journal of bioelectricity, 4(2), 317-348 (1985)dbkgroup.org/papers/kell_harris_jb85.pdfreflected in...

32
JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985) DIELECTRIC SPECTROSCOPY AND MEMBRANE ORGANISATION Douglas B. Kell and Christine M. Harris Department of Botany and Microbiology University College of Wales, Aberystwyth, Dyfed SY23 3DA, U.Y. ABSTRACT The possible bases for field-mediated effects on cellular processes are reflected in the passive electrical properties of biological systems. The historical, present and prospective utility of dielectric spectroscopy in assessing the static and dynamic organisation of biological membranes is reviewed within this context. The basis for the view that the static capacitance of biomembranes is as gceat as 1 )IF/cm2 is doubted; contributions from the (partially restricted) motions of membrane components, and of double- layer ions, probably contribute to this apparent value in biomembrane v e s i c l e suspensions. The importance of improving our knowledge of the static electrical capacitance of energy coupling membranes is stressed. Theoretical and experimental procedures for assessing the contribution of rotational and translational motions of membrane components, and of double-layer/membrane interactions, to dielectric spectra in the approximate frequency range 10 to lo7 Hz are described. Finally, three outstanding and generally unsolved problems requiring further work are detailed. INTRODUCTION In this article, we wish to address ourselves to the following related questions: (1) can dielectric measurements tell us anything new or significant about the organization and dynamics of biological membranes. when the measurements are made with macroscopic, extravesicular electrodes in suspensions of closed vesicles; (2) can modern ideas concerning the structure and organization of such membranes contribute to the interpretation or reinterpretation of the dielectric spectra obtained in such systems? For reasons of space, and because fine discussions are available elsewhere, we 317 Copyright 0 1985 by Marcel Dekker, Inc. Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Upload: others

Post on 13-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

JOURNAL OF BIOELECTRICITY, 4 ( 2 ) , 317-348 (1985)

DIELECTRIC SPECTROSCOPY AND MEMBRANE ORGANISATION

Douglas B. Kell and Christine M. Harris Department of Botany and Microbiology

University College of Wales, Aberystwyth, Dyfed SY23 3DA, U . Y .

ABSTRACT

The possible bases fo r field-mediated e f f e c t s on ce l lu l a r processes a re re f lec ted i n the passive e l e c t r i c a l p roper t ies of b io logica l systems. The h i s t o r i c a l , present and prospective u t i l i t y of d i e l e c t r i c spectroscopy i n assess ing the s t a t i c and dynamic organisation of biological membranes i s reviewed within t h i s context. The basis f o r the view tha t the s t a t i c capacitance of biomembranes is as gceat as 1 )IF/cm2 is doubted; cont r ibu t ions from the ( p a r t i a l l y r e s t r i c t e d ) motions of membrane components, and of double- layer ions, probably cont r ibu te t o t h i s apparent value in biomembrane ves i c l e suspensions. The importance of improving our knowledge of the s t a t i c e l e c t r i c a l capacitance of energy coupling membranes is s t ressed . Theoretical and experimental procedures fo r assessing the contribution of ro ta t iona l and t r ans l a t iona l motions of membrane components, and of double-layer/membrane in t e rac t ions , t o d i e l e c t r i c spec t ra in the approximate frequency range 10 t o lo7 Hz a r e described. F ina l ly , three outstanding and generally unsolved problems requiring fu r the r work a re de ta i led .

INTRODUCTION

In t h i s a r t i c l e , we wish t o address ourselves t o the following r e l a t ed

ques t ions : (1) can d i e l e c t r i c measurements te l l us anything new or

s ign i f i can t about the organization and dynamics of biological membranes. when

the measurements a re made with macroscopic, ex t raves icu lar electrodes in

suspensions of closed ves i c l e s ; (2) can modern ideas concerning the s t ruc tu re

and organization of such membranes contribute to the in t e rp re t a t ion or

r e in t e rp re t a t ion of the d i e l e c t r i c spec t ra obtained in such systems? For

reasons of space, and because f ine discussions a re ava i lab le elsewhere, we

317

Copyright 0 1985 by Marcel Dekker, Inc.

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 2: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

318 KELL AND HARRIS

w i l l n o t i n c l u d e s t u d i e s performed a t f r e q u e n c i e s e x c e e d i n g 100 MHz, nor

s t u d i e s of n e u r o p h y s i o l o g i c a l sys t ems , nor of o t h e r non- l inea r b i o l o g i c a l

sys t ems .

However, n o t i n g t h e need f o r a m e c h a n i s t i c e x p l a n a t i o n of t h e many

e x c i t i n g , thought-provoking and i m p o r t a n t s t u d t e s c o n c e r n i n g t h e a l t e r a t i o n of

p h y s i o l o g i c a l p r o c e s s e s by r a t h e r weak e l e c t r o m a g n e t i c (EM) f i e l d s (1-8), and

n o t i n g f u r t h e r t h a t t o a c t u a l l y have a n e f f e c t , EM f i e l d s must f i r s t be

a b s o r b e d , we s h a l l aim for a rather Eundamental and m o l e c u l a r d i s c u s s t o n of

t h e p o s s i b l e means by which such e f f e c t s may be med ia t ed ( a t least i n p a r t ) by

membrane-located enzymes. We beg in w i t h a v e r y b r i e f d i s c u s s i o n of t h e

s a l i e n t E e a t u r e s of e a r l y h i s t o r i c a l c o n t r i b u t i o n s of d i e l e c t r i c s p e c t r o s c o p y

t o the s t u d y of membrane o r g a n i s a t i o n .

14 I S'PORI CAL

"It t s found t h a t Co t s i ndependen t OE t h e f r e q u e n c y up t o 4.5 m i l l t o n

c y c l e s , and i t is a l s o independen t of t h e suspend ing l i q u i d . These r e s u l t s

f u r n i s h c o n s i d e r a b l e e v i d e n c e of t h e v a l i d i t y of t h e t h e o r y , t h a t Co

r e p r e s e n t s t h e s t a t t c c a p a c i t y of a c o r p u s c l e ' s membrane. On this as sumpt ion ,

and u s i n g a p r o b a b l e v a l u e f o r t h e d i e l e c t r i c c o n s t a n t of t h e membrane, t h e

t h i c k n e s s of t h e membrane is c a l c u l a t e d t o be 3.3 x cm."

U i t h t h e s e words, F r i c k e ( 9 ) concluded his classic p a p e r , i n which it w a s

i ndeed shown for t h e f i r s t t i m e t h a t t h e c e l l - d e l i m i t i n g l l p o i d a l membrane

r e q u i r e d by t h e Overton (10) t h e o r y must be of m o l e c u l a r t h i c k n e s s . As

d i s c u s s e d i n a number of e x c e l l e n t t e x t s and monographs, subsequen t work on

the f requency-dependence of t h e d i e l e c t r i c p r o p e r t i e s of a great number of

c e l l s and v e s i c l e s has i n d i c a t e d t h a t t h e y all possess a pronounced (p-) d i s p e r s i o n which r e f l e c t s , OK may be a s c r i b e d t o , t h e p re sence of a cell

membrane v i t h a ( s t a t i c ) c a p a c i t a n c e of 1.2 5 0.7 MF/cm2 (11-35) . The f a c t

t h a t t h i s f i n d i n g s t i l l s t a n d s a f t e r s i x t y y e a r s may be rega rded as a

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 3: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

DIELECTRIC SPECTROSCOPY AND MEMBRANES 319

testament t o Fricke's i n s igh t and t o the power of d i e l e c t r i c spectroscopy i n

assess ing the s t ruc tu re of biological membranes. Since the concept of the

e t a t i c membrane capacitance forms the background t o de ta i led discussion of the

frequency-dependent d i e l e c t r i c properties of membrane vesicle suspensions, we

must theref ore describe the so-called suspension equations tha t a re per t inent

t o the simplest type of biomembrane-bounded ves ic le , the spher ica l s h e l l

membrane (Figure 1).

THE SUSPENSION EQUATIONS FOR SPHERICAL MEMBRANE VESICLES

A s the frequency of an a l t e rna t ing f i e l d is increased through the

radlof requency range, the pe rmi t t i v i ty and conductivity o f a typ ica l

(microbial or other) c e l l suspension are respec t ive ly decreased and increased

(Figure 1B). This can be in te rpre ted as a progressive shor t -c i rcu i t ing of the

cytoplasmic membrane capacitance, v ia a Maxwell-Wagner type of mechanism

(Figure 1). If we model the c e l l s a s t den t i ca l spheres present at a t o t a l

volume f rac t ion (P) of P < 0.2, with a bulk, i n t e rna l conductivity of Ui ,

surrounded by a membrane with a s t a t i c capacitance of C, ( fa rads /uni t a r e a ) ,

and immersed i n a medium of conductivity 'Jo (Figure I A ) , the following

equations express the high- and low-frequency permi t t iv i ty ( E', ~ 1 ' ) and

conducttvity ( 01, Ul') and the re laxa t ion time T (11):

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 4: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

320 KELL AND HARRIS

FIGURE 1A

Spherical model of a biomeinbrane-bounded c e l l suspension: bulk ex terna l and i n t e r n a l c o n d u c t t v i t i e s r e s p e c t i v e l y .

r , rad ius ; u,,, u i ,

I OC IRLOUENCY ( H r )

FIGURE IR

Frequency dependence of the d i e l e c t r i c proper t i e s of the model system.

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 5: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

DIELECTRIC SPECTROSCOPY AND MEMBRANES 321

f c )

FIGURE 1C

In t e rp re t a t ion of the d i e l e c t r i c data; ( f r w l e f t t o r igh t ) there is a progressive shor t -c i rcu i t ing of the membrane capacitance by the applied f i e l d .

I .ACCESS A D M I JJANCE

SPrC,

4 Er

EX IRA CELL UL A R RESISiANCE

FIGURE 1D

The equivalent c i r c u i t of the system.

where c r is the permi t t iv i ty of f r ee space (8.854 x lO-I4 F/cm). These

equations assume tha t the membrane conductivity (G,,,) is zero. Since the

conductivity of the majority of bac te r i a l membranes does not exceed S/cmz

( 3 6 ) , and since G, must exceed 1 S/cmz t o be detected by means of measurements

on suspensions with macroscopic e lec t rodes ( 3 2 ) , t h i s assumption is

acceptable. It is pa r t i cu la r ly in s t ruc t ive to examine equations 1 t o 4 in

some d e t a i l , and we note f i r s t tha t we accept, fo r the ana lys i s of t h i s type

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 6: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

322 KELL AND H A R R I S

of system, the superpos i t ion p r i n c i p l e , which s t a t e s , among other t h i n g s , t h a t

t h e c o n t r i b u t i o n t o a d i e l e c t r i c d i s p e r s i o n of any ind tv idua l v e s i c l e i s

independent of t h a t of any o ther v e s i c l e s which may be present .

The c o n t r i b u t i o n of any ( s i z e c l a s s of ) v e s i c l e t o the overa l l d i e l e c t r i c

p r o p e r t i e s will be a sum of Debye-like d i s p e r s i o n s , with a d i e l e c t r i c

increment and r e l a x a t i o n t i m e appropr ia te t o the rad ius and i n t e r n a l and

e x t e r n a l c o n d u c t i v i t i e s i n ques t ion , g iven t h a t the volume f r a c t i o n is j u s t a

f u n c t i o n of the c e l l r a d i u s and number. Thus, one may s imulate the behaviour

expected on the hasis of a d i s t r i b u t i o n i n the c e l l s i z e (18) from which i t is

found (F igure 2) t h a t only a small d i f f e r e n c e e x i s t s between the d i s p e r s i o n s

s imulated on the basis of ( a ) a superpos t t ion of s i z e c l a s s e s of v e s i c l e s with

d i f f e r e n t r a d i i , ( b ) a suspension of equiva len t volume f r a c t i o n but of mean

f o u r t h power oE the rad ius T, (r = ( ( x n r 4 ) / N ) l / 4 ) , where n is the number of

c e l l s in each s i z e f r a c t i o n , and N the t o t a l number of c e l l s ) , and ( c ) t h e

same, but using the mean cube radius ( r = ( ( z h ~ ~ ) / N ) l / ~ ) . Note a l s o the

predominant tendency f o r E ' 1 (but not E,) t o favor c e l l s i z e f r a c t i o n s with a

somewhat g r e a t e r than average r a d i u s , due t o t h e dependence of E ' 1 upon volume

f r a c t i o n and rad ius ( i . e . i t increases a s a func t ion of r4) . Thus, the

conclusion from t h i s type of s imula t ion 1s t h a t a s u b s t a n t i a l value €or the

Cole/Cole a c a n n o t be ascr ibed in genera l t o the s i z e d i s t r t b u t i o n of ( say

microbia l ) c e l l s , and hence, €or e l l i p s o i d s of a reasonably low a x i a l r a t i o ,

t o any r e a l i s t i c shape-d is t r ibu t ion . S i m i l a r l y , the e l e c t r i c a l an iso t ropy

t h a t one may invoke i n t h e case of condensed mitochondria (18) i s a l s o

i n a p p l i c a b l e t o microbia l c e l l s .

I n t h i s type of s imula t ion , one assumes t h a t the volume f r a c t i o n is known

(from microscopic observa t ion) or may be determined ( f o r the sum) by methods

such a s i so tope d i l u t i o n or from measurements based upon conductimetry

according t o equat ion 2. Thus, the membrane capac i tance , which is a f r e e

v a r i a b l e , may be c a l c u l a t e d d i r e c t l y €ran t h e measured d i e l e c t r i c increment

(equat ion 1). It is t h i s type of measurement (37 ) t h a t has led t o the view

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 7: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

9

5 - x10

- < 4 - In

w V

[L w

i 3 -

2 -

m 3 l - z

0 0.2 0.4 0.6 0.8 1.0 1.2 ( a ) RADIUS ( y m )

2 c e r . . . . . . . . , . . . . . . . . , . . . . . . . . , . . . . . . .

LOG FREQUENCY (Hz)

FIGURE 2

Simulation of the e€ fec t of a heterogeneous s i z e d i s t r ibu t ion on the d i e l e c t r i c proper t ies of spher ica l she l l ves ic les of the type described i n Figure 1. ( A ) The s i ze d i s t r ibu t ion considered, which, although a r b i t r a r y , r ay be construed a s representa t ive of a typ ica l bac t e r i a l population. To obtain a numerical so lu t ion ( in terms of equations 1 and 4), the 12 s i ze c l a s ses indicated a r e used. ( 8 ) Effect of s i z e heterogeneity on p-dispersion. The Debye-like d i e l e c t r i c behaviour of the system, s iau la ted according t o equations 1 and 4, ( a ) by assuming the 12 s i z e c lasses , (b ) by assuming the same t o t a l number of cells but assuming the mean fourth root of the radius ( see tex t ) and (c) by assuming the same t o t a l number of c e l l s but using the mean cube of the radius (see t ex t ) . It is evident tha t (i) the breadth of the dispersions a re almost exactly Debye-like, and (ii) q u i t e a s ign i f i can t s ize-d is t r ibu t ion has r e l a t ive ly l i t t l e e f f ec t upon e i t h e r the mean re laxa t ion time or i ts d i s t r ibu t ion .

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 8: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

3 2 4 KELL A N D HARRIS

t h a t biomembranes have a s t a t i c e lectr ical c a p a c i t a n c e of roughly 1 2 0.5

uF/cm2. S t m i l a r l y , e s t t m a t i o n s of the i n t e r n a l c o n d u c t i v i t y of t y p i c a l ce l l

suspens ions by means of e q u a t i o n 3 have g iven r e a l i s t i c v a l u e s , which are

n e v e r t h e l e s s lower by a f a c t o r of 2-3 than those t o be expected on the basis

of t h e t o n i c c o n t e n t of t h e cel ls ( 2 1 , 3 8 , 3 9 ) . Although new methods are

becoming a v a i l a b l e , by which a n independent measurement of the long-range

d t f f u s i v i t y of bulk cy toplasmic i o n s may be obta ined ( 4 0 - 4 3 ) , we do not a s y e t

know the p r e c i s i o n wi th which the value of U i , c a l c u l a t e d from e q u a t i o n s 2 o r

3 a c t u a l l y r e f l e c t s t h e t r u e , bu lk , i n t e r n a l c o n d u c t i v i t y of t h e cells. In

o t h e r words, a l though t h e r e i s a r e a s o n a b l e , and a t least s e m i - q u a n t i t a t i v e ,

agreement between exper imenta l r e s u l t s and the p r e d i c t i o n s of q u a t l o n s 1 t o 4

( 1 8 , 2 8 , 2 9 , 2 7 , 3 5 ) , t h e a v a i l a b l e d a t a do not permit us t o d i s p o s e of t h e view

t h a t o t h e r p r o c e s s e s , wi th c h a r a c t e r i s t i c f r e q u e n c i e s ( f c = 1 / 2 a ~ ) i n t h e

range of 0.5-5 MHz might make a s i g n t f i c a n t c o n t r i b u t i o n t o t h e RF observed

rad iof requency d i s p e r s i o n s . (Note a l s o t h a t because of t h e c e l l

radius-dependence of both r e l a x a t i o n time and d i e l e c t r i c increment f o r t h i s

type of r e l a x a t i o n , the ease of o b s e r v a t t o n of o t h e r processes will i t s e l f

depend on c e l l s i z e . ) We wish t o stress i n p a r t t c u l a r t h a t t h e b r e a d t h of t h e

P-d ispers ions observed i n b a c t e r i a l suspens ions ( 2 6 , 3 2 , 3 3 , 4 4 - 4 6 ) , as judged by

t h e Cole/Cole p l o t ( 4 7 ) seems t o r e q u i r e t h a t one invoke a h e t e r o g e n e i t y i n r ,

C, or 01 f a r g r e a t e r than i s r e a l i s t i c i f one were t o c la im t h a t the

d i e l e c t r i c d i s p e r s i o n s observable i n t h i s f requency range may be a s c r i b e d

s o l e l y t o a Ftaxwell-Wagner type of mechanism. I n o t h e r words, the f a c t t h a t

C, and 01 are f r e e v a r i a b l e s i n c a l c u l a t i o n s based upon e q u a t i o n s 1 t o 4

a l l o w s us t o invoke c o n t r i b u t i o n s t o t h e 1 - d i s p e r s i o n due t o o t h e r p r o p e r t i e s

of c e l l u l a r , and i n p a r t i c u l a r of energy c o u p l i n g , membranes a d d i t i o n a l t o

t h e i r possess ion of a s t a t i c e lectr ical capac i tance .

According t o t h e now wide ly accepted f l u i d - m o s a i c model of b t o l o g i a l

membranes (48) (Figure 3 ) , biomembranes c o n s i s t of phosphol ip id b i l a y e r s in , on

and through which are l o c a t e d p r o t e i n s and p r o t e i n complexes, and both l i p i d s

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 9: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

DIELECTRIC SPECTROSCOPY AND MEMBRANES 325

I r I

F L ii 1 D MOSA 1 C MEMBRANE MODEL

FIGURE 3

The s a l i e n t f e a t u r e s of a f l u i d mosaic membrane model. The model c o n s i s t s of an a r r a y of po ly topic , i n t e g r a l p r o t e i n complexes, which a r e f r e e t o r o t a t e ( w i t h a r o t a t i o n a l d i f f u s i o n c o e f f i c i e n t D p ~ ) and t o move l a t e r a l l y and independent ly ( w i t h a t r a n s l a t i o n a l d i f f u s i o n c o e f f i c i e n t Dp,) in a "sea" of phosphol ipids . Free r o t a t i o n and t r a n s l a t i o n of the phosphol ipids is also permi t ted , with t h e d i f f u s i o n c o e f f i c i e n t s i n d i c a t e d . The merllbrane is arranged as a v e s i c l e of rad ius r , v e s i c u l a r r o t a t i o n ( o r i e n t a t i o n ) being p o s s i b l e with a r o t a t i o n a l d i f f u s i o n c o e f f i c i e n t DV~. I f p r o t e i n t r a n s l a t i o n a l motion is r e s t r i c t e d in some way, the average d i s t a n c e moved before a " b a r r i e r " is encountered is given by r' ( s e e 88). The "bulk" v i s c o s i t i e s of the membranous and aqueous phases a r e given by q and 17' r e s p e c t i v e l y .

and p r o t e i n s can d i s p l a y thermal (and metabol ica l ly) induced r o t a t i o n a l and

t r a n s l a t i o n a l d t f f u s i o n a l motions i n t h e plane of t h e membrane (49) .

Undoubtedly the s t a t i c capac i tance measured i n p lanar phospholipid b i l a y e r

" b l a c k l i p i d membranes which l a c k p r o t e i n , o r that measured a t high

f requencies with transmembrane e l e c t r o d e s , is smaller by a s much a s a f a c t o r

of 2 than the widely quoted value of 1 ~ F / c m 2 c a l c u l a t e d f o r biomembrane

v e s i c l e suspensions (20,50-64). C e r t a i n l y the f a c t t h a t biomembranes conta in

p r o t e i n s which poss ib ly possess a higher s t a t i c d i e l e c t r i c p e r m i t t i v i t y than

do pure phospholipid b i l a y e r s , may c o n t r i b u t e t o the explana t ion of t h i s f a c t

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 10: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

325 KELL AND HARRIS

(though we a r e not aware of any d i r e c t i n d i c a t i o n of t h i s under

phys io logica l ly meaningful condi t tons) . However, f o r reasons given above, i t

is e q u a l l y p l a u s i b l e i n many cases t h a t o t h e r f a c t o r s c o n t r i b u t e s i g n i f i c a n t l y

t o the frequency-dependent d i e l e c t r i c p r o p e r t i e s of membrane v e s i c l e

suspensions, and we must broaden our d i s c u s s i o n t o enqui re more c l o s e l y i n t o

what Is known of the s t r u c t u r e , and more p a r t i c u l a r l y of the dynamics, of

charged biomeabranes and t h e i r ad jacent e l e c t r i c a l double- layers . We begin by

d iscuss ing e x a c t l y why i t is so important t o improve the p r e c i s i o n of mr

knowledge of t h e s t a t i c capac i tance of b i o l o g i c a l membranes, e s p e c i a l l y a s it

r e l a t e s t o so-cal led energy coupl ing membranes.

WHY SHOULD WE WISH ACCURATELY TO KNOW THE "STATIC" ELECTRICAL CAPACITANCE OF BIOLOGICAL MEMBRANES?

Modelling the membrane a s a s t a t i c e l e c t r i c a l c a p a c i t o r of th ickness d ,

conta in ing a s l a b of d i e l e c t r i c of a uniform p e r m i t t i v i t y E m ( s e e F igure 5 ) ,

we have:

where C, is the capac i tance per u n i t a rea . "Is, a s d id F r i c k e , we may o b t a i n

an e s t i m a t e of d f r m e s t i m a t i o n s of C, and assumptions concerning em, or vice versa. Fur ther , s i n c e i n mst cases t h e membrane capac i tance is d m i n a t e d by

t h a t due t o the hydrophobic phosphol ipid core (55a,65,66, but cf . 67) , and

s i n c e i n any case the value of d is reasonably well e s t a b l i s h e d Erom X-ray atid

neutron d i f f r a c t i o n measurement, or from molecular models, a value f o r E, of

2.0-2.2 has become accepted f o r t h e b i l a y e r membrane (BLM)(50,55,65,67,68).

