judit e. Š poner, 1 ji ří Š poner 1 , petr stadlbauer 1 and ernesto di mauro 2

28
The route from formamide to simple ribozymes – structures and mechanisms from advanced computational studies Judit E. Šponer, 1 Jiří Šponer 1 , Petr Stadlbauer 1 and Ernesto Di Mauro 2 1 Institute ofBiophysics,Academ y ofSciences ofthe C zech R epublic,Královