jn reddy - 1 lecture notes on nonlinear fem meen...

46
INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy e - mail: [email protected] Fall 2016 MEEN 673 Nonlinear Finite Element Analysis Chapter 3 JN Reddy - 1 Lecture Notes on NONLINEAR FEM

Upload: phamdiep

Post on 17-Apr-2018

276 views

Category:

Documents


15 download

TRANSCRIPT

Page 1: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem

J. N. Reddye-mail: [email protected]

Fall 2016

MEEN 673Nonlinear Finite Element Analysis

Chapter 3

JN Reddy - 1 Lecture Notes on NONLINEAR FEM

Page 2: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

3

An Overview of The Finite Element Method

2D Problems involving a single unknown

• Model equation Discretization• Weak form development • Finite element model • Approximation functions• Interpolation functions of

higher-order elements• Post-computation of variables• Numerical examples• Transient analysis of 2-D problems

CONTENTS

JN Reddy - 2 Lecture Notes on NONLINEAR FEM

Page 3: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

MODEL EQUATION

Model Differential Equation

11 22 inu u

a a fx x y y

2-D Problems: 4

coefficients that describe material behaviorsource term

ijaf

11 12 21 22ˆ ˆ, 0x y n

u u u uu u a a n a a n q

x y x y

Type of boundary conditions

JN Reddy - 3 Lecture Notes on NONLINEAR FEM

Page 4: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

EXAMPLES OF MODEL EQUATION(1)− Deflection of a membrane

2-D Problems: 5

11 22 0u u

a a fx x y y

11 22

( , ) transverse deflection of a point in the membrane( , ) applied pressure

( , ), ( , ) tensions in the and directions, respectively

u x y

f x ya x y a x y x

y

=

==

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

Transverse deflection of a square membrane fixed on all its sides and subjected to uniform pressure.

x

y

JN Reddy - 4 Lecture Notes on NONLINEAR FEM

Page 5: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

EXAMPLES OF MODEL EQUATION(2)− Torsion of a cylindrical member

2 2

2 2 0 inGx y

Ω

11 22

( , )

shear modulusangle of twi

warping func

t

tion

s

x ya a GG

0

, , ( , )

( , ) , ( , )

on

xz yz

x yy n x n

u zy v zx w x y

x y G y x y G xy

x

x

y

Γ

L

z

Mz

Mz

y

x

uvzθα =

JN Reddy - 5 Lecture Notes on NONLINEAR FEM

Page 6: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

EXAMPLES OF MODEL EQUATION(3)− 2D Heat transfer

11 22, temperature; ,, thermal conductivities

in the and directions, respectively

internal heat generationheat flux normal to the boundary

x y

x y

n

u T a k a kk k

x y

fq

11 22

11 22

( , ) , ( , )

ˆ on

x y

x y n

u uq x y a q x y ax y

u ua n a n qx y

Γ

11 22 0u u

a a fx x y y

x

y

JN Reddy - 6 Lecture Notes on NONLINEAR FEM

Page 7: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

11 22

, water head (velocity potential), permeabilities in the and directions,

respectively internal infiltrationflow normal to the boundaryn

ua a x y

fq

11 22

11 22

( , ) , ( , )

ˆ on

x y

x y n

v x y a v x y ax y

a n a n qx y

Γ

11 22 0a a f

x x y y

EXAMPLES OF MODEL EQUATION(4) − 2D Inviscid flow

x

y

JN Reddy - 7 Lecture Notes on NONLINEAR FEM

Page 8: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 9

WEAK FORM DEVELOPMENT

Approximation ( , ) ( , )hu x y u x y

,e e

e e

x y

F Fdxdy F ds dxdy F dsn n

x y

Green-Gauss Theorem

Consider the identity:

1 11 1 1 1ori i

i i i i

w F F ww F F w w w F F

x x x x x x

11 220

e

h hi

u uw a a f dxdy

x x y y

Weak Form DevelopmentStep 1

1F2F

Step 2: Trade differentiations between and w hu

F

JN Reddy - 8 Lecture Notes on NONLINEAR FEM

Page 9: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 10

WEAK FORM DEVELOPMENT continued

e

e

x

Fdxdy n F ds

x

Consider the identity: 11 1

ii i

F ww w F F

x x x

Step 2:

F

1e

e

x i

Fdxdy n w F ds

x

11e

e

hx i

uFdxdy n w a ds

x x

22e

e

hiy

uGdxdy w a s

yd

yn

JN Reddy - 9 Lecture Notes on NONLINEAR FEM

Page 10: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 11

Step 1

WEAK FORM DEVELOPMENT (continued)

11 22

11 22

11 22

0e

e

e

h hi

i h i hi

h hi x y

u uw a a f dxdy

x x y y

w u w ua a w f dxdy

x x y y

u uw a n a n

x y

11 22

11 22 , flux normal to the boundary

e

e

i h i hi

i n

h hn x y

ds

w u w ua a w f dxdy

x x y y

w q ds

u uq a n a n

x y

Step 2

Step 3

JN Reddy - 10 Lecture Notes on NONLINEAR FEM

Page 11: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 12

FINITE ELEMENT APPROXIMATION

x

y

n

q

n qn ˆq

x

y nixˆn

jyˆn

n i jx yˆ ˆˆ n n

ˆn i

ˆn j

ˆn i

n cos i sin jˆ ˆˆ

JN Reddy - 11 Lecture Notes on NONLINEAR FEM

Page 12: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 13

Weak form

FINITE ELEMENT APPROXIMATION

11 220e

e

i h i hi

i n

w u w ua a w f dxdy

x x y y

w q ds

1 2 3 4

1

( , ) ( , ) ( terms)

( , )

h

n

j jj

u x y u x y c c x c y c xy n

u x y

Approximation

Finite element model [the ith equation is obtained by replacing the weight function w by ]( 1,2, , )i i n

11 220e

e

i h i hi

i n

u ua a f

x x y y

q ds

dxdy

JN Reddy - 12 Lecture Notes on NONLINEAR FEM

Page 13: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

FINITE ELEMENT MODEL DEVELOPMENT(continued)

11 22

11 221 1

11

0

0

e

e

e

e e

i h i hi

i n

n nj ji i

j jj j

i i n

j

u ua a f dxdy

x x y y

q ds

u a u a dxdyx x y y

f dxdy q ds

u a

221 e

e

e

nj ji i

j

i i n

a dxdyx x y y

f dxdy q ds

2-D Problems: 14

JN Reddy - 13 Lecture Notes on NONLINEAR FEM

Page 14: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

FINITE ELEMENT MODEL DEVELOPMENT(continued)

11 221

1 1

11 22

0

or

,

e

e

e

e

e

e

nj ji i

jj

i i n

n ne e e e e e e e e eij j i i ij j i

j j

j je i iij

ei i i

u a a dxdyx x y y

f dxdy q ds

K u f Q K u F

K a a dxdyx x y y

F f dxdy

K u F

nq ds

2-D Problems: 15

JN Reddy - 14 Lecture Notes on NONLINEAR FEM

Page 15: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 16

APPROXIMATION FUNCTIONSLinear Triangular Element

1 2 3

1 1 1 2 1 3 1 1

2 2 1 2 2 3 2 2

3 3 1 2 3 3 3 3

( , )

( , )

( , )

( , )

eh

e eh

e eh

e eh

u x y c c x c y

u x y c c x c y u

u x y c c x c y u

u x y c c x c y u

u A c c A u1 11 1

12 2 2 2

3 33 3

1

1 or

1

e e

e e e e e e e

e e

u cx y

u x y c

x yu c

y

x

1

3

21 1( , )x y2 2( , )x y

3 3( , )x y

1 2

3

·

·

·

JN Reddy - 15 Lecture Notes on NONLINEAR FEM

Page 16: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 17

APPROXIMATION FUNCTIONSLinear Triangular Element (continued)

1

1

3

2

ψ1

11

3

2

ψ21

1

3

2

ψ3

1

1 2 33

1 1 2 2 3 31

( , ) 1 1

( , ) ( , ) ( , ) ( , )

1( , )

2, , ( )

