jordan purvis ryan saunders sam slaten nicholas ryan walker daniel yacobucci

49
Jordan Purvis Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci Advisor: Dr. Dan Olsen John Deere: Curtis Stovall John Deere SVO gines and Energy Conversion Laboratory

Upload: linh

Post on 24-Feb-2016

43 views

Category:

Documents


0 download

DESCRIPTION

John Deere SVO. Engines and Energy Conversion Laboratory. Jordan Purvis Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci. Advisor: Dr. Dan Olsen John Deere: Curtis Stovall. Outline:. Introduction Problem Statement Project Tasks Constraints and Criteria Why SVO? - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Jordan Purvis Ryan SaundersSam SlatenNicholas Ryan WalkerDaniel Yacobucci

Advisor: Dr. Dan OlsenJohn Deere: Curtis Stovall

John Deere SVOEngines and Energy Conversion Laboratory

Page 2: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Outline:•Introduction• Problem Statement• Project Tasks• Constraints and Criteria• Why SVO?

•Fuels• Characteristics• Fuel System Layout

•Baseline Testing• Performance• Emissions• Fuel Consumption

•Fuel Switching Transients•Fuel Temperature Effects• Consumption• Peak Pressure

•Timing Sweeps•Final Data Review• Consumption• Emissions• FTIR• Fuel System Layout

•Summary

Page 3: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Outline:•Introduction• Problem Statement• Project Tasks• Constraints and Criteria• Why SVO?

•Fuels• Characteristics• Variances• Fuel System Layout

•Baseline Testing• Performance• Emissions• Fuel Consumption

•Fuel Switching Transients•Fuel Temperature Effects• Consumption• Peak Pressure

•Timing Sweeps•Final Data Review• Consumption• Emissions• FTIR• Fuel System Layout

•Summary

Page 4: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Problem Statement:

“Evaluate the performance and emissions characteristics of a John Deere, common rail, CI engine while operating on straight

vegetable oil.”

• Fuel System Redesign.

• 8-Mode Emissions & Baseline Performance.

• Injection Timing Probe.

• Timing Sweeps.

• Final 8-Mode Emissions & Performance Testing.

Project Tasks:

Page 5: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Constraints:1. Testing conforms to ISO 8178 8-Mode standards.2. Engine must switch between diesel and SVO operations while

preventing cross-contamination.3. Analysis must be completed before E-days and Waterloo trip.4. Do not destroy the engine.

Criteria: Prioritized by weight from 5 (highest) to 1 (lowest).5. Find max torque of engine while running SVO.4. Investigate fuel rail pressure effects on engine performance.3. Investigate timing effects on engine performance.2. Evaluate possible modifications to combined (diesel & SVO) fuel

system.1. Investigate potential fuel blends/additives for performance

enhancement.

Page 6: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Why SVO?

•Renewable fuel source.•Users of John Deere equipment are able to produce own SVO to offset diesel fuel consumption.•Minimal processing.•Minimal energy input.•Some varieties can be grown in arid climate requiring minimal irrigation.•Lends itself well for combustion in compression ignition engines.

Page 7: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Outline:•Introduction• Problem Statement• Project Tasks• Why SVO?

•Fuels• Characteristics• Variances• Fuel System Layout

•Baseline Testing• Performance• Emissions• Fuel Consumption

•Fuel Switching Transients•Fuel Temperature Effects• Consumption• Peak Pressure

•Timing Sweeps•Final Data Review• Consumption• Emissions• FTIR• Fuel System Layout

•Summary

Page 8: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Types of fuels used:• Red-dyed #2 Diesel• Clear Valley 75 Canola Oil

- 110 gallons donated by Cargill- 75% Oleic acid with 1500 ppm TBHQ

antioxidant

Page 9: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Fuel Characteristics:

Profile for SVO: Clear Valley 75; CargillCarbon # :

Double bonds

Carbon # :

Double bonds

% Composition

Molecular Formula

# Hydrogen Name

Molar Mass

[g/mol]Density [g/cm3]