S i m i l a r l y , s i n c e it is necessary t o p o s t u l a t e t h a t only a r e l a t i v e l y small

f r a c t i o n of t h e s u r f a c e of a phosphol ipid b i l a y e r membrane is penet ra ted by

aqueous pores with a d i e l e c t r i c p e r m i t t i v i t y of between 10 (bound water ) and

80 ( f r e e water) t o o b t a i n va lues of C, t y p i c a l of bianembranes, t h e r e is a

g e n e r a l s a t i s f a t i o n with the present theory. A t least with respec t t o energy

-

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 11: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

D I E L E C T R I C SPECTROSCOPY AND MEMBRANES 3 2 7

coupling membranes in genera l , and the bac te r i a l cytoplasmic membrane in

p a r t i c u l a r , we submit t h a t , fo r three reasons, t h i s is not a s a t i s f ac to ry

s t a t e of a f f a i r s . These reasons per ta in t o our ignorance of ( a ) the mechanism

of ac t ion of the ionophoric types of uncoupler, (b ) the r a t e and extent of the

l a t e r a l mobili ty of the f r e e energy-conserving protein complexes of such

membranes, and ( c ) the degree of e lec t rogenic i ty of redox-linked proton

pumping t o the bulk phase. However, it is f i r s t necessary b r i e f ly t o

summarize, for the benefit of readers who a re not involved i n these i ssues ,

the outstanding area of controversy in membrane bioenergetics.

THE PROBLEM OF ENERGY COUPLING I N ELECTRON TRANSPORT PHOSPHORYLATION

A s is now axiomatic (69), the exergonic reactions of biological e lec t ron

t ranspor t may be coupled t o the otherwise endergonic synthesis of ATP, the two

sets of reactions being catalyzed by s p a t i a l l y separate enzymes, embedded i n

an ion-impermeable phospholipid membrane (Figure 4 ) . The coupling may be

decreased, u l t imate ly t o zero, by the addi t ion of so-called uncoupler

molecules, many of which have the a b i l i t y to t ranspor t protons across both

a r t i f i c i a l BLM and natural biomembranes (68,70)(Figure 5 ) , a fac t cons is ten t

with, and widely in te rpre ted as strongly supportive of, the delocalised

chemiosmotic coupling theory elaborated by Mitchell (71). However, t h i s

general s e t of ideas (69) has some shortcomings (72-75), and one would l i k e t o

know t o what extent there is quan t i t a t ive agreement between the protonophoric

a c t i v i t y induced by uncouplers in BLM and tha t calculated as necessary to

account €or t h e i r uncoupling a c t i v i t y .

A s discussed by McLaughlin and Dilger ( a s ) , while there is an exce l len t

co r re l a t ion between the protonophoric a c t i v i t y of d i f f e ren t uncoupler

molecules in BLM and t h e i r uncoupling e f fec t iveness in r a t l i v e r mitochondria,

a paradox e x i s t s i n tha t it is necessary t o assume tha t the molecules are 100

times more potent a s protonophores in the l a t t e r case, to account fo r t h e i r

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 12: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

328 KELL AND HARRIS

A 6 C

I I

I I

el synthose

I I

FIGURE 4

The problem of energy coupl ing i n e l e c t r o n t r a n s p o r t phosphorylat ion. In such systems, a membrane ( v e s i c l e ) conta ins pro te inaceous e l e c t r o n t r a n s p o r t (ETC) and ATP synthase complexes, whose mutual g e m e t r i c r e l a t i o n s h i p is p r e s e n t l y unspeciEied, and the problem r e l a t e s t o the means by h i c h f r e e energy is t r a n s f e r r e d between t h e exergonic r e a c t i o n s of e l e c t r o n t r a n s p o r t and t h e o therwise endergonic process of ATP s y n t h e s i s . ( A ) In a chemiosmotic model, f r e e energy t r a n s f e r is a f f e c t e d by the product ion and consumption of a proton e lec t rochemica l p o t e n t i a l d i f f e r e n c e ("protonmotive force") a c r o s s the energy- coupl ing membrane; i n t h i s c a s e , no s p e c i a l t o p o l o g i c a l r e l a t i o n s h i p is requi red between ETC and ATP synthase complexes, and t h e i r m o b i l i t i e s and d i s p o s t t i o n s a r e thus i n t h i s sense unimportant. A l t e r n a t i v e l y , (B,C), f r e e energy t r a n s f e r might be a f f e c t e d by an intra-membranal r o u t e , e i t h e r by a d i r e c t (C) OK more long-range (B) i n t e r a c t i o n between t h e complexes. I n t h e case of a long-range i n t e r a c t i o n , a d d i t i o n a l p r o t e i n s (X) may be involved. Although t h e f ree-energy- t ransfer r ing s t e p i n B and C only occurs when an a p p r o p r i a t e geometr ica l r e l a t i o n s h i p e x i s t s between the r e l e v a n t (and mobile) complexes, t h e arrangement i n C sugges ts a much g r e a t e r degree of randan, long-range m o b i l i t y than that i n B.

a b i l i t y t o uncouple oxida t ive phosphorylat ion i n chemiosmotic terms by means

of a purely passive protonophoric a c t i v i t y a lone . These workers pointed cut

(59,68,76) t h a t t h e Born charging energy requi red f o r t h e t r a n s f e r of a

nonpolar i sab le , s p h e r i c a l , monovalent ion from an aqueous phase i n t o the

c e n t e r of t h e b i l a y e r is a c t u a l l y an extremely s e n s i t i v e f u n c t i o n of t h e

membrane p e r m i t t i v i t y , such t h a t increas ing t h a t of a BLM by a f a c t o r of two,

by us ing I-chlorodecane (Em = 4.5) i n the membrane-forming mixture , led t o an

i n c r e a s e of 2-3 o r d e r s of Mgni tude i n the ion permeabi l i ty of the BLM. It

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 13: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

D I E L E C T R I C SPECTROSCOPY AND MEMBRANES 329

H ++ A-

f A-

FIGURE 5

The protonophoric a c t i v i t y of a l i p o p h i l i c weak a c i d in a black l i p i d membrane. The protonophore a c t s by v i r t u e of i ts a b i l i t y t o c ross the membrane in both charged (A-) and uncharged (HA) forms. As discussed in t h e t e x t , the r a t e of transmembrane movement of A- is dependent on the value of E m , and it is t h e r e f o r e important to know t h i s value in a s s e s s i n g whether a protonnotive-force-drtven a c t i v i t y of the present type adequately expla ins the a b i l i t y of protonophores t o uncouple e l e c t r o n t r a n s p o r t phosphorylat ion.

was taken, t h e r e f o r e , t h a t s i n c e mitochondria conta in p r o t e i n s , which might be

expected t o have a much g r e a t e r p e r m i t t i v i t y than t h a t of phosphol ipids , an

explana t ion f o r t h e aforementioned paradox based on E m va lues might be

poss ib le . Thus, a l though the fact t h a t mitochondria a r e not s l a b d i e l e c t r i c s

with a p e r m i t t i v i t y twice t h a t of pure phospholipid BLM, a f a c t t h a t s e r v e s

r a t h e r t o s t rengthen the oppos i te conclusion t o the fol lowing ( 7 4 ) , t h e

conclusion was d r a m by Di lger , McLaughlin and co l leagues ( 5 9 , 6 8 , 7 6 ) t h a t t h e

above observa t ions were f u l l y c o n s i s t e n t with a chemiosmotic view t h a t

uncoupler a c t i o n could be explained s o l e l y in terms of t h e d i s s i p a t i o n of t h e

protonmotive f o r c e , by protonophoric a c t i o n in b i l a y e r a r e a s of the

mitochondria1 membrane via a mechanism of the type diagrammed in Figure 5. It

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 14: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

330 KELL AND HARRIS

is thus obvious t h a t a much better knowledge of t h e s t a t i c p e r m i t t i v i t y of

himembranes than we have a t p r e s e n t w i l l be r e q u i r e d t o g i v e any type of

q u a n t i t a t i v e account of uncoupler a c t i o n i n vivo. S i m i l a r l y , we would mention

c h a t a knowledge of t h e s t a t i c membrane c a p a c i t a n c e is of importance i n

dec id ing between a l t e r n a t l v e e x p l a n a t i o n s of t h e non-appearance of a p p r o p r i a t e

numbers of pro tons i n t h e o u t e r aqueous phase in suspens ions of microorganisms

i n “02-pulse” exper iments i n t h e absence of added ‘permeant’ ions (77-79).

I n t h i s type of measurement (77-80) a smal l volume of a i r - s a t u r a t e d KC1

is added t o an dnoxic suspens ion of r e s p i r a t o r y microorganisms, any r e s u l t a n t

pll changes i n the e x t r a v e s i c u l a r phase being conver ted t o numbers of pro tons

appear ing , such numbers u s u a l l y be ing r e l a t e d t o the amount of oxygen

consumed. and expressed as t h e + H + / O r a t i o . (We c o n s i d e r h e r e only

v e c t o r i a l pH changes, s c a l a r ones i n any event being a b s e n t under the

c o n d i t i o n s d e s c r i b e d , a s may be confirmed by f i n d i n g s obta ined i n the presence

of uncoupler . ) I n p r a c t t c e , i t is found t h a t c e r t a i n t r e a t m e n t s , such as t h e

a d d i t i o n of r a t h e r h igh c o n c e n t r a t i o n s of KSCN. g r e a t l y enhance t h e - + / O

r a t i o measured. The chemiosmotic e x p l a n a t i o n f o r t h e low +*/O r a t i o

observed i n the absence of KSCN relates t o the e l e c t r o g e n i c i t y of H+ pumping

and t h e r e l a t i v e l y low s t a t i c e lectr ical c a p a c i t a n c e of t h e c e l l u l a r

membrane. I n t h i s view, t h e low -+H+/O r a t i o is caused by the build-up of a

l a r g e , d e l o c a l i s e d membrane p o t e n t i a l , caused by the e l e c t c o g e n i c t r a n s f e r of

H+ from the i n n e r t o t h e o u t e r phase.

Using the s imple e l e c t r o s t a t i c equat ion (Q = CV) t h a t r e l a t e s t h e v o l t a g e

(V v o l t s ) a c r o s s a c a p a c i t o r of C f a r a d s when I t is charged by the passage of

Q coulombs of charge , w have, for cells or v e s i c l e s , A$,, = en/C, where e

is t h e e lementary e l e c t r i c a l charge (1.6 x IO-l9C), n is t h e number of €I+

t r a n s l o c a t e d ( e l e c t r o g e n i c a l l y ) a c r o s s a s i n g l e c e l l of c a p a c i t a n c e C, and

A’4max is the maximum orrmbrane p o t e n t i a l t h a t such protonmotive a c t i v i t y can

create. If we t rea t t h e cel ls a s s p h e r i c a l s h e l l c a p a c i t o r s (no membrane

i n v a g i n a t i o n s ) of c a p a c i t a n c e 1 uF/cmz, a t y p i c a l bacter ium of r a d i u s 500 nm

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 15: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

DIELECTRIC SPECTROSCOPY AND MEMBRANES 331

has a capacitance of 3 x F (77,79,81). If we measure the t o t a l number

of ~ t rans loca ted , and assume tha t a l l are e lec t rogenic , then n m y be

ca lcu la ted €ran a knowledge of the c e l l numbers. By using small oxygen pulses

and la rge c e l l concentrations, the maximum bulk-to-bulk phase transmembrane

po ten t i a l which may theo re t i ca l ly be b u i l t up, A$max, may thus be made

a r b i t r a r i l y small, so t h a t , according t o chemiosmotic considerations, the

K'/O r a t i o should now be as g rea t in the absence of KSCN as in i ts presence

(KSCN being taken t o act by d iss ipa t ing a chemiosmotic membrane po ten t i a l ) .