Area of the triangle, 2 Determinant of [ ]

e e eh

e e e e e e e ej j

j

ei i i ie

i j k j k i j k i j ke e

u x y c c x c y x y c x y A u

x y u x y u x y u u x y

x y x y

x y y x y y x x

A

JN Reddy - 16 Lecture Notes on NONLINEAR FEM

Page 17: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 18

APPROXIMATION FUNCTIONSLinear Rectangular Element

1 2 3 4

11 1 1

22 1 2 2

3 3 1 2 3 4 3

4 4 1 3 4

( , )

( , )

( , )

( , )

( , )

eh

e eh

e eh

e eh

e eh

u x y c c x c y c x y

u x y c u

u x y c c a u

u x y c c a c b c ab u

u x y c c b u

1 2

3 4

( , ) 1 1 , ( , ) 1 ,

( , ) , ( , ) 1 ,

e e

e e

x y x yx y x y

a b a bx y x y

x y x ya b a b

y

x

1

4 3

2

b

a

y_

x_

( , )ej i i ijx y

JN Reddy - 17 Lecture Notes on NONLINEAR FEM

Page 18: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 19

1

1

4

3

2

ψ1

11

4

3

2

ψ2

1

1

4

3

2

ψ3 1

1

43

2

ψ4

APPROXIMATION FUNCTIONSLinear Rectangular Element (continued)

JN Reddy - 18 Lecture Notes on NONLINEAR FEM

Page 19: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 20

Interpolation Property of the Approximation Functions

3

1

1, , a fixed value( , ) ; ( , ) 1

0, , a fixed valuee ej i i ij j

j

i jx y x y

i j

x

1 231 2

34

y

x

223

u(x,y)

u1u3

Representation of the domainby 3-node triangles

u2

1

( , )ehu x y

x

1 232

4

yu(x,y)

Representation of the domainby 4-node rectangles

1u4u 2u

3u

23

1

4

4

JN Reddy - 19 Lecture Notes on NONLINEAR FEM

Page 20: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 21

NUMERICAL EVALUATION OF COEFFICIENT MATRICES

Linear Right-Angled Triangular Element

2 2 2 2

2 2

2 2

[ ] 02

0

1

13

1

e e

ee e

a b b ak

K b bab

a a

ff

b

ax2

3

1

y

2

3

1

Right-angle triangle

2 e ab

11 22

1 1 0 1 0 1

[ ] 1 1 0 0 0 02 2

0 0 0 1 0 1

e e eb aK a a

a b

11 22When , we havee eea a k

JN Reddy - 20 Lecture Notes on NONLINEAR FEM

Page 21: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 22

NUMERICAL EVALUATION OF COEFFICIENT MATRICESLinear Rectangular Element

y

x

1

4 3

2

b

a

y_

x_

11 22

2 2 1 1 2 1 1 2 1

2 2 1 1 1 2 2 1 1[ ] ,

1 1 2 2 1 2 2 1 16 6 41 1 2 2 2 1 1 2 1

e e e e ef abb aK a a f

a b

JN Reddy - 21 Lecture Notes on NONLINEAR FEM

Page 22: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

1. Superparametric (m > n): The polynomial degree ofapproximation used for the geometry is of higher order than that used for the dependent variable.

2. Isoparametric (m = n): Equal degree of approximationis used for both geometry and dependent variables.

3. Subparametric (m < n): Higher-order approximation ofthe dependent variable is used.

Geometry:

Solution:

1 1

ˆ ˆ( ), ( )m m

e e e ej j j j

j j

x x , y y ,

1 1

( , ) ( ) ( ( ) ( ))n n

e e e ej j j j

j j

u x y u x,y u x , ,y ,

PARAMETRIC FORMULATIONS (2-D)

Thus, there are two meshes in finite element analysis.

Numer Integration: 23

JN Reddy - 22 Lecture Notes on NONLINEAR FEM

Page 23: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

NUMERICAL EVALUATION OF INTEGRAL COEFFICIENTS

• Transformation of the integrals posed on arbitrary-shaped element to the master element domain so that evaluationof the integrals is made easy.