Melting Point [°C]

Boiling Point [°C]

C14:0 14 0 0.0601 C14H28O2 28 Myristic acid 228.37092 0.8622 54.4 250.5C16:0 16 0 3.3809 C16H32O2 32 Palmitic acid 256.42 0.853 62.9 351.5C16:1 16 1 0.2723 C16H30O2 30 Palmitoleic acid 254.408 0.894 -0.1 C18:0 18 0 2.0349 C18H36O2 36 Stearic acid 284.48 0.847 69.6 383C18:1 18 1 77.6842 C18H34O2 34 Oleic acid 282.4614 0.895 13.5 360C18:2 18 2 9.5647 C18H32O2 32 Linoleic acid 280.45 0.9 -5 229C18:3 18 3 3.0469 C18H30O2 30 α-Linolenic 278.43 -11 230C20:0 20 0 1.2019 C20H40O2 40 Arachidic acid 312.5304 0.824 75.5 328C20:1 20 1 1.3925 C20H38O2 38 Eicosenoic acid 31.51 0.883 23.5 C20:2 20 2 0.5494 C20H36O2 36 Eicosadienoic acid 308.5 C22:0 22 0 0.4086 C22H44O2 44 Behenic acid 340.54 80 306C22:1 22 1 0.0325 C22H42O2 42 Erucic acid 338.57 0.86 33.8 381.5C24:0 24 0 0.2333 C24H48O2 48 Lignoceric acid 368.63 84.2 C24:1 24 1 0.1379 C24H46O2 46 Nervonic acid 366.32 42.5

Total Sats: 7.3197 Sum: 100.0001 *Cargill Confidential Information

Page 10: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Fuel Characteristics:

C14:0C16:0C16:1C18:0C18:1C18:2C18:3C20:0C20:1C20:2C22:0C22:1C24:0C24:1

0 10 20 30 40 50 60 70 80

Cargill, Clear Valley 75 Canola Oil Profile

% Composition

Carb

on#

: Dou

ble

Bond

s

Page 11: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Fuel Diesel SVO (Canola)Density [kg/l] 0.86 0.92

LHV [kJ/kg] 42500 37000

Formula C12.3H22.2 C57.08H109.63O2

Fuel Characteristics:

Page 12: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

SVO vs. Diesel Variance 1: Viscosity:

0 50 100 150 200 2500

10

20

30

40

50

60

70

Vegetable Oil Viscosity vs. Temperature

CanolaDiesel

Temperature (deg. C)

Visc

ocity

(Cen

tipoi

se)

Page 13: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

SVO vs. Diesel Variance 2: Heating Value:

Lower Heating Value MJ/kg0

5

10

15

20

25

30

35

40

45

SVO vs. Diesel LHV by Energy

DieselCanolaCanola BDSunflowerCamelinaSoyCamelina BDSunflower BDSoy BD

Page 14: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Research Fuel System Layout:

Page 15: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Outline:•Introduction• Problem Statement• Project Tasks• Constraints and criteria• Why SVO?

•Fuels• Characteristics• Variances• Fuel System Layout

•Baseline Testing• Performance• Emissions• Fuel Consumption

•Fuel Switching Transients•Fuel Temperature Effects• Consumption• Peak Pressure

•Timing Sweeps•Final Data Review• Consumption• Emissions• FTIR• Fuel System Layout

•Summary

Page 16: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Baseline Testing:

Page 17: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Performance:

4% difference

3% difference

11% difference

15% Air Density Difference

Diesel Performance Curves

Page 18: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Performance:

1000 1200 1400 1600 1800 2000 2200 2400400

450

500

550

600

650Torque vs. Engine Speed

DieselSVO

Engine Speed [RPM]

Torq

ue [N

m]

13% Difference

Page 19: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Performance:

1000 1200 1400 1600 1800 2000 2200 24000

20

40

60

80

100

120

140Power vs. Engine Speed

DieselSVO

Engine Speed [rpm]

