

u (

gre

en

), v

(re

d),

ph

i (b

lue

)

Source: ODE Architect, Wiley, 1999

The Tortoise and the Hare

x' = w1 + a1*sin(y - x)

y' = w2 + a2*sin(x - y)

u = (x mod(2*pi)) //Wrap around the

v = (y mod(2*pi)) //unit circle

phi = (x - y)mod(2*pi)

Set the parameters

a1 = 0.0; a2 = 0.0

w1 = pi/2; w2 = pi/3

Page 38: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 38 2/7/02

ExampleCoupled Oscillators

Click Animate!

Plot of phase v versus phase u

0 1.26 2.52 3.785.046.3

u

0

1.26

2.52

3.78

5.04

6.3

v

Phases x and y and Phase Difference phi = x - y ( all mod 2pi)

0 4 8 12 162024

Time (t)

0

1.26

2.52

3.78

5.04

6.3

u (

gre

en

), v

(re

d),

ph

i (b

lue

)

Source: ODE Architect, Wiley, 1999

Coupled Oscillators:

The Tortoise and the Hare

x' = w1 + a1*sin(y - x)

y' = w2 + a2*sin(x - y)

u = (x mod(2*pi)) //Wrap around the

v = (y mod(2*pi)) //unit circle

phi = (x - y)mod(2*pi)

Set the parameters

a1 = 0.5; a2 = 0.5

w1 = pi/2; w2 = pi/3

Page 39: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 39 2/7/02

Phase Resetting

FUNCTION STIM(t,T1,T2,STIM_L,STIM_H)

STIM = PULSE_UP(t, T1, STIM_H) + PULSE_DOWN(t, T2, STIM_L)

RETURN STIM

END

FUNCTION PULSE_UP(t, T1, STIM_H)IF (t >= T1) THEN PULSE_UP = STIM_HELSE PULSE_UP = 0ENDIFRETURN PULSE_UPEND

FUNCTION PULSE_DOWN(t,T2,STIM_L)IF (t <= T2) THEN PULSE_DOWN = 0ELSE PULSE_DOWN = STIM_LENDIFRETURN PULSE_DOWNEND

T1 T2

+1

-1

PULSE_UP

STIM

PULSE_DOWN

Page 40: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 40 2/7/02

ExamplePhase Resetting

Source: ODE Architect, Wiley, 1999

Theta' = 1 + STIM(t,T1,T2,STIM_L,STIM_H)*cos(2*Theta)

T1 = 4

T2 = 4

STIM_L = -1

STIM_H = +1

Theta' = 1 + STIM(t,T1,T2,STIM_L,STIM_H)*cos(2*Theta)

T1 = 4

T2 = 6

STIM_L = -1

STIM_H = +1

Page 41: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 41 2/7/02

Oscillator Entrainment

Source: ODE Architect, Wiley, 1999

• x and y represent the "phases“ of two oscillators.

Think of x and y:

– angular positions of two "particles"

– moving around the unit circle

• a1 = 0 x has constant angular rate

• a2 = 0 y has constant angular rate.

• Coupling when a1 & a2 non-zero

• Entrainment occurs when the coupling causes- angular rate of x to

- approach angular rate of y

• x and y generally differ- Typical for Chronobiology

• Dominant oscillator ‘entrains’ the other

Page 42: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 42 2/7/02

Oscillator Entrainment

ExampleClick Animate!

Plot of phase v versus phase u

0 1.26 2.52 3.785.046.3

u

0

1.26

2.52

3.78

5.04

6.3

v

x-y

2 10 18 263442

x

0

8

16

24

32

40

y

x' = w1 + a1*sin(y - x)

y' = w2 + a2*sin(x - y)

u = (x mod(2*pi)) //Wrap around the

v = (y mod(2*pi)) //unit circle

phi = (x - y)mod(2*pi)

Set the parameters

a1 =.0775*pi; a2 =.075*pi

w1 = pi/4; w2 = pi/4 - .14*pi

Source: ODE Architect, Wiley, 1999

Page 43: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 43 2/7/02

Singularitiesr' = -(r-0)*(r-1/2)*(r-1) - a*STIM(t,T1,T2,STIM_L,STIM_H)

theta' = 1

x = r*cos(theta)

y = r*sin(theta)

T1 = 4

T2 = 6

a=0.0

STIM_L = -1

STIM_H = +1

Page 44: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 44 2/7/02

Example - Singularities

t-r

0 2 4 6810

t

0

0.32

0.64

0.96

1.28

1.6

r

r' = -(r-0)*(r-1/2)*(r-1) - a*STIM(t,T1,T2,STIM_L,STIM_H)

theta' = 1

x = r*cos(theta)

y = r*sin(theta)

T1 = 4

T2 = 6

a=0.0

STIM_L = -1

STIM_H = +1

Run r a Commment

--- --- --- ---------

#1 1.25 0 approaches r=1

#2 1.0 0 stable periodic orbit

#3 0.75 0 approaches r=1

#4 0.5 0 unstable periodic orbit

#5 0.25 0 approaches r=0

#6 0 0 stable periodic orbit

#7 0.75 0.4 starts in r=1 domain,

STIM moves it to r=0 domain

Source: Holte & Nolley, 2002

-1.25 -0.75 -0.25 0.25 0.75 1.25x

-1.25

-0.75

-0.25

0.25

0.75

1.25

y

Page 45: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 45 2/7/02

Feed Sideward

Terms Simple Example• Feed Back Reinvesting dividends

• Feed Foreward Setting money aside

• Feed SidewardMoving money to

another account

β

OutIn

G Σ OutIn

G1

G2

Control

OutIn

Page 46: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 46 2/7/02

Feed Sideward Example

The Oregonator Model for Chemical

Oscillations

x' = a1*(a3*y - x*y + x*(1-x))

y' = a2*(-a3*y - x*y + f*z)

z' = x - z

smally = y/150

a1 = 25; a3 = 0.0008; a2 = 2500; f = 1

Plot of x, z, and y/150 vs. Time

0 4 8 121620

Time (t)

0

0.2

0.4

0.6

0.8

1

x (b

lue

), z

(ye

llow

), y

/15

0 (

red

)

Source: ODE Architect, Wiley, 1999

Page 47: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 47 2/7/02

SummaryFeed Sideward is a coupling that shifts resources from one

subsystem to another

• Feed Sideward #1 – feeds values of other variables into the specified variable

• Feed Sideward #2 – feeds changes of parameters into the specified variable. (time varying parameters)

• Feed Sideward #3 – feeds changes of topology by switch operations (switched systems)

Tool for global analysis especially useful for biological systems

Page 48: Jim Holte University of Minnesota12/7/02 Feed Sideward Applications to Biological & Biomedical Systems Session 2 Jim Holte 2/7/2002

Jim HolteUniversity of Minnesota 48 2/7/02

Next Session

• Session 1 - Feed Sideward – Concepts and Examples, 1/15

• Session 2 – Feed Sideward – Applications to Biological & Biomedical Systems, 1/31

• Session 3 – Chronobiology, 2/12 Franz Hallberg and Germaine Cornelissen