• The Gauss integration rule that evaluates an integral expression as a linear sum of the integrand evaluated at certain points (Gauss points) and weights (Gauss weights)is used.

x

y

Γ

Γ

Ω e

e

Ω

• eu2i

Degrees of freedom

12

34

eu1

1

( , ) ( , ) ( , )n

e e eh j j

j

u x y u x y u x y

1

( ( , ), ( , ))

( , )

eh

ne ej j

j

u x y

u

Numer Integration: 24

JN Reddy - 23 Lecture Notes on NONLINEAR FEM

Page 24: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

ξ

η

ξ = 1

η = 1

x

y

1Ω 2Ω 3ΩΩ

ξ

η

ηξ ddJdydx =

)1(),1( ηη ,yy,xx ==

)1(),1( ,yy,xx ξξ ==)()(

y,xy,x

ηηξξ

==

)()(

ηξηξ,yy,xx

==

y

x

NUMERICAL INTEGRATION

1

1

ˆ( , ) ( )

ˆ( , ) ( )

me ej j

j

me ej j

j

x x ,

y y ,

Numer Integration: 25

JN Reddy - 24 Lecture Notes on NONLINEAR FEM

Page 25: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

( ) ( ) General

( ) ( ) Gauss rule

b

a

NPTx

ij ij ij I Ix

I

NGP

ij ij ij I II

G F x dx F x W

K F d F W

1

1

11

Numerical Integration -26

,

NGPor NGPor NGP

pNGP

p

p

p

12

1 1

2 3 2

4 5 3

Nearest larger integer equal to (p+1)/2

( ) [ ]

( ) ( )

iF Fh

I F d F F

F F W

1

1 21 2

1

1 1

22 2

2 0

1

( )F 0

1

( )F

NUMERICAL INTEGRATIONJN Reddy - 25 Lecture Notes on NONLINEAR FEM

Page 26: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

11 22

ˆ

1 1ˆ

( , ) ( ( , ), ( , ))

ˆ( , ) ( , )

e

e

j je i iij

ij ij

NGP NGP

ij I J ij I JI J

K a a dxdyx x y y

F x y dxdy F x y J d d

F J d d W W F

WI – Weights(xI, yI) – Integration

points

TRANSFORMATION OF THE INTEGRAL

i i i i i i

i ii i i i

x y x yx y x x

x yx yy yx y

ψ ψ ψ ψ ψ ψξ ξ ξ ξ ξ ξ

ψ ψψ ψ ψ ψη ηη η η η

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⇒ = = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ = + ∂ ∂∂ ∂∂ ∂ ∂ ∂ ∂ ∂

J

Numer Integration: 27

JN Reddy - 26 Lecture Notes on NONLINEAR FEM

Page 27: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

NUMERICAL INTEGRATION

1 1

1 1

1 11 2

2 2

1 2

ˆ ˆ

Jˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

m mi ii ii i

m mi ii ii i

m

m

m m

x y x y

x yx y

x yx y

x y

1 *

J J

i ii

i i i

ξ ξx

y η η

∂ ∂∂ ∂ ∂∂ = = ∂ ∂ ∂

∂ ∂ ∂

Jacobian matrix

Global derivatives in terms of the local derivatives

Numer Integration: 28

JN Reddy - 27 Lecture Notes on NONLINEAR FEM

Page 28: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

ELEMENT CALCULATIONS

11 22

* * * *11 11 12 11 12

ˆ

* * * *22 21 22 21 22

( , )

( , )

e

j je i iij

j ji i

j ji i

K a a dxdyx x y y

a J J J J

a J J J J

1 1

ˆ 1 1

1 1

ˆ ˆ( , ) ( , )

ˆ ( , )

e eij ij

NGPNGPeij I J I J

I J

J d d

F d d F d d

F WW

Numer Integration: 29

,dxdy J dξ d Jη= = J

JN Reddy - 28 Lecture Notes on NONLINEAR FEM

Page 29: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

ξ

η

1 2

34

ξ

η

51 2

346

7

89

ξ

η

1

3

2

ξ

η

21

3

4

56

ξ

η

1

2

34

ξ

η

1

3

2

ξ

η

1

3

24

56

ξ

η

1

2

34

5

6

78

9

Master element Actual element

Numer Integration: 30

JN Reddy - 29 Lecture Notes on NONLINEAR FEM

Page 30: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

Computational Issues: - 31

η

ξ

ξ = − 13 ξ = 1

3

η = 13

η = − 13

η= 0

η

ξ

ξ = − 35 ξ = 3

5

η = 35

η = − 35

ξ= 0

η= 0.861...