Pow

er [k

W]

13%Difference

Page 20: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Pollutant Emissions:

CO NOx THC01234567

Mode 1: 2400 RPM, 100% Torque

DieselSVO

BSE

[g/b

kWhr

]

CO NOx THC0

0.51

1.52

2.53

3.54

4.55

Mode 2: 2400 RPM, 75% Torque

DieselSVO

BSE

[g/b

kWhr

]

CO NOx THC02468

1012

Mode 3: 2400 RPM, 50% Torque

DieselSVO

BSE

[g/b

kWhr

]

CO NOx THC02468

1012141618

Mode 5: 2400 RPM, 10% Torque

DieselSVO

BSE

[g/b

kWhr

]

Page 21: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Particulate Emissions:

Mode11: 800rpm,

0%Torque

0

0.4

0.8

1.2

1.6

Particulate Emissions [idle only]

DieselSVO

BSPM

[g/b

kWhr

]Mode 1

: 2400rp

m, 100% Torq

ue

Mode 2: 2

400rpm, 7

5%

Mode 3: 2

400rpm, 5

0% Torque

Mode 5: 2400rp

m, 10% Torq

ue

Mode 6: 1

700rpm, 1

00% Torque

Mode 7: 1700rp

m, 75% Torq

ue

Mode 8: 1

700rpm, 5

0% Torque

Mode 11: 8

00rpm, 0

% Torque

0

0.05

0.1

0.15

0.2

0.25

Particulate Emissions

DieselSVO

BSPM

[g/b

Kw-h

r]

Page 22: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Fuel Consumption:

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

Avg. Fuel Consumption (2400rpm)

Diesel Avg. Fuel ConsumptionPolynomial (Diesel Avg. Fuel Consumption)SVO Avg. Fuel ConsumptionPolynomial (SVO Avg. Fuel Consumption)

% TorqueAvg.

Fue

l Con

sum

ption

[kg/

hr]

0 10 20 30 40 50 60 70 80 90 10005

101520253035404550

Avg. Fuel Consumption (1700rpm)Diesel Avg. Fuel ConsumptionPolynomial (Diesel Avg. Fuel Consumption)SVO Avg. Fuel ConsumptionPolynomial (SVO Avg. Fuel Consumption)

% Torque

Avg.

Fue

l Con

sum

ption

[kg/

hr]

Page 23: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Outline:•Introduction• Problem Statement• Project Tasks• Constraints and criteria• Why SVO?

•Fuels• Characteristics• Variances• Fuel System Layout

•Baseline Testing• Performance• Emissions• Fuel Consumption

•Fuel Switching Transients•Fuel Temperature Effects• Consumption• Peak Pressure

•Timing Sweeps•Final Data Review• Consumption• Emissions• FTIR• Fuel System Layout

•Summary

Page 24: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Transient Behavior:

0 50 100 150 200 2500

50

100

150

200

250

300

350

0

20

40

60

80

100

120

140

160

180

200

Diesel-to-SVO Transient Behavior Mode 3: 2400rpm, 50% Torque

TorquePower

Time [sec]

Torq

ue [N

m]

Pow

er [k

W]

Page 25: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Transient Behavior:

0 50 100 150 200 2500

50

100

150

200

250

300

350

400

0

20

40

60

80

100

120

140

160

180

200

SVO-to-Diesel Transient Behavior Mode 3: 2400rpm, 50% Torque

Torque

Time [sec]

Torq

ue [N

m]

Pow

er [k

W]

Page 26: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Transient Behavior:

•Power and torque curves followed the expected trends in transitioning between the fuels.

•The torque and power decreased when transitioning from diesel to SVO, and increased when transitioning from SVO to diesel.

•This is expected because of a lower LHV for SVO.

•Both transitions were recorded at 2400RPM, 50% load (Mode 3).

•Fuel consumption is difficult to measure during transition because of the varying fuel density.

Page 27: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Outline:•Introduction• Problem Statement• Project Tasks• Constraints and criteria• Why SVO?

