jt-60 sa toroidal field coil structural analysis

25
Ch. Portafaix 07 April 2009 JT-60SA TF magnet structural analyses Association Euratom-CEA 1 JT-60 SA Toroidal Field coil structural analysis Christophe Portafaix Introduction TF coil description TF coil design and electromagnetic loads Material and Criteria 2D structural analysis 3D structural analysis Conclusion

Upload: others

Post on 02-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

1

JT-60 SA Toroidal Field coil structural analysis

Christophe Portafaix

• Introduction

• TF coil description

• TF coil design and electromagnetic loads

• Material and Criteria

• 2D structural analysis

• 3D structural analysis

• Conclusion

Page 2: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

2

Vacuum vessel

Central Solenoid (CS)

Cryostat

Toroidal Field (TF)

coils

Equilibrium Field (EF) coils

~14m

Nominal parameters

Plasma major radius = 2.95 m

Plasma minor radius = 1.18 m

Aspect ratio = 2.5

Plasma current = 5.5 MA

Toroïdal magnetic Field = 2.26 T

Introduction

JT-60SA

Page 3: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

3

case

Gravitysupport

18 TF coils

TF coil description Inner leg section

Conductor NbTi6 Double pancakes Temperature 4.4 KCurrent 25.7 kAHe flow rate 4 g/sPeak field 5.65 TTmargin > 1 K

Page 4: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

4

TubeTubeInner Inner øø 90mm90mm

Outer Outer øø 140mm140mm

1.5m1.5m

1.4m1.4m

Gravity support

Spherical Joints:Spherical Joints:

Permit to reduce transmitted Permit to reduce transmitted loads (no moment).loads (no moment).

Tube section optimized to Tube section optimized to reduce heat leak.reduce heat leak.

Page 5: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

5

Radial net force= 23MN

Wedging of the TF Coils to withstand ‘Centring’ Loads

TF coil design and electromagnetic loads

Wedged

HoopCompression

TF

Coil Contact Areaon Sides

CS

In plane load

Fr and Fz : I ^ Bφ

r

z

Forces caused by TF current and toroidal field

Page 6: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

6

T=(1/2) IBρBm=µ0NI/(2πr1)

r1 minimum distance from z axisT=I ρ Bmr1/(2r)

To maintain T constant and no bending moment:ρ=kr with k = 4 πT/(µ0NI2)In plane (z,r), the curve must satisfy the following equation:

[ ] 2/32

2

2

)(11drdz

kdrzd

r +±=

Toroids Forces Winding with constant tension Discussion on thin shell

r

z

Segment of the windingwith local curvature ρ

In plane load Fr and Fz : I ^ Βφ

Bending free : D shape

Page 7: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

7

Fz =5 MN

Fr= I* <Bphi> =5. MN/m (I=72*25.7kA <Bphi>=5.6/2T )

Fphi=Fr/(2 * sin 10 °) =14.4 MN/m

The centring force is supported by a vault effect in the TF nose (Fphi)

In plane load Fr and Fz : I ^ BφφφφInner leg section

F r

Fz Fphi

• Inner leg wedged

z

r

Page 8: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

8

Case: Stainless steel

Inner leg section

Eddy current insulation: glass epoxy

Jacket: Stainless steel

Insulation : glass epoxy

cable

Case cooling channel : stainless steel

Stainless steel: 51% of the inner leg section

NbTi: 4.5% of the inner leg section

SS to withstand Lorentz forces

Page 9: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

9

Connection of the TF Coils to withstand out of plane loads

N 11 GR 294 97-12-03 W 0.2

IM

NUL

EOB

SOB

SOF

XPF

Out of plane loads Fφφφφ : I ^ Br and Bz

Forces caused by TF current and poloidal field

Structural links have to include an eddy current insulation

Cyclic loads fatigue

Page 10: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

10

Out of plane loads Fφ φ φ φ : I ^ Br and Bz

• OIS, bolts, keys withstand the Out of plane loads

• Friction between inner leg play an important role in supporting the out of plane loads

OIS

case

z

r

keys

bolts

OIS is separated from the coil casing:

• Simplify the manufacturing

Reduced welding in the coil casing

• Simplify cold testing

• Reduce hoop forces in the bolted connections, thus reducing number of bolt

Page 11: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

11

Mechanical properties at 4K

0.3%0.5%0.7%0.3%Thermal contraction dl3/l

0.3%0.5%0.25%0.3%Thermal contraction dl2/l

0.3%0.5%0.25%0.3%Thermal contraction dl1/l

0.384679Coulomb’s Modulus G13 (GPa)

0.384679Coulomb’s Modulus G23 (GPa)

0.384679Coulomb’s Modulus G12 (GPa)

0.30.30.330.3Poisson’s ratio nu13

0.30.30.330.3Poisson’s ratio nu23

0.30.30.170.3Poisson’s ratio nu12

1712205Young’s modulus E3 (GPa)

1720205Young’s modulus E2 (GPa)

1720205Young’s modulus E1 (GPa)

cableResinInsulationEpoxy glass

Stainless steel

1 and 2 along layer direction, 3 perpendicular to layer direction

Material and Criteria

Page 12: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

12

Stainless steel criteria

Limit stress value: Sm= 547MPa : 2/3 of the yield strength at 4K (820MPa)

• Membrane stress Pm < K*Sm

• Membrane + bending stress < 1.3*K*Sm

Base metal : K=1

Welds : K=1 for plates under 20mm thick

K=0.9 for plates from 20 to 150mm

Page 13: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

13

Insulation criteria(σn/σ0)+(τn/τ0)

2 < 1 (LHD criteria [1])

σ0: tensile strength at 77K= 38Mpa τ0: shear strength at 77K= 27Mpa

σn: stress perpendicular to the glass fiber

τ n: shear stress

Compressive strength:

600 MPa

[1] Cryogenic shear fracture tests of interlaminar organic insulation for a forced-flow superconducting coil, MT13, Victoria BC, Canada 1993, K. Kitamura et al., NIFS.

-80

-60

-40

-20

0

20

40

60

80

-80 -60 -40 -20 0 20 40

Sig NN (MPa)

Tau

NS

(M

Pa)

ITER criteria static

LHD criteria static

ITER criteria fatigue

Page 14: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

14

• The calculations are performed in 2D generalised plane strain hypothesis: constant vertical strain corresponding to a verticalforce Fz

Load steps:

1. Cool down from 293K to 4K 2. Cool down + In plane Lorentz forces3. Cool down + In plane Lorentz forces + pressure (quench)

2D structural analysis

Inner leg section

Page 15: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

15

Magnetic field map in the JT60-SA TF winding pack (T)

Bmax =5.6T

Fr=5. MN/m

Page 16: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

16

Von Mises Stress map in conductor jacket (MPa).

Maximum von Mises stress = 494MPaRadial displacement (m).

Maximum contact gap distance = 1mm

Load: Cool down + In plane load

Page 17: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

17

In plane loadNormal stress along the wedge contact.

σn max = 351MPa (compression stress) < 600 MPa Glass epoxy. (limit)

Page 18: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

18

Cool down + In plane load

Von Mises Stress intensity map in casing.

Maximum Von Misesstress = 447MPa.

Page 19: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

19

Load: Cool down + In plane load

12

00

=

+

ττ

σσ nn

The LHD criterion for insulation.

σ0: tensile strength at 77K = 38MPa, τ0: shear strength at 77K = 27MPa.σn: stress perpendicular to the glass fiber,τn: shear stress

LHD criteria max = 0.636 < 1

Page 20: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

20

3D structural analyses

case

OIS

TF coil

CS1

CS2

CS3

CS4

EF3EF2

EF1

EF4 EF5

EF6

FP1

FP2

FP3

FP4

FP5

FP6

TF3

TF2

TF1

TF, CS, EF coils and Plasma

Page 21: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

21

Electro-magnetic analysis

• In plane forces calculated with TF current only (25.7kA per conductor)

S = 0m S = Smax/2

In Plane Forces (EOB)

1.8

2.3

2.8

3.3

3.8

4.3

4.8

0 2 4 6 8 10 12 14 16 18

s (m)

Mag

net

ic f

orc

e (M

N/m

)

Upper

Inner

Leg

Lower

Inner

LegTF3 TF3’

TF2 TF2’TF1

Page 22: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

22

Electro-magnetic analysis• Out of plane forces determined

S = 0m S = Smax/2

Page 23: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

23

Lateral displacementLateral displacement

@ SOF ~ 20mm@ SOF ~ 20mmLocal peak stressLocal peak stress

@ shear panel connection@ shear panel connection

Page 24: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

24

Max stressMax stress < 140 < 140 MPaMPaBending stressBending stress < 10 < 10 MPaMPa

Load: Weight + Seism

Max stress <130 Max stress <130 MPaMPaBending stress < 20 Bending stress < 20 MPaMPa

Load: Weight + VDE

Gravity support

Page 25: JT-60 SA Toroidal Field coil structural analysis

Ch. Portafaix 07 April 2009JT-60SA TF magnet structural analyses

AssociationEuratom-CEA

25

Conclusions

• TFC structures design is well advanced.

• Design optimized in order to reduce mass and cost

• Actually detail design tasks are ongoing.

• Future activities (local models, half torus model) are planned.