In prac t ice , however, such behaviour is not observed (77,79,81), suggesting

t h a t the non-appearance of most of the protons in the cuter bulk phase in the

absence of KSCN is not due t o the build-up of a chemiosmotic membrane

po ten t i a l but t o the f ac t tha t the protons never entered t h i s phase

e lec t rogenica l ly . Since t h i s conclusion would not necessarily be cor rec t i f

the static roembrane capacitance were only, say, 0.02 !JF/cm2, i t is important

t o know i ts ac tua l magnitude. However, da ta ava i lab le concerning the

P-dispersion of Paracoccus den i t r i f i cans s t rongly suggest tha t the s t a t i c

membrane capacitance is a t l e a s t 0.5 pF/cmZ ( 3 2 , 3 3 ) .

Thus, we have seen tha t a knowledge of the values of even the s t a t l c

e l e c t r i c a l capacitance of energy coupling biomembranes is of c ruc ia l

importance in assess ing the verac i ty of the chemiosmotic and other coupling

hypotheses in a t l ea s t three areas: the mode of ac t ion of uncouplers, the

e l ec t rogen ic i ty of bulk-to-bulk phase proton pumping catalyzed by redox-linked

proton pumps, and t h e i r l a t e r a l mobility r e l a t ive t o tha t of ATP synthase

enzymes (Figure 4).

DIELECTRIC SPECTROSCOPY AND THE DYNAMIC

ORGANIZATION OF BIOMEMBRANES

In the foregoing, we have concentrated mainly upon the s t a t i c e l e c t r i c a l

capacitance of the membrane. However, as depicted in Figures 3 and 4, curren t

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 16: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

332 KELL AND HARRIS

t h i n k i n g c o n c e i v e s of t h e long-range, hydrodynamica l ly -cons t r a ined , la teral

m o b i l i t y of l i p i d and p r o t e i n complexes i n t h e p l a n e of t h e membrane,

a c c o r d i n g t o t h e f lu id -mosa ic p i c t u r e . It was w n t i o n e d by S inge r and

Nicolson ( 4 8 ) . s t r e s s e d by J a f f e (82 ,83) and conEirmed ( 8 4 - 8 6 ) , that t h e

a p p l i c a t t o n of a s t e a d y electric f i e l d t o a biomembrane-bounded ce l l o r

v e s i c l e s u s p e n s i o n s h o u l d r e s u l t i n t h e lateral r e d i s t r i b u t i o n ( " l a t e r a l

e l e c t r o p h o r e s i s " ) of c h a r g e d , i n t e g r a l membrane p r o t e i n c m p l e x e s . S i m i l a r

e f f e c t s shou ld f o l l o w f r a n t h e a p p l i c a t i o n of any s i n u s o i d a l l y v a r y i n g f i e l d

whose f r equency is less t h a n t h e C h a r a c t e r i s t i c f r equency of t h e Maxwell-

Wagner-type d i s p e r s i o n of the v e s i c l e s in q u e s t i o n . As f i r s t p o i n t e d o u t , t o

o u r knowledge, by K e l l (87 ) , such f i e ld -dependen t motions shou ld n e c e s s a r i l y

be accompanied by a frequency-dependence of t h e d i e l e c t r i c p r o p e r t i e s of s u c h

a system. They shou ld be r e f l e c t e d as a d i e l e c t r t c d i s p e r s i o n , t h e d i e l e c t r i c

i nc remen t and r e l a x a t i o n time of which may i n p r i n c i p l e be used t o g a i n

i m p o r t a n t i n f o r m a t i o n c o n c e r n i n g t h e r a t e and e x t e n t ( r a n d a a n e s s ) of such

l i p i d and p r o t e i n motions.

Because of t h e p r o p e r t i e s of t h e Langevin f u n c t i o n ( 2 4 , 3 0 , 8 3 , 8 8 ) , the

r e l a t i o n s h i p between t h e v i s u a l and d i e l e c t r i c o b s e r v a b i l t t y of such motions

i s dependen t upon t h e ce l l r a d i u s ( i f such mot ions are r e s t r i c t e d by

hydrodynamic f o r c e s a l o n e ) . F u r t h e r , t h e r e are good r e a s o n s t o b e l i e v e t h a t

t h e r e is a s t r o n g c o u p l i n g between t h e motions of p r o t e i n s and l i p i d s i n t h e

membrane, on t h e one hand, and of t h e ions and s o l v e n t molecu le s i n t h e

a d j a c e n t d o u b l e l a y e r s , on t h e o t h e r (32,88-90). Thus, t h e s i t u a t i o n i s

compl i ca t ed . and our purpose i n t h e remainder of t h i s s e c t i o n is t o a t t l i n e

t h e p o s s i b l e c o n t r i b u t i o n s of s u c h mot ions t o d i e l e c t r i c s p e c t r a g e n e r a l l y . A

f u l l e r d i s c u s s i o n of t h e s e and r e l a t e d matters is g i v e n e l s e w h e r e (88)

t o g e t h e r u i t h a r a t h e r e x t e n s i v e set of measurements c a r r i e d o u t on a number

of m i c r o b i a l c e l l s , p r o t o p l a s t s and membrane v e s i c l e s (32) .

With r e f e r e n c e t o F i g u r e 3, the characteristic f r equency ( f c = 1 / 2 n r , where r is t h e r e l a x a t i o n t i m e i n seconds ) f o r t h e r o t a t i o n a l d i f f u s i o n of a

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 17: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

D I E L E C T R I C SPECTROSCOPY AND MEMBRANES 333

membrane protein may be derived f r an the Stokes-Einstein r e l a t ion , and is

given by

f c = k T j 8 n 2 a 2 q h ( 6 )

where q is the membrane v iscos i ty , k is Boltzmann's constant, T the absolute

temperature and the other symbols a re as i n Figure 3 . Using typica l values of

7 (1-10 P), a (4 nm) and h ( 5 nm) , it is found tha t t yp ica l ly fc is

1-10 KHz (88). The advantage of the d i e l e c t r i c method is tha t the

c h a r a c t e r i s t i c frequency is readi ly obtained, and the values of f c as

ca lcu la ted from equation (6) might be expected t o equal the values obtained

d i e l e c t r i c a l l y .

For ca lcu la t ing the t r ans l a t iona l d i f fus ion c w f f l c i e n t s of membrane

pro te ins , i t has become conventional to use an equation f i r s t derived by

Saffman and Lklbruck (91), which fo r our purpose may be modified (88) t o give

the cha rac t e r i s t i c frequency fo r t r ans l a t iona l motional relaxation i n a closed

membrane ves ic le :

f c = (kTK/4r2qr2h) [ln(qh/q'a)- Y ] (7)

where y is Euler 's constant (0.5772), and we consider e i t h e r random

(throughout the ves ic le ) or r e s t r i c t e d 2-dimensional diffusion. In the former

case, K = 1 and r - r , the ves i c l e radius (Figure 3), while in the l a t t e r

case , K = 2 and r = r' (Figure 3 ) , the average distance moved before a

b a r r i e r , of whatever nature, is encountered. P lo ts of equation (7 ) ind ica te

(88) t h a t values of fc f o r t h i s type of relaxation depend c r i t i c a l l y upon the

ex ten t of t r ans l a t iona l randomness (i .e. degree of long-range mobili ty) of the

p ro te in ( s ) , given the r e l a t ive (order of magnitude) constancy of biomembrane

v i scos i t i e s . Some of the values obtained, however (32,92) gtve cause t o doubt

the app l i cab i l i t y of the s i m p l e s t type of f l u i d mosaic model to the bac te r i a l

cytoplasmic membrane (74,93,94). Problems of t h i s type raised by experiments

of a more biochemical nature in animal c e l l s (95) may a t least p a r t i a l l y be

expl icable in terms of membrane protein-cytoskeleton in t e rac t ions ; however,

bac t e r i a a re not thought t o possess a cytoskeleton of the type found in

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 18: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

'334 KELL AND HARRIS

eukaryotes , and t h e exac t mechanis t ic explana t ion f o r t h e apparent ly

non-randm d i s t r i b u t i o n of membrane p r o t e i n s i n many microorganisms remains a

mat ter f o r present concern and f u t u r e research . These more g e n e r a l

c o n s i d e r a t i o n s l i e o u t s i d e our present scope, but have r e c e n t l y been discussed

(74,88,93,94).

A d i e l e c t r i c r e l a x a t i o n is c h a r a c t e r t z e d not only by i t s r e l a x a t i o n time

but a l s o by its magnitude. This i n tu rn depends upon the concent ra t ion of

e f f e c t i v e d i p o l a r p a r t i c l e s , t h e i r e f f e c t i v e molecular d ipole moments and t h e

degree of r e s t r i c t i o n on t h e i r motions. It is usual t o r e l a t e the observable

d i e l e c t r i c increment Ac' due t o the r o t a t i o n of a g lobular p r o t e i n i n an

aqueous s o l u t i o n t o its molecular d i p o l e mment p according t o t h e r e l a t i o n :

(22,96), where c is the nolar p r o t e i n concent ra t ion . N Avogadro's number and H

is an empir ica l cons tan t which is usua l ly taken (from a comparison between

c a l c u l a t i o n and experimental d a t a f o r g l y c i n e ) t o have the va lue 5.8. Note

t h a t t n equat ion ( 8 ) P I s i n Debyes, bu t s i n c e two u n i t charges of oppos i te

s i g n separa ted by 10-lo~ possess a d ipole moment of 4.8 D, w m y express

t h e e f f e c t i v e d i p o l e moment of any p o t e n t i a l l y mobile d i s t r i b u t i o n of charged

p a r t i c l e s i n u n i t s of charge-Angstran by d i v i d i n g the v a l u e f ran equat ion ( 8 )

by 4.8. P l o t s of q u a t i o n (8) i n d i c a t e t h a t e x c e p t i o n a l l y l a r g e d i e l e c t r i c

increments may indeed be exhib i ted by systems in which t h e ex ten t of d i f f u s i o n

of the charged p a r t i c l e i n q u e s t t o n is l a r g e (88).

Tne c l a s s i c a l explana t ion of t h e a - d i s p e r s i o n is t h a t i t r e f l e c t s ( a t

l e a s t p a r t i a l l y ) t h e r e l a x a t i o n , t a n g e n t i a l t o the charged membrane s u r f a c e ,

of t h e ions c o n s t i t u t i n g t h e d i f f u s e double-layer (97-100). However, i n t h e

case of t y p i c a l biomembranes, the o r g a n i z a t i o n of t h e p r o t e i n s in t h e

phosphol ipid m a t r i x is such t h a t t h e i r s u r f a c e s extend s u b s t a n t i a l l y beyond

t h e s u r f a c e d e l i n e a t e d by the phosphol ipid head-groups (F igure 6)(101). Thus,

t h e r e l a x a t i o n times f o r t h e t a n g e n t i a l motions of double l a y e r ions will

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 19: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

DIELECTRIC SPECTROSCOPY AND MEMBRANES 335

1

c

FIGURE 6

The molecular roughness of the s u r f a c e of a protein-containing biomembrane v e s i c l e can l ead t o a s u b s t a n t i a l broadening of the r e l a x a t t o n t ime(s) of double-layer ions moving " t a n g e n t i a l l y " t o t h e charged membrane s u r f a c e s . In p a r t i c u l a r , " f r e e , t a n g e n t i a l " i o n i c r e l a x a t i o n wfll be stopped at the poin ts marked "A" and "B" i n systems of the present type. For f u r t h e r d i s c u s s i o n , see t e x t .

depend not only upon t h e v e s i c u l a r r a d i i but a l s o upon the molecular roughness

of the sur face of ind iv idua l v e s i c l e s , the e f f e c t being t o cause d i e l e c t r i c

r e l a x a t i o n s a t f requencies g r e a t e r than those otherwise t o be expected, i n a

fash ion which w i l l be upaf fec ted by the presence of in te rmolecular cross-

l i n k i n g reagents ( 3 2 , 8 8 1 . Fur ther , any e lec t roosmot ic i n t e r a c t i o n s between

t h e d i f f u s e double l a y e r and the motions of the p r o t e i n s of the membrane

( 8 9 , 9 0 ) w i l l a l s o s e r v e t o broaden such d i s p e r s i o n s , by an uncer ta in amount.