•Fuels• Characteristics• Variances• Fuel System Layout

•Baseline Testing• Performance• Emissions• Fuel Consumption

•Fuel Switching Transients•Fuel Temperature Effects• Consumption• Peak Pressure

•Timing Sweeps•Final Data Review• Consumption• Emissions• FTIR• Fuel System Layout

•Summary

Page 28: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Fuel Temperature vs. Fuel Consumption:

Mode 3: 2400rpm, 50% Torque 50% reduction

Mode 5: 2400rpm, 10% Torque 59% reduction

0

5

10

15

20

25

30

35

40

Fuel temperature-Consumption comparisonModes 3&5: 2400rpm, 50% & 10 % Torque

Intermediate Temp. 57-60°CHigh Temp. 75-78°C

Fuel

Con

sum

ption

[kg/

hr]

50 55 60 65 70 75 80 85 900

5

10

15

20

25Viscosity vs. Temperature

Page 29: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Fuel Temperature vs. Emissions:

THC NOx CO0

50

100

150

200

250

300

Fuel temperature-Emissions comparisonMode 3: 2400rpm, 50% Torque, SVO

Intermediate temp. 57°CHigh temp. 78°C

Emis

sion

s [pp

m]

• With the higher temperature SVO there was a slight reduction in NOx and a slight increase with CO.

Page 30: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Fuel Temperature vs. Emissions:

THC NOx CO0

50

100

150

200

250

300

350

Fuel temperature-Emissions comparisonMode 5: 2400rpm, 10% Torque, SVO

Intermediate temp. 60°CHigh temp. 75°C

Emis

sion

s [pp

m]

•Again we see a trend at higher temperatures of a slight reduction in NOx and a slight increase in CO. This can be better explained when looking at the peak pressure in cylinder.

Page 31: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Fuel Temperature vs. Peak Pressure:

02468

10

Peak Pressure Location with SVO Temperature Difference

Intermediate (57°C)Hot (78°C)

Peak

Pre

ssur

e Lo

catio

n (°A

TDC)

• The peak pressure was seen earlier in the combustion cycle with the increased temperature SVO.

• This advance causes higher cylinder temperatures and more complete combustion which explains fluctuation in emissions.

Page 32: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Outline:•Introduction• Problem Statement• Project Tasks• Constraints and criteria• Why SVO?

•Fuels• Characteristics• Variances• Fuel System Layout

•Baseline Testing• Performance• Emissions• Fuel Consumption

•Fuel Switching Transients•Fuel Temperature Effects• Consumption• Peak Pressure

•Timing Sweeps•Final Data Review• Consumption• Emissions• FTIR• Fuel System Layout

•Summary

Page 33: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Timing Adjustment:

Engine Speed(RPM)

Desi

red

Fuel

(mg/

stro

ke)

0 700 800 900 1000 1100 1200 1300 1350 1450 1500 1600 1700 1800 1900 2000 2100 225023502450 25000 8 8 8 8 8 8 7.7 7.4 7.25 6.95 6.8 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5

12 7.66 7.66 8 8 8 8 8 7.77 7 7 6.88 6.5 6.53 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.524 7.33 7.33 7.5 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6.536 7 7 7 6 5 5 5 4.5 4 4 4.2 4.3 4.4 4.5 4.59 4.7 4.8 5 5 5 5.548 7 7 6 4.5 3.7 3.7 3.3 3 2 2 2.5 3 3.25 3.43 3.52 3.56 3.59 4 4.2 4.2 4.3460 6.59 6.59 5.5 4 3.3 3.3 2.5 1.5 0.5 0.5 1.5 1.66 1.59 1.7 1.8 1.9 2 2.09 2.2 2.2 2.772 6.2 6.2 5 3 2.8 2.8 2.09 1 0 0 1.27 1.66 1.7 1.8 1.9 2 2.09 2.5 3 3 3.484 5.8 5.8 4 2.5 2.3 2.09 2 1 0 0 1.16 2 2.27 2.4 2.52 2.75 3.36 3.45 3.8 3.8 4.396 5.8 5.8 3 1.8 1.59 1.5 1.3 1 0 0 1.16 2.03 2.76 3 3.25 3.5 3.8 4 4.8 4.8 5.2