ξ= − 0.861...

ξ

ηξ= 0.861...

η= 0.339...

η= − 0.339...η= − 0.861...

GAUSS QUADRATURE

Domain of the masterelement

Domain of the physical element

Gauss points Gauss weights

ˆ

, 1

ˆ,

ˆ ,

( ) ( )

( )

e e

ij ij

N

I J ij I JI J

F x y dxdy F ξ,η dξ dη

W W F ξ η

JN Reddy - 30 Lecture Notes on NONLINEAR FEM

Page 31: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 32

ASSEMBLY OF ELEMENTS/EQUATIONS(1 DoF per node)

• 1 3

2

4

••

1

2

43

5

1

1

1

11

2

3

4

5

6

7

9

8

a relationship between certain property of global

node and global node .0, if node and do not

belong to the same elemen .t

IJK

I JI J

(1) (1) (1)11 11 13 14 15 13 14

(1) (2) (1) (2)22 22 11 25 23 14 26

(1) (2) (3) (4)55 33 44 22 11

(3) (4) (1) (1) (2)56 23 13 1 1 2 2 1

(1) (2) (3) (4)5 3 4 2 1

, , , 0,

, , 0,

,

, , ,

K K K K K K K

K K K K K K K

K K K K K

K K K F F F F F

F F F F F

1 2 3 4

1 2 5 3

2 4 7 5

3 5 6[ ]

5 7 6

7 8 9 6

B

Connectivity matrix

Element local node numbers

JN Reddy - 31 Lecture Notes on NONLINEAR FEM

Page 32: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 33

POST-COMPUTATION OF VARIABLES

( ) ( )

1

( ) ( )( ) ( )

1 1

( , ) ( , ), ( , )

, , ( , )

ne e e eh j j

j

e en ne ej je e eh h

j jj j

u x y u x y x y

u uu u x y

x x y y

6

• 1 3

2

4

••

1

2

43

5

1

1

1

11

2

3

4

5

7

9

8

JN Reddy - 32 Lecture Notes on NONLINEAR FEM

Page 33: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 34

Derivatives of the Solution

( )( )

1 1

( )( )

1 1

1, ( , )

2

1, ( , )

2

en neje e e eh

j j jej j

en neje e e eh

j j jej j

uu u x y

x x

uu u x y

y y

Linear triangular element

Linear Rectangular element( )

( )

1 1

( )( )

1 1

1( ), ( , )

2

1( ), ( , )

2

en neje e e e eh

j j j jej j

en neje e e e eh

j j j jej j

uu u y x y

x x

uu u x x y

y y

JN Reddy - 33 Lecture Notes on NONLINEAR FEM

Page 34: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

1

1 2 3

6

9

1 1

1

1 2

3 4

x

y

a = 1

a = 1

u = 0

0=∂∂

−=∂∂

=yu

nuqn

(a)

4

0=∂∂

−xu

u = 0

7 8

5

52

6 10

1 3 4

15

25

1 11 x

ya = 1

u = 0

0=∂∂

−=∂∂

=yu

nuqn

(b)

16

1

20

11

21

u = 0

0=∂∂

−xu

a = 1

9

1 2 3 4

8

12

5

1613

13

8

18

Example 8.3.1 from the book2×2 mesh 4×4 mesh

11 1 12 2 14 4 15 5 1

1 1 1 1 1 1 11 2 4 511 12 14 13 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

For example, equation for node 1 is:

orK U K U K U K U F

K U K U K U K U f Q f

12 =∇− u

JN Reddy - 34 Lecture Notes on NONLINEAR FEM

Page 35: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

Coordinate, x

Solu

tion,

u(x

,0)

• Ritz solution∆ FEM (mesh T2)