The foregoing d iscuss ion a p p l i e s equal ly , for r o t a t i o n , t r a n s l a t i o n and

e l e c t r o o s a o t i c behaviour , t o t h e charged l i p i d s of the membranes, while even

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 20: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

336 KELL AND HARRIS

n e u t r a l ( z w i t t e r i o n i c ) l i p i d s may be expected t o e x h i b i t a d i e l e c t r i c

d i s p e r s i o n due t o t h e i r r o t a t i o n a l r e l a x a t i o n (102).

F i n a l l y , a d i e l e c t r i c d i s p e r s i o n due t o the r o t a t i o n ( i . e . o r i e n t a t i o n )

of the e n t i r e v e s i c l e might a l s o be a n c i c i p a t e d , i ts c h a r a c t e r i s t i c f requency

being given from the Stokes-Einstein r e l a t t o n a s :

For t y p i c a l va lues of q u e o u s v i s c o s i t i e s (0.01-0.015 P) and c e l l ( v e s i c l e )

r a d i i , c a l c u l a t i o n s based on equat ion (9) i n d i c a t e t h a t d i e l e c t r i c d i s p e r s i o n s

due t o c e l l u l a r r o t a t i o n a r e not t o be observed in the Prequency range above

10 Hz, except f o r e x c e p t i o n a l l y small p a r t i c l e s .

Thus, t h e conclusion from these l a r g e l y t h e o r e t i c a l cons idera t tons is:

any motional c h a r a c t e r i s t i c s of the l i p i d s and p r o t e i n s of biomeinbranes, and

of the ad jacent double l a y e r s , can u n d e r l i e or give r i s e to a d i e l e c t r i c

d i s p e r s i o n . Since t h e s i g n i f i c a n c e of t h i s s ta tement t o d i e l e c t r i c s t u d i e s O E

biomembrane organiza t ion has on ly r e c e n t l y became a p p r e c i a t e d , we next d i s c u s s

t h r e e p a r t i c u l a r exper imenta l manipulat ions t h a t may be or have been used t o

ga in information about the c o n t r i b u t i o n s of such mottons t o d i e l e c t r t c

s p e c t r a .

EXPERIMENTAL NANIPULATIONS OF RELEVANCE TO DIELECTRIC STUDIES OF MEMBRANE ORGANIZATION AND DYNAMICS

The more c l a s s i c a l explana t ions of the a- and !-dispersions i n charged

membrane v e s i c l e suspensions depend e s s e n t i a l l y only upon the r a d i u s , c losed

n a t u r e , s u r f a c e charge d e n s i t y and s u r f a c e p o t e n t i a l of the v e s i c l e s , and on

t h e m o b i l i t y and c o n c e n t r a t i o n of t h e ions of t h e d i f f u s e double l a y e r

Thus , a s s t r e s s e d elsewhere

( 3 2 , 5 7 , 8 8 , 9 2 , 1 0 3 ) , they should be unchanged, o t h e r c i rcumstances being e q u a l ,

by the a d d i t i o n of chemical c ross - l ink ing reagents t o the membrane v e s i c l e

suspension. In other vords, any change i n the d i e l e c t r i c p r o p e r t i e s caused by

a - d i s p e r s i o n ) and bulk phases (?-dispers ion) .

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 21: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

D I E L E C T R I C SPECTROSCOPY AND MEMBRANES 337

t h e a d d i t i o n of chemical cross- l inking reagents such as g lu ta ra ldehyde or

dimethyl suberimidate , which do not change the s u r f a c e charge d e n s i t y (104) or

hulk phase c o n d u c t t v i t i e s , should be d i a g n o s t i c of a cont r thu t ion of the

l a t e r a l ( t r a n s l a t i o n a l and r o t a t i o n a l ) motions of charged membrane components

t o the observed d i e l e c t r i c spectra, al though c a r e should be taken t o exclude

( o r d i f f e r e n t i a t e ) =-vesicular cross- l inking, a d i a g n o s t i c of a

c o n t r i b u t i o n from v e s i c l e o r i e n t a t i o n . S i m i l a r l y , t h e a v a i l a b i l i t y of

photopolymerizable phosphol ipids (105,106) presents a favourable experimental

oppor tuni ty of t h i s type (87,88).

Since the v i s c o s i t y of biomembranes exceeds t h a t of the t y p i c a l aqueous

s o l u t i o n s t o which they are adjacent by 2-3 orders of magnitude (107),

i n c r e a s i n g t h e aqueous v i s c o s i t y by s a y a f a c t o r of 10, f o r ins tance with

g l y c e r o l , will have an e s s e n t i a l l y 10-fold e f f e c t upon the r a t e of v e s i c l e

o r i e n t a t i o n , o r on r e l a x a t t o n s due t o double l a y e r i o n i c motions, bu t a

n e g l i g i b l e e f f e c t on r e l a x a t i o n s due t o the motions of membrane canponents,

provided t h a t t h e membrane:water p a r t i t i o n c o e f f i c i e n t of g lycero l does not

s i g n i f i c a n t l y exceed 1. Thus, s t u d i e s of the dependence of d i e l e c t r i c s p e c t r a

on both the v i s c o s i t y and the temperature may shed l i g h t on the r e l a t i v e

c o n t r i b u t i o n s of i n t r a - and extra-membranal d ipole r e l a x a t i o n s , a s occurred in

s t u d i e s of q u e o u s g lobular p r o t e i n s (22,108,109).

The time cons tan t and magnitude of d i e l e c t r i c r e l a x a t i o n s due t o t h e

mechanisms of the c l a s s i c a l a- and ?-dispers ions have a d i f f e r e n t dependence

upon t h e v e s i c l e r a d i u s in t h e two cases; s i m i l a r l y , r e l a x a t i o n s due t o

mechanisms of the type p r e s e n t l y under cons idera t ion e x h i b i t d e f i n i t e and

d l f f e r e n t v e s i c l e radius-dependencies, and indeed i t was the s h i f t i n g of t h e

a- and p-dispers ions t o high f requencies i n b a c t e r i a l chrmatophores (87)

which f i r s t drew a t t e n t i o n t o t h e s e p o s s i b i l i t i e s . Thus, at l e a s t t h r e e types

of experimental manipulat ions (c ross - l ink ing , v i s c o s i t y changes, and

s o n i c a t i o n t o change t h e v e s i c l e r a d i u s ) may be used t o a i d the experimenter

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 22: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

KELL AND H A R R I S 338

who seeks t o unrave l the v a r i o u s c o n t r i b u t i o n s of the type under d i s c u s s i o n t o

d i e l e c t r i c s p e c t r a .

I f w accept t h a t fteld-membrane-protein/lipid i n t e r a c t i o n s can e x p l a i n

some of t h e d i e l e c t r i c p r o p e r t i e s of membrane v e s i c l e s , I s l t p o s s i b l e

t h a t they may also u n d e r l i e some of t h e observed e f E e c t s OE low-level

e l e c t r i c a l f i e l d s upon c e l l u l a r physiology?

MODULArION BY ELECTRICAL F I E L D S OF REACTIONS CAT4LYSED BY MEMBRANE-BOUND ENZYMES

The i m p o s t t i o n of a macroscopic , s i n u s o l d a l l y a l t e r n a t i n g , electric f t e L d

wi th a f t e l d s t r e n g t h (peak-to-peak) of Eo (V/cm) and a f requency of

w r a d i a n s / s a c r o s s a suspens ion of s p h e r i c a l membrane v e s i c l e s of r a d i u s r ,

induces a transmembrane p o t e n t i a l of a magnitude given by:

1.30), where 0 Ls t h e a n g l e between a p o r t i o n of t h e b i l a y e r and the f i e l d

d i r e c t i o n , and 7 is t h e r e l a x a t i o n time f o r t h e c l a s s i c a l Yaxwell-Wagner

d i s p e r s i o n . Thus, w i t h c e l l s of a modera te ly l a r g e s i z e , quLte modest

e x c i t t n g f i e l d s can induce p h y s i o l o g i c a l l y s i g n i f i c a n t membrane p o t e n t l a l s .

Such p o t e n t i a l s can have both thermodynamic e f f e c t s on p u t a t i v e l y (quasi-)

r e v e r s i b l e r e a c t i o n s sltch a6 ton uptake (7,110-112) and A T P s y n t h e s i s (113) ,

and even i f they are of i n s u f f i c i e n t magnitude t o a c t as a f r e e energy tenn in

+ r i v i n g e n z y e a t i c a l l y c a t a l y s e d r e a c t i o n s , t h e l a r g e d i p o l e moments (114) and

f l e x i b i l i t y (1 15,116) of such p r o t e i n s can lead t o f te ld- induced modulat ion of

t h e k i n e t i c p r o p e r t i e s of such membrane-bound enzymes by a l t e r i n g t h e i r

conformat iona l s t a t u s o r t h e i r dynamics (116a) . Thus, f i e l d - p r o t e i n

i n t e r a c t t o n s in a p lane normal t o t h e b i l a y e r ioembrane might a l s o cause small

but s i g n i f i c a n t d i e l e c t r i c d i s p e r s i o n under c e r t a i n c i rcumstances ( 8 8 ) .

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 23: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

DIELECTRIC SPECTROSCOPY AND MEMBRANES 339

Another case in which a c l ea r mechanism oi f ie ld-pro te in in t e rac t ion

leading t o a modulation of membrane enzyme a c t i v i t y has been e l i c i t e d comes

from the observations of Young and Po0 (117), who showed tha t l a t e r a l

e lec t rophores i s may lead to protein aggregation and in t u r n to an a l t e r a t i o n

of the k ine t i c s of ion channels (118). Thus, these (and other) s tud ies show

q u i t e c l ea r ly tha t simple, d i r e c t field-enzyme in te rac t ions can lead to a

modulation of enzymatic a c t i v i t y , and hence to biological e f f ec t s . In the

s p i r i t of t h i s a r t i c l e , therefore , we would argue i n harmony, for ins tance ,

with P i l l a (7,111,119), tha t d i e l e c t r i c s tud ies provide a potent mans of

determining the mechanisms of such processes, provided tha t the l a t t e r a r e

l i nea r (see next sec t ion) .