108 4.9 4.9 2 1.59 1.4 1.3 1.2 1 0 0 1.13 2.07 3.33 3.38 3.46 4.02 5 6 7 7 7.2120 4 4 2 1.5 1.3 1.2 1.2 1.2 0.2 0.2 1.09 2.11 3.34 4 4.45 4.77 5.5 6.2 7 7 7.2132 4 4 2 1.5 1.3 1.2 1.09 1.09 0.3 0.3 1.06 2.15 3.38 4 4.4 5.15 5.5 6.33 6.8 6.8 7.15144 4 4 2 1.5 1.3 1.2 1.09 1.09 0.3 0.3 1.06 2.15 3.38 4 4.4 5.15 5.5 6.33 6.8 6.8 7.03156 4 4 2 1.5 1.3 1.2 1.09 1.09 0.5 0.5 1.06 2.15 3.38 4 4.4 5.15 5.5 6.33 6.8 6.8 6.91

•Timing Sweep tested from 10°bTDC to -5°bTDC

•Timing Sweep tested at 2400RPM; 10% Load, and 50% Load.

Page 34: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Emissions Comparisons, Stock Calibration:

THC NOx CO0

50

100

150

200

250

300

350

400

450

500

Mode 1: 2400 RPM, 100% Torque:

DieselSVO

Emissions Species

Raw

Em

issi

ons [

ppm

d]

Page 35: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Emissions Comparisons, Stock Calibration:

THC NOx CO0

100

200

300

400

500

600

700

800

Mode 11: 800 RPM, 0% Torque:

DieselSVO

Emissions Species

Raw

Em

issi

ons [

ppm

d]

Page 36: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Timing vs. Emissions:

0 -3 -4 -5 -60

50

100

150

200

250

300

350

400

450

Mode 3: 2400rpm, 50% Torque: NOx

Timing Adjustment [degrees from stock timing]

Emis

sion

s [pp

md]

Page 37: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Timing vs. Emissions:

0 -3 -4 -5 -60

50

100

150

200

250

300

350

Mode 5: 2400rpm, 10% Torque: CO

Timing Adjustment [degrees from stock timing]

Emis

sion

s [pp

md]

Page 38: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Timing vs. Fuel Consumption:

-7 -6 -5 -4 -3 -2 -1 00

2

4

6

8

10

12

14Timing Effects on Diesel Fuel Consumption

Mode 3Mode 5

Timing Adjustment [degrees from stock timing]

Fuel

Con

sum

ption

[kg/

hr]

Page 39: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Timing vs. Fuel Consumption:

•As shown in plots above a timing shift of 3 degrees advance shows the best balance of fuel consumptions and emissions improvements.

-7 -6 -5 -4 -3 -2 -1 00

2

4

6

8

10

12

14

16

Timing Fuel Effects on SVO Fuel Consumption

Mode 3Mode 5

Timing Adjustment [degrees from stock timing @TDC]

Fuel

Con

sum

ption

[kg/

hr]

Page 40: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Outline:•Introduction• Problem Statement• Project Tasks• Constraints and criteria• Why SVO?

•Fuels• Characteristics• Variances• Fuel System Layout

•Baseline Testing• Performance• Emissions• Fuel Consumption

•Fuel Switching Transients•Fuel Temperature Effects• Consumption• Peak Pressure

•Timing Sweeps•Final Data Review• Consumption• Emissions• FTIR• Fuel System Layout

•Summary

Page 41: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Final Fuel Consumption:

0 10 20 30 40 50 60 70 80 90 1000

20

40

Baseline Fuel Consumption (2400rpm)

DieselPolynomial (Diesel)SVOPolynomial (SVO)

% TorqueAvg.