Analytical

FEM (mesh T1)

x

y

0=∂∂

xu

0=∂∂

yu

0=u

0=u

12 =∇− u

Coordinate, x

Solu

tion,

qx(x

,0)

• FEM (mesh T2)FEM (mesh T1)Analytical

x

y

0=∂∂

xu

0=∂∂

yu

0=u

0=u

12 =∇− u

Finite Element, Ritz, and Exact Solutions

JN Reddy - 35 Lecture Notes on NONLINEAR FEM

Page 36: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

DISCUSSION (distributed boundary source and convection type boundary condition)

0

0

( ) ( )

( ) 1

h

i n i

n

Q q s s ds

sq s q

h

8 6

2 1,

3 2 3 2n nq h q h

Q Q

For linear elements

2-D Problems: 37

1

1

1

11 2

3 4

5

6

7 8

x

y

1.0

1.0

1 2

3 41

(0, ) 4 (1 )

0 1

u y y y

y

3 0nq u

( , 0) 4 (1 ), 0 1u x x x x

0 5q 0nq

s

h

JN Reddy - 36 Lecture Notes on NONLINEAR FEM

Page 37: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

DISCUSSION(computation of convection type BC)

00 0

010

01 0 0

( ) ( ) ( ) ( )

( ) ( )

h h

i n i i

h n

j j ij

h hn

j i j ij

Q q s s ds u u s ds

u u s ds

u ds u ds

0

General form of the BC:

( ) 0nq u u

1

1

1

11 2

3 4

5

6

7 8

x

y

1.0

1.0

1 2

3 41

(0, ) 4 (1 )

0 1

u y y y

y

03 0 ( 3, 0)nq u u

( , 0) 4 (1 ), 0 1u x x x x

5nq

0nq

2-D Problems: 38

JN Reddy - 37 Lecture Notes on NONLINEAR FEM

Page 38: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

Transient Analysis of 2-D Problems

( )2

1 2 11 222, ,

u u u uc c a a f x y t

t t x x y y

( )

2

1 2 11 222

2

1 2 11 222

0

, ,e

e

e

h h h hi

h h i h i hi i

i i

u u u uw c c a a

t t x x y yf x y t dxdy

u u w u w uw c w c a a

t t x x y y

w f dxdy qw ds

Weak formulation

Model Governing Differential Equation

2-D Problems: 39

JN Reddy - 38 Lecture Notes on NONLINEAR FEM

Page 39: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

1

( ) ( ) ( ) ( ), , , , ,n

e e eh j j

j

u x y t u x y t u t x y

Approximation

Finite element model

1 2

11 22

Cu Mu Ku F

,e e

e

e e

e eij i j ij i j

j je i iij

ei i i

C c dxdy M c dxdy

K a a dxdyx x y y

F f dxdy q ds

+ + =

= =

∂ ∂ ∂ ∂= + ∂ ∂ ∂ ∂

= +

∫ ∫

∫ ∫

SPATIAL DISCRETIZATION:Finite Element Model

2-D Problems: 40

JN Reddy - 39 Lecture Notes on NONLINEAR FEM

Page 40: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

TIME APPROXIMATIONS (Parabolic)

K u F , K K C

F K C u F F

1 1 1 1 1 1

1 1 1 1 1

ˆ ˆ ˆ ,

ˆ (1 ) (1 )

s s s s s s

s s s s s s s

t

t t

u u u u

Cu Cu Cu Cu1 1 1

1 1 1

(1 )

(1 )

s s s s s

s s s s s

t

t

Alfa-family of approximation

Cu F K u1 1 1 1s s s s

C K u C K u

F F1 1 1

1 1

(1 )

(1 )

s s s s s s

s s s

t t

t

Cu F K us s s s

Cu Ku F, 0 t T

Semidiscrete FE model

Fully discretized model

2-D Problems: 41

NOTE: From here, the procedure is the same as in 1-D

JN Reddy - 40 Lecture Notes on NONLINEAR FEM

Page 41: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

TIME APPROXIMATIONS (Hyperbolic)