PROBLEMS AND PROSPECTS

The recent commercial a v a i l a b i l i t y of rapid, d i g i t a l , impedimetric

apparatus has been fo r us, and will no doubt continue generally to be, a

potent means and motivation €or advancing the theory and practice of membrane

(and other) d i e l e c t r i c spectroscopy. However, we should l i ke to end by

out l in ing what we perceive t o cons t i t u t e the three major general problems,

both theore t ica l and experimental, slowing the rate a t which cur co l l ec t ive

understanding of the e l e c t r i c a l organization of biomembranes may be improved

by d i e l e c t r c spectroscopy using modern apparatus i n the range 101-107 Hz. ( 1 )

The development of computer programs fo r the automated correction of the

cont r ibu t ion of e lec t rode polar iza t ion to the observed d i e l e c t r i c spectra

would be a grea t boon, and would g rea t ly extend the range of frequencies and

conduct iv i t ies ava i lab le ; ( 2 ) more objective and f l ex ib l e means of f i t t i n g

d i e l e c t r i c data t o sums of individual (mechanisms of) d i e l e c t r i c d i spers ion ,

i.e. of deconvoluting d i e l e c t r i c spec t ra , need to be developed -- we have

tended t o assume tha t d i e l e c t r i c dispersions a re best modelled by a Cole/Cole-

type d i s t r ibu t ion function, an assumption that is at best un jus t i f ied and most

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 24: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

340 KELL A N D HARRIS

l i k e l y i n c o r r e c t (120); ( 3 ) we need more e x p l i c i t l y t o a t t a c k t h e problem of

d e c i d i n g e x a c t l y what a method which is by d e f i n i t l o n measuring l i n e a r

p r o p e r t i e s is a c t u a l l y t e l l i n g us about t h e p r o p e r t i e s and hehaviour of

systems which may be expected t o be, and i n some cases demonstrably a r e

( 6 , 7 4 ) , s t ronAly non-l inear and far f r m e q u i l i b r i u m in vivo . The s c i e n t i f i c ,

and b i o a n a l y t i c a l (121) p o s s i b i l i t i e s embodied i n t h i s a r e a i n p a r t i c u l a r

would seem t o us t o c o n s t i t u t e some of the most e x c i t i n g l i n e s of progress t o

be expected i n the ensuing years .

ACKNOWLEDGEMENTS

We a r e indebted t o t h e Science and Engineer ing Research Council and t o

I(:[ A g r i c u l t u r a l D i v i s i o n f o r f i n a n c i a l suppor t . We should a l s o l i k e wanoly

t o e x p r e s s our deep thanks t o t h e many d i e l e c t r i c s p e c t r o s c o p l s t s who have

generous ly shared t h e i r e x p e r t i s e with us i n encouraging our approaches t o

t h e s e i n t e r d i s c i p l i n a r y problems €ran a b i o l o g i c a l p e r s p e c t i v e . We thank

Anthony Pugh for photographic a s s i s t a n c e and Sian Evans f o r typing the

n a n u s c r i p t .

KEFEKENCES

(1) Sheppard, A.R. and Eisenbud, M. (eds . ) : B i o l o g i c a l E f f e c t s of E l e c t r i c and Magnetic F i e l d s of Extremely Low Frequency, U n i v e r s i t y P r e s s , N e w York, 1971.

( 2 ) Adey, W.R.: T issue I n t e r a c t i o n s wi th Nonionis ing Elec t romagnet ic F i e l d s , Phys io l . Rev. 61 , 435-514, 1981.

( 3 ) Konig, H.L., Krueger , A . P . , Lane, S. and Sonnig, 4.: B i o l o g i c E f f e c t s of Environmental Electromagnet ism, Springer-Verlag, Heide lberg , 1981.

( 4 ) Becker , R.O. and Marino, A.A.,: Electromagnet ism and L i f e , S t a t e U n i v e r s i t y of New York P r e s s , Albany, 1982.

( 5 ) Barker , 4.T. and Lunt , M.J.: The E f f e c t s of Pulsed Magnetic F i e l d s of t h e Type Used i n the S t i m u l a t i o n of Bone F r a c t u r e Heal ing, Cl in . Phys. Phys io l . Meas. 4 , 1-27, 1983.

( 6 ) F r o h l i c h , H. and K r e m e K , F. (eds . ) : Coherent E x c t t a t i o n s i n B i o l o g i c a l Systems, Springer-Verlag, Heide lberg , 1983.

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 25: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

DIELECTRIC SPECTROSCOPY AND MEMBRANES 341

( 7 ) P i l l a , A.A., Sechaud, P. and McLeod, B.R.: Electrochemical and E l e c t r i c a l Aspects of Low-Frequency Electromagnet ic Current Induct ion i n B i o l o g i c a l Systems, J. Biol . Phys. 11, 51-58, 1983.

(8) Adey, W.R. and Lawrence, A.F. (eds . ) : Non-linear Electrodynamics of B i o l o g i c a l Systems, Plenum P r e s s , New York, 1984.

( 9 ) Fcicke, M.: The E l e c t r i c Capac i ty of Suspensions wi th Spec ia l Reference t o Blood, J. Gen. Phys io l . 9 , 137-152, 1925.

(10) Overton, E.: Uber d i e a l lgemeinen osmotischen EigenschaEten d e r Zelle, i h r vennut l ichen Ursachen und i h r e Bedeutung f u r d i e PhysLologie, Vjochr. Naturf . Ges. Zurich 44, 88-135, 1899.

(11) Schwan, H.P.: E l e c t r i c a l P r o p e r t i e s of Tissue and Cell Suspensions, i n Advances i n Bio logica l and Medical P h y s i c s , Vol. 5, .J.H. Lawrence and C.A. Tobias , eds . , Academic P r e s s , New York, 147-209, 1957.

(12) Schwan, H.P.: F i e l d I n t e r a c t i o n with B i o l o g i c a l Matter, Ann. N.Y. Acad. Sc i . 303. 198-213, 1977.

( 1 3 ) Schwan, H.P.: Dielectric P r o p e r t i e s of B i o l o g i c a l Tissue and Biophysical Mechanisms of Elec t romagnet ic F i e l d I n t e r a c t i o n s , ACS Symp. Ser . 157, 109-131, 1981.

(14) Schwan, H.P.: E l e c t r i c a l P r o p e r t i e s of Cells: P r i n c i p l e s , Some Recent R e s u l t s , and Some Unresolved Problems, in The Biophysical Approach t n E x c i t a b l e Systems, W.J. Adelmann, .h. and D.E. Goldman, eds., Plenum P r e s s , New York, 3-24, 1981.

(15) Schwan, H.P.: Dielectric P r o p e r t i e s of B i o l o g i c a l Tissue and Cells a t RF- and N- Fre$uencies , i n BiO1OgiCal E f f e c t s and Dosiinetry of Nonionizing Radia t ion , M. Gandolfo, S.M. Xichaelson and A. Rindi , eds . , Plenum P r e s s , New York, 195-211, 1983.

( 1 6 ) Schwan, H.P., Takashima, S., Miyamoto, V.K. and StoeckenFus, W.: Electrical P r o p e r t i e s of Phosphol ipid Vesicles, Riophys. J . 10, 1102-1119, 1970.

( 1 7 ) Pauly , H. and Packer , L.: The R e l a t i o n s h i p of I n t e r n a l Conductance and b m b r a n e Capaci ty t o Mt tochondr ia l Volume, J. Biophys. Biochem. Cyto l . 7 , 603-612, 1960.

(18) Pauly , H., Packer , L. and Schwan, H.P.: Electrical P r o p e r t i e s of Mitochondria1 Membranes, J. Riophys. Biochem. Cyto l . 7 , 589-601, 1960.

(19) F a l k , G. and F a t t , P.: Pass ive E l e c t r i c a l P r o p e r t i e s of Rod Outer Segments, J. Phys lo l . 198. 627-646, 1968.

( 2 0 ) Cole , K.S.: Membranes, Ions and Impulses , U n i v e r s i t y of C a l i f o r n i a P r e s s , Berkeley, 1972.

(21) Cars tensen , E.L. and Marquis, R.E.: D i e l e c t r i c and Elec t rochemica l P r o p e r t i e s of Bacterial Cells. Spores V I , P. Gerhard t , R.N. Cos t i low and H.L. Sadoff , eds . , American Socie ty f o r Microbiology, Washington, 563-571, 1975.

(22) Grant , E.H., Sheppard, R.J. and South, G.P.: Dielectric Behaviour of B i o l o g i c a l Molecules i n Solu t ion , Oxford U n i v e r s i t y P r e s s , London, 1978.

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 26: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

KELL AND HARRIS 242

(23) Schanne, O.F. and Ceretti. E.R.P.: Impedance Measurements i n B i o l o g i c a l Cells, Wiley, New York, 1978.

(24) P e t h i g , R.: Dielectric and E l e c t r o n i c P r o p e r t i e s of B i o l o g i c a l M a t e r i a l s , Wiley, C h i c h e s t e r , 1979.

( 2 5 ) P e t h i e , R.: Dielectric P r o p e r t i e s of B i o l o g i c a l FLaterials: Biophysical and Medical A p p l t c a t i o n s , KEEE Trans. E l e c t r i c a l I n s u l a t i o n EI-19, 453-474, 1984.

(26) A s a m i , K., Hanai, T. and Koizumi, N.: Dielectric Analys is of Escher ich ia c o l i i n t h e Light oE t h e Theory of I n t e r f a c i a l P o l a r t z a t i o n , Biophys. J. 31, 215-228, 1980. -

( 2 7 ) A s a m i , Y., Trimajiri, A., Yanai, T., S h i c a l s h i , N. and Utsumi, Y.: D i e l e c t r i c Analysis of Mitochondria I s o l a t e d from Rat-Liver . I. Swollen M i t o p l a s t s a s Simulated by a S ingle-Shel l Model, Riochim. Biophys. Acta 7 7 8 , 559-569, 1984.

( 2 8 ) Schwan, H.P. and F o s t e r , K.R.: RF-Field I n t e r a c t i o n s v i t h B i o l o g i c a l Systems: E l e c t r i c a l P r o p e r t i e s and Biophys ica l Mechanisms, Proc. I E E E 58, 104-113, 1980.

(29) Stoy, R.D., F o s t e r , K.R. and Schvan, H.P.: D i e l e c t r i c P r o p e r t i e s of Mammalian Tissue from 0.1 t o 100 MHz: A Summary of Recent Data , Phys. Med. B i o l . 27, 501-513, 1982.

(30) Zimmermann, U.: E l e c t r i c Field-Medtated Fusion and Rela ted E l e c t r i c a l Phenomena, Biochim. Biophys. Acta 694, 227-277, 1982.

( 3 1 ) Harris, C.M. and K e l l , D.B.: The Radio-Frequency D i e l e c t r i c P r o p e r t i e s of Yeast Cells k a s u r e d w i t h a Rapid, Frequency-Doadin D i e l e c t r t c Spec t rometer , Bioelectrochem. Bioenerg. 11, 15-28, 1983.

( 3 2 ) H a r r i s , C.M. and Kell, D.B.: On t h e D i e l e c t r i c a l l y Observable Consequences of t h e D t f f u s i o n a l Motions of L i p i d s and P r o t e i n s i n Membranes. 2 . Experiments wi th Microbia l C e l l s , P r o t o p l a s t s and Membrane V e s i c l e s , Eur. Biophys. J., Submit ted, 1985.

(33) Harris, C.M., Hi tchens , G.D. and Kell, D.B.: Dielectric Spectroscopy of Microbia l Membrane Systems, iq Charge and F i e l d E f f e c t s t n Biosystems, M . J . A l l e n and P.N.R. Usherwood, eds . , Abacus P r e s s , Tunbridge Wells, 179-185, 1984.

( 3 4 ) Asami, K. and I r h a j i r i , A.: O i e l e c t r i c Dispers ion of a Single Spher tca l Bi layer Membrane i n Suspension, Biochim. Biophys. Acta 769, 370-376, 1984.