Fue

l Con

sum

ption

[kg/

hr]

0 20 40 60 80 100 1200

20

40

Final Fuel Consumption (2400rpm)

DieselPolynomial (Diesel)SVOPolynomial (SVO)

% TorqueAvg.

Fue

l Con

sum

ption

[kg/

hr]

•Timing changes contribute to a significant reduction in fuel consumption:

• 7% decrease for Mode 3 (2400rpm, 50% Torque).

• 8% decrease for Mode 5 (2400rpm, 10% Torque).

Page 42: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Final Emissions Data:

•Timing changes contribute to a significant reduction in regulated emissions:

• 24% reduction in CO emissions.

• 11% reduction in NOx emissions.

• 18% reduction in THC emissions.

• 9% reduction in PM emissions.

CO NOx + THC0123456789

Final Weighted BSE

DieselSVOEPA Tier 2

WBS

E [g

/bkW

hr]

CO NOx + THC0123456789

Baseline Weighted BSE

WBS

E [g

/bkW

hr]

SVO as fuel

Page 43: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Final Emissions Data:

•Timing changes contribute to a significant reduction in regulated emissions:

• 7% reduction in PM emissions. (reduced from 0.06775 to 0.06286 g/bkWhr)

PM0

0.050.1

0.150.2

0.250.3

0.35

Baseline Weighted BSE

WBS

E [g

/bkW

hr]

PM0

0.050.1

0.150.2

0.250.3

0.35

Final Weighted BSE

DieselSVOEPA Tier 2

WBS

E [g

/bkW

hr]

Page 44: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Final Emissions Data:

0.00 20.00 40.00 60.00 80.00 100.00 120.000

10

20

30

40

50

60

70

Brake Specific Energy Consumption vs. Brake Power

Diesel, 2400rpmDiesel, 1700rpmSVO, 2400rpmSVO, 1700rpm

Brake Power [kW]

BSf [

g/Bk

W-h

r]m̊

Page 45: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

FTIR Data:

Formaldehyde Acrolein Acetaldehyde0

5

10

15

20

25

EMIS

SIO

NS

[ppm

]

Form

aldehyde

Acrolei

n

Acetaldehyd

e

Form

aldehyde

Acrolei

n

Acetal

dehyde

DieselSVO

•Above are the emissions (in ppm) of aldehydes across various modes.

•Currently the EPA does not regulate these emissions for diesel engines (only natural gas engines) yet the trend in Europe may speak of things to come.

Mode 2:2400rpm, 75% Torque

Mode 5:2400rpm, 10% Torque

Mode 6:1700rpm, 100% Torque

Page 46: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Practical Fuel System Layout:

Page 47: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Summary:

Injection Timing:

Engine Performance:•Maximum engine torque and power are approximately 3-4% lower at 5000 ft above sea level when compared to John Deere provided specifications.

•Under high load conditions, SVO is an advantageous alternative fuel to diesel, while at lower loads, diesel is the preferred fuel.

•After timing sweeps, it was found that 3 degrees advanced injection timing improves emissions and fuel consumption on SVO.

SVO Temperature:•Preheating SVO is advantageous for system performance.

•At room temperature (23°C), engine is unable to maintain load and surges or stalls at idle.

•At intermediate temperature (57-60°C) engine performs normally with increased fuel consumption vs high temperature fuel.

•At high temperature (75-78°C) engine performs normally with decreased fuel consumption and slight reduction in emissions vs intermediate fuel temperature.

Page 48: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Acknowledgements:

•Dr. Daniel Olsen (Project Advisor)

•Kirk Evans (EECL Lab Manager)•Phil Bacon (EECL Research Engineer)•Cory Kreutzer (EECL Research Engineer)•Syndi Nettles-Anderson (MECH486 TA)

•Daren Coonrod (Cargill Oils)

•Chase Crouch (Colorado Equipment)

Page 49: Jordan Purvis         Ryan Saunders Sam Slaten Nicholas Ryan Walker Daniel Yacobucci

Questions?