C u M u K u Fe e e e e e e

u u u uu u u u u u

2121 ,

1 , , 1, (1 )

s s s s

s s s s s s

t t

t

Semidiscrete FE model

Newmark scheme (second-order equations)

K u F , K K M C

F F M u u u C u u u

1 1 1 1 1 3 1 5 1

1 1 1 3 4 5 1 5 6 7

ˆ ˆ ˆ

ˆ

s s s s s s s

s s s s s s s s s s

a a

a a a a a a

Fully discretized model

2-D Problems: 42

JN Reddy - 41 Lecture Notes on NONLINEAR FEM

Page 42: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

An Example: Transient Heat Conduction Problem

1 ( , , )T T Tc k k f x y tt x x y y

52

6 10

1 3 4

15

25

x

y

16 20

11

21

12

34

78

910

2625 31

32

x

y

1.01.0

T = 0

)(insulated0=∂∂

−yT

T = 0

)(insulated

0=∂∂

−xT

0 0 0

0 1 1

x yT Tk n n x yx y

T y x

on and

on and0 1( , , )T x y

Governing equation

Boundary conditions

Initial condition

2-D Problems: 43

JN Reddy - 42 Lecture Notes on NONLINEAR FEM

Page 43: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

Stability Characteristics

0.00 0.02 0.04 0.06 0.08 0.10 0.12Time, t

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15Te

mpe

ratu

re,

00518.0triangles linear of mesh44

cri =∆×t

01050 .,. =∆= tα005000 .,. =∆= tα01000 .,. =∆= tα

T(0,

0,t)

2-D Problems: 44

JN Reddy - 43 Lecture Notes on NONLINEAR FEM

Page 44: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

0.00 0.20 0.40 0.60 0.80 1.00Distance, x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tem

pera

ture

,T(x

,0,t f

ixed

)

500050 .,. ==∆ αtt = 1.0 (steady state)

t = 0.005

t = 0.1

t = 0.2

t = 0.5

0.0 0.4 0.8 1.2 1.6 2.0Time, t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tem

pera

ture

, 500050 .,. ==∆ αt

T(0,

0,t)

A NUMERICAL EXAMPLE (Parabolic)

2-D Problems: 45

JN Reddy - 44 Lecture Notes on NONLINEAR FEM

Page 45: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

y

2ft4ft

x

x

y

52

6 10

u = 0

0=∂∂

−yu

1 3 4

15

2516

0=∂∂

−xu

2011

21u = 0

y

x1 2 45 8

121613

9

3

14 15

TRANSIENT RESPONSE OF A MEMBRANE

0.0 0.5 1.0 1.5 2.0 2.5Time, t

-0.50

-0.25

0.00

0.25

0.50

Defle

ction

,

u(2,

1, t

)

1058.0domain original the of quadrant a in

elements triangular linear of mesh44

cri =∆

×

t

• 5.0,5.0,125.0 ===∆ γαt

3/1,5.0,125.0 ===∆ γαt3/1,5.0,1.0 ===∆ γαt

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5Time, t

-8

-6

-4

-2

0

2

4

6

8

Defle

ction

,

2-D Problems: 46

JN Reddy - 45 Lecture Notes on NONLINEAR FEM

Page 46: JN Reddy - 1 Lecture Notes on NONLINEAR FEM MEEN ...mechanics.tamu.edu/wp-content/uploads/2017/03/03_A...INTRODUCTION AND OVERVIEW OF LINEAR FEM using a 2D model problem J. N. Reddy

2-D Problems: 47

SUMMARY 1. Starting point is a model differential equation in u2. Construct an integral statement – weak form,

which has three steps. Integration by parts that (a) relaxes (“weakens” differentiability on the variable u, and (b) brings in secondary variable into the integral form.

3. Substitute suitable approximation for u and obtain the finite element model (i.e., a set of algebraic relations between nodal values of u and Q).

4. Numerical evaluation of coefficients 5. Assemble equations, impose boundary conditions, and

solve the assembled equations. 6. Post-computation of variables follows same procedure as

in 1-D FEM.7. Reviewed time-dependent problems.

andij iK f

JN Reddy - 46 Lecture Notes on NONLINEAR FEM