( 3 5 ) Asami, K. and Irimajiri, A,: D i e l e c t r i c Analys is of Mitochondria I s o l a t e d Erom Rat Liver . I T . I n t a c t Mitochondria as Simulated by a Double-Shell Model, Biochim. Biophys. Acta 778, 570-578, 1984.

( 3 6 ) Harold, F.M.: Ion Curren ts and P h y s i o l o g i c a l Funct ions i n Micro- organisms, Ann. Rev. Microbio l . 31, 181-203, 1977.

( 3 7 ) Packham, N.Y., Berriman, J .A. and Jackson , J .B. : The Charging Capaci tance of t h e Chromatophore Membrane, FEBS Lett. 8 9 , 205-210, 1978.

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 27: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

D I E L E C T R I C SPECTROSCOPY AND MEMBRANES 343

(38) Pauly, H. and Schwan, H.P.: D i e l e c t r i c P r o p e r t i e s and Ion Mobil i ty in Erythrocytes , Biophys. J. 6. 621-639, 1966.

(39) Marquis, R.E. and Carstensen, E.L.: E l e c t r i c Conduct ivi ty and I n t e r n a l Osmolality of I n t a c t B a c t e r i a l C e l l s , J. B a c t e r i o l . 113, 1198-1206, 1973.

(40) Lehman, R.C. and P o l l a r d , E.: Diffusion Rates in Disrupted B a c t e r i a l Cells, Biophys. J. 5, 109-119, 1965.

(41) Kei th , A.D. and Mastro, A.M.: Membrane F l u i d i t y and Cytoplasmic Viscos i ty , in Memhrane F l u i d i t y in Biology, Vol. 2, R.C. Aloia , ed. , Academic P r e s s , New York, 237-257, 1983.

(42) Mastro, A.M. and Kei th , A.D.: Di f fus ion i n the Mueous Compartment, J. Cell Biol . 99, 18OS-l87S, 1984.

(43) Clegg, J.S.: P r o p e r t i e s and Metabolism of the Pqueous Cytoplasm and i ts Boundaries, h e r . J. Physiol . 246, R133-R151, 1984.

(44) Fr icke , H., Schwan, H.P., Li, K. and Bryson, V.: A D i e l e c t r i c Study of the Low-Conductance Surface Membrane in E. c o l i , Nature 177, 134-135, 1956. '

(45) Pauly, H.: E l e c t r i c a l P r o p e r t i e s of the Cytoplasmic Membrane and the Cytoplasm of Bacter ia and of P r o t o p l a s t s , IRE Trans. Bio-Med. Electron. 9, 93-95, 1962.

(46) Einolf , C.W. and Carstensen, E.L.: Passive E l e c t r i c a l P r o p e r t i e s of Microorganism. I V . S tudies of t h e P r o t o p l a s t s of Micrococcus l y s o d e i k t i c u s , Biophys. J. 9, 634-643, 1969.

(47) Cole, K.S. and Cole, R.H.: Dispersion and Absorption in D i e l e c t r i c s . I. Al te rna t ing Current C h a r a c t e r i s t i c s , J. Chem. Phys. 9, 341-351, 1941.

(48) Singer , S.J. and Nicolson, G.C.: The Fluid Mosaic Model of t h e S t r u c t u r e of Cell Membranes, Science 175, 720-731, 1972.

(49) Katns, M. and Nanson, L.A., eds.: Membrane F l u i d i t y , Plenum Press, New York, 1984.

(50) Hanai, T., Haydon, D.A. and Taylor , J.: An I n v e s t i g a t i o n by E l e c t r i c a l Methods of Lecithin-in-Hydrocarbon Films in lqueous Solu t ions , R o c . R. SOC, Ser. A 281, 377-391, 1964.

(51) Cole, K.S.: D i e l e c t r i c P r o p e r t i e s of Living Membranes, in Phys ica l P r i n c i p l e s of Bio logica l Membranes, F. Snell, J. Wolkan, G. Iverson and 3. L a m , eds., 1-15, 1970.

(52) F e t t i p l a c e , R., Andrews, D.M. and Haydon, D.A.: The Thickness, Composition and S t r u c t u r e of some Lip id Bi layers and Natural Membranes, J. Membr. Biol . 5, 277-296, 1971.

(53) F e t t i p l a c e , R., Gordon, L.G.M., Hladky, S.B., Reqriena, J., Zingsheim, H.P. and Haydon, D.A.: Techniques in the Formation and Examination of "Black" Lipid Bilayer Membranes, i n Methods in Membrane Biology, Vol. 4, E.D. Korn, ed., Plenum P r e s s , New York, 1-75, 1975.

(54) White, S.H. and Thompson, T.E.: Capaci tance, Area and Thickness Var ia t ions in Thin Lipid Films, Biochim. Biophys. Acta 323, 7-22, 1973.

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 28: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

344 KELL AND HARRIS

(55) Tien , H.T.: B I l a y e r L i p i d Membranes ( R L M ) . Theory a n d P r a c t i c e , Marcel Dekker , New York, 1974.

(56) Takashima, S.: Membrane C a p a c i t y of g u i d G i a n t Axon Dur ing Hyper- and D e p o l a r i z a t i o n , J. Membr. B i o l . 27, 21-39, 1976.

( 5 7 ) Takashima, S.: Admit tance Change of q u i d Axon During Ac t ion P o t e n t i a l s . Change i n C a p a c i t l v e Component Due t o Sodium C u r r e n t , Btophys. J. 26, 133-142, 1979.

(58) Takashima, S.: Frequency Response of k m b r a n e Components in Nerve Axon, ACS. S y n p . Ser. 157, 133-145, 1981.

(59) D i l g e r , J.P., McLaughlin, S.G.A., McIntosh, T.J. and Simon, S.A.: The D i e l e c t r i c Cons tan t of P h o s p h o l i p i d B i l a y e r s and t h e P e r m e a b i l i t y of Membranes to Ions, S c i e n c e 206, 1196-1198, 1979.

(60 ) A d r i a n , R.H.: The C a p a c i t y of Cell Membranes: G a t i n g C u r r e n t Measurements, i n Developments i n B i o p h y s i c a l Resea rch , A. B o r s e l l i n o , P. h o d e o , R. Strom, A. Vedi and E. Wanke, eds . , Plenum P r e s s , New York, 43-55, 1980.

(61) Haydon, D.A., Requena, , J . a n d Ilrban, B.W.: Sane E f f e c t s of A l i p h a t i c Hydrocarbons on t h e E l e c t r i c a l C a p a c i t y and I o n i c C u r r e n t s of t h e !?quid G t a n t Axon b m b r a n e , J. P h y s i o l . 309, 229-245, 1980.

(62) A s h c r o f t , R.G., Coster, H.G.L. and Smith, J.R.: The Molecu la r O r g a n i s a t i o n of B iomolecu la r L i p i d Membranes. The Dtelectrtc S t r u c t u r e of t h e Hydroph i l i c /Hydrophob ic I n t e r f a c e , Btochim. Btophys. Acta 643, 191-204, 1981.

(63 ) T a y l o r , R.E., Fe rnandez , J.M. and B e z a n i l l a , F.: % u i d Axon W a b r a n e Low-Frequency D t e l e c t r i c P r o p e r t i e s , i n The B i o p h y s i c a l Approach t o E x c t t a b l e k m b r a n e s , W.J. Adelman and D.E. Goldman, eds . , Plenum P r e s s , New York, 97-106, 1981.

(64) Fernandez , J.M., B e z a n t l l a , F. and T a y l o r , R.E.: D i s t r i b u t i o n and K i n e t i c s of Membrane D i e l e c t r i c P o l a r i z a t i o n . 11. Frequency Domain S t u d i e s of G a t i n g C u r r e n t s , .J. Gen. P h y s i o l . 79, 41-67. 1982.

(65) Hanai, T., Haydon, D.A. and T a y l o r , J.: P o l a r Group O r i e n t a t i o n and t h e E l e c t r i c a l P r o p e r t i e s of L e c i t h i n B iomolecu la r L e a f l e t s , J. Theoret. B t o l . 9, 278-296, 1965.

(66) E v e r i t t , C.T. and Haydon, D.A.: E l e c t r i c a l C a p a c i t a n c e of a L i p i d Flrmbrane S e p a r a t i n g Two Aqueous Phases , J. T h e o r e t . B i o l . 18, 371-379, 1968.

(67) L a v e r , D.R., b i t h , J.R. and C o s t e c , H.G.L.: The Th ickness oE t h e Hydrophobic and P o l a r Regions of G l y c e r o l Monooleate Bilayers Determined from t h e Frequency Dependence of B i l a y e r C a p a c i t a n c e , Biochim. Btophys. Acta 772, 1-9-, 1984.

(68) McLaughlin, S.G.A. and D i l g e r , J .P.: T r a n s p o r t of P r o t o n s Across Membranes by Weak Acids, P h y s i o l . Rev. 60, 825-863, 1980.

(69 ) N i c h o l l s , D.G.: B i o e n e r g e t i c s . An I n t r o d u c t t o n t o t h e Chemiosmotic Theory. Academic P r e s s , London, 1982.

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 29: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

D I E L E C T R I C SPECTROSCOPY AND MEMBRANES 345

(70) Terada, H.: The I n t e r a c t i o n of Highly Active Uncouplers with Mitochondria, Biochim. Biophys. Acta 639, 225-242, 1981.

(71) Mitchel l , P.: Chemiosmotic Coupling in Oxidat ive and Photosynthe t ic Phosphorylat ion, Biol . Rev. 41, 445-502, 1966.

(72) Ferguson, S.J. and Sorgato, M.C.: Proton Electrochemical Gradients and Energy-Transduction Processes , Ann. Rev. Biochem. 51, 185-217, 1982.

(73) K e l l , D.B. and Hitchens, G.D.: Coherent P r o p e r t i e s of the Membranous Systems of Elec t ron Transport Phosphorylat ion, i n Coherent Exci ta t ions i n Bio logica l Systems, H. Frohl ich and F. Kremer, eds., Springer-Verlag, Heidelberg, 178-198, 1983.

(74) Kel l , D.B. and Westerhoff, H.V.: C a t a l y t i c F a c i l i t a t i o n and Memhrdne Bioenerge t ics , i n Organised h l t i e n z y m e Systems: C a t a l y t i c P r o p e r t i e s , G.R. Welch, ed., Academic Press , New York, In P r e s s , 1985.

(75) Westerhoff, H.V., Melandri, B.A., Venturol i , G., Azzone, G.F. and Kel l , D.B.: A Minimal Hypothesis f o r Membrane-Linked Free-Energy Transduction. The Role of Independent, Small Coupling Units , Biochim. Biophys. Acta 768, 257-292, 1984.

(76) D i l g e r , J. and k l a u g h l i n , S.: Proton Trsnsport Through &mbranes Induced by Weak Acids: A Study of Two Subs t i tu ted Benzimidazoles, J. Membr. Biol. 46, 359-384, 1979.

(77) K e l l , D.B. and Hitchens, G.D.: Proton-Coupled Energy Transduction by Bio logica l Membranes. P r i n c i p l e s , Pathways and Praxis , Faraday Discuss. Chem. Soc. 74, 377-388, 1982.

(78) Hitchens, G.D. and K e l l , D.B.: On the Effec ts of Thiocyanate and Ventur ic id in on Respiration-Driven Proton Trans loca t ion i n Paracoccus d e n i t r i f i c a n s , Biochim. Biophys. Acta 766, 2220232, 1984.

(79) K e l l , D.B.: Local ized Pro tonic Coupling: Overview and C r i t i c a l

(80) Scholes, P. and Mi tche l l , P.: Respiration-Driven Proton Translocat ion i n Evaluat ion of Techniques, Meth. Enzymoll, i n p r e s s , 1985.

Micrococcus d e n i t r i f i c a n s , J. Bioenerg. 1, 309-323, 1970.

(81) Gould, J.M. and Cramer, W.A.: Re la t ionship between Oxygen-Induced Proton Eff lux and Membrane Energ isa t ion in Cells of Fscherichia e, J. Biol. Chem. 252, 5875-5882, 1977.

(82) J a f f e , L.F.: E lec t rophores i s Along C e l l Membranes, Nature 265, 600-602, 1977.

(83) J a f f e , L.F. and N u c c i t e l l i , R.: E l e c t r i c a l Controls of Developments, Ann. Rev. Biophys. Bioenerg. 6, 445-476, 1977.

(84) Poo, M-m. and Robinson, K.R.: E lec t rophores i s of Concanavalin Receptors a long Embryonic h s c l e Cell Membranes, Nature 265, 602-605, 1977.

(85) Poo, M-m.: In s i t u Elec t rophores i s of Membrane Components, Ann. Rev. Biophys. Bioenerg. 10, 245-276, 1981.

(86) Sowers, A.E. and Hackenbrock, C.R.: Rate of L a t e r a l Diffusion of Intramembrane P a r t i c l e s : kasurement by Elec t rophore t ic Displacement and Rerandomization, Proc. Nntl. Acad. Sci . 78, 6246-6250, 1981.

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 30: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

KELL AND HARRIS 346

(87) K e l l , D.B.: D i e l e c t r i c P r o p e r t i e s of B a c t e r i a l Chranatophores, Bioelectrochem. Bioenerg. 11, 405-415, 1983.

(88) K e l l , D.B. and Harris, C.M.: On t h e D i e l e c t r i c a l l y Observable Consequences of t h e Dif fus iona l Motions of Lip ids and P r o t e i n s i n Membranes, I. Theory. Eur. Biophys. J.. Submitted, 1985.

(89) McLaughlin, S. and Poo, M-m.: The Role of Electroosmosis i n the Electr ic-Field-Induced Movement of Charged Macromolecules on t h e Surfaces of Cells, Biophys. J. 34, 85-93, 1981.

(90) Rabinowitz, J.R.: The Effec t of E l e c t r i c F ie ld Induced P e r t u r b a t i o n of t h e D i s t r i b u t i o n of Ions Near t h e C e l l Surface on t h e Migration of Charged Membrane Components, J. Theoret. Btol. 99, 377-389. 1982.

( 9 1 ) Saffman, P.G. and Delbruck, M.: Rrownial Motion i n Bio1OgiCal Membranes, Proc. Natl. Acad. Sci . 72, 3111-3113, 1975.

(92) H a r r i s , C.M. and Kell, D.B.: D i e l e c t r i c Spectroscopy of P r o t e i n T r a n s l a t i o n a l Di f fus ion i n Prokaryot lc Membranes and Membrane V e s i c l e s , Proc. XI11 I n t . School Biophys. Bioe lec t rochemis t ry IT, Erice, S i c i l y , I n p r e s s , 1985.

(93) K e l l , D.B.: Di f fus ion of P r o t e i n Complexes i n ProkaryoLlc Membranes: F a s t , Free, Randan or Directed? Trends Biochem. Sc i . 9 , 86-88, 1984.

(94) Kel l . D.B.: Const ra in ts on t h e L a t e r a l Diffusion of Membrane P r o t e i n s on Pro'karyotes, R e n d s Btochem. Sct. 9 , 379, 1984.

(95) A l m e r s , W. and S t i r l i n g , C.: 9 i s t r i b u t i o n of Transport P r o t e i n s over Animal C e l l Membranes, J. Membr. Biol . 77, 169-186, 1984.

(96) Oncley, J.L.: The E l e c t r i c Moments and Relaxat ion Times of Pro te ins a s Measured from t h e i r Inf luence on the D i e l e c t r i c Constant of Solu t ions , i n P r o t e i n s , Amino Acids and Pept ides , E.J. Cohn and J.T. Edsa l l , eds . , Reinhold, New York, 543-568. 1943.

( 9 7 ) Schwarz, G.: A Theory of the Low-Frequency D i e l e c t r i c Dispersion of Col lo ida l P a r t i c l e s i n E l e c t r o l y t e Solu t ion , J. Phys. Chem. 66, 2636-2642, 1962.

(98) E i n o l f , C.W. and Carstensen. E.L.: Low Frequency D i e l e c t r t c Dispersion i n Suspensions of Ion-Exchange Resins , J. Phys. Chem. 75, 1391-1099, 1971.

(99) Dukhin, S.S. and Shi lov , V.V.: D i e l e c t r i c Phenomena and the Double Layer i n Disperse Systems and P o l y e l e c t r o l y t e s , Wlley, Chiches te r , 1974.

(100) Schwan. H.P.: D i e l e c t r i c P r o p e r t i e s of B i o l o g i c a l Tissues and Cells a t ELF-Frequencies, i n Bio logica l E f f e c t s and Dosimetry of Non-Ionising Radia t ion , M. Gandolfo, S.M. Michaelson and A. Rindi , eds . , Plenum Press, New York, 549-559, 1983.

(101) Capaldi , R.A.: Arrangement of P r o t e i n s i n the Mitochondria1 Inner Membrane, Biochim. Biophys. Acta 694, 291-306, 1982.

(102) P o t t e l , R., Gopel, K-D., Henze, R., Kaatze, V. and Uhlendorf, V.: D i e l e c t r i c P e r m i t t i v i t y Spectrum of Pqueous C o l l o i d a l Phosphol ipid Solu t ions Between 1 kHz and 60 GHz, Biophys Chem. 19, 233-244, 1984.

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 31: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

DIELECTRIC SPECTROSCOPY AND MEMBRANES 347

(103) K e l l , D.B.: Dielectric Spectroscopy of t h e R o t a t i o n a l and T r a n s l a t i o n a l Motions of Membrane P r o t e i n s : Theory and Experiment, I E C Reports 3 , 645-646, 1984.

(104) P e t e r s , K. and Richards, F.M.: Chemical Cross-Linking Reagents and Problems in S t u d i e s of Membrane S t r u c t u r e , Ann. Rev. Biochem. 46, 523-551, 1977.

(105) Johnston, D.S . , McLean, L . R . , Whittam, M.A., Clark, A.D. and Chapman, D.: Spec t ra and P h y s i c a l P r o p e r t i e s of Liposomes and Monolayers oE Polymerizable Phosphol ipids Containing Diace ty lene Groups in One o r Both Acyl Chains, Biochemistry 22, 3194-3202, 1983.

(106) J u l i a n o , R.L., Hsu, M.J., Regen, S.L., and Singh, M.: Photopolymerised Phosphol ipid Vesicles. S t a b i l i t y and Retent ion of Hydrophi l ic and Hydrophobic Marker Substances, Biochirn. Biophys. Acta 770, 109-114, 1984.

(107) Hoffman, W. and Restall, C.J.: Rota t ion and Lateral Dif fus ion of Membrane P r o t e i n s as Determined by Laser Techniques, i n Biomembrane S t r u c t u r e and Funct ion , D. Chapman, ed., Macmillan, London, 257-318, 1983.

(108) Takashima, S.: Dielectric Dispers ions of P r o t e i n Solu t ions i n Viscous Solvent , J. Polymer. S c i . 56, 257-263, 1962.

(109) Takashima, S.: Dielectric P r o p e r t i e s of P r o t e i n s . 1. D i e l e c t r i c Relaxa t ion , in P h y s i c a l P r i n c i p l e s and Techniques of P r o t e i n Chemistry, P a r t A, S.J. Leach, ed., Academic P r e s s , New York, 291-333, 1969.

10) P i l l a , A.A.: The Rate Modulation of Cell and Tissue Funct ion V i a E lec t rochemica l Informat ion Tranefer , in Mechanisms of Growth Cont ro l , R.O. Becker, ed., Char les C. Thomas, S p r i n g f i e l d , 211-236, 1981.

11) Sepersu, E.H. and Tsong, T.Y.: S t imula t ion of a Ouabain-Sensitive Rb' Uptake in Human Erythrocytes by an Externa l Electric F i e l d , J. Membr. B i d . 74 , 191-201, 1983.

(112) Sepersu, E.H. and Tsong, T.Y.: Act iva t ion of Elec t rogenic Rb+ Transpor t of (Na, K)-ATPase by a n Electric F i e l d , J. Biol. Chem. 259, 7155-7162, 1984.

(113) W i t t , H.T., Schlodder , E. and Graber, P.: Membrane-Round ATP S y n t h e s i s Generated by a n Externa l Electrical F i e l d , FEBS L e t t . 69, 272-276, 1976.

(114) Schwarz, G.: Q u a n t i t a t i v e Analysis of A c t i v a t i o n and I n a c t i v a t i o n of Asymmetry Curren ts in B i o l o g i c a l Membranes Based on a Conformational T r a n s i t i o n Model, J. Membr. B io l . 43, 149-167, 1978.

(115) Welch, G.R., Somogyi, 8. and Damjanovich, S.: The Role of P r o t e i n F l u c t u a t i o n s in Enzyme Action: A Review, Progr . Biophys. Mol. Biol . 39, 109-146, 1982.

(116) Somogyi, B., Welch, G.R. and Damjanovich, S.: The Dynamic Basis of Energy Transduct ion in Enzymes, Biochim. Biophys. Acta 768, 81-112, 1984.

(116a) Cooper, A. and Dryden, D.T.F.: A l l o s t e r y Without Conformational Change. A P l a u s i b l e Model, Eur. Biophys. J. 11, 103-109, 1984.

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010

Page 32: JOURNAL OF BIOELECTRICITY, 4(2), 317-348 (1985)dbkgroup.org/Papers/kell_harris_jb85.pdfreflected in the passive electrical properties of biological systems. The historical, present

348 KELL AND HARRIS

(117) Young, S.U. and Poo, M-a.: Topograph ica l Rearrangement of A c e t y l c h o l i n e R e c e p t o r s Alters Channel K i n e t i c s , M t u r e 304, 161-163, 1983.

( 1 1 8 ) C h i a b r e r a , A., G r a t t a r o l a , M. and V i v i a n t , R.: I n t e r a c t i o n Between E l e c t r o m a g n e t i c F i e l d s and Cells: M i c r o e l e c t r o p h o r e t i c E f f e c t on L tgands and S u r f a c e R e c e p t o r s , B i o e l e c t r o m a g n e t i c s 5, 173-191, 1984.

( 1 1 9 ) P i l l a , A.A.: E l e c t r o c h e m i c a l I n f o r m a t t o n T r a n s f e r at Cell S u r f a c e and J u n c t i o n s - A p p l i c a t i o n t o t h e Study and Man ipu la t ion of Cell R e g u l a t t o n , i n B i o e l e c t r o c h e m i s t r y , H. Keyzer and F. Gutmann, eds . , Plenum P r e s s , New York, 353-396, 1980.

(120) M a r s h a l l , A.G.: Trans fo rm Techn iques i n Chemistry, i n P h y s t c a l Methods i n bbderm Chemtcal A n a l y s i s , Vol. 3, T. Kuwana, ed. , Academic P r e s s , New York, 57-135, 1983.

( 1 2 1 ) K e l l , D.B.: The P r i n c i p l e s and P o t e n t i a l of Admit tance Spec t roscopy : An I n t r o d u c t i o n , i n R i o s e n s o r s : Fundamentals and A p p l i c a t i o n s , L. Karube and A.P.F. T u r n e r , e d s . , Oxford U n i v e r s i t y P r e s s , London, To be p u b l i s h e d , 1986.

Downloaded By: [The University of Manchester] At: 15:55 23 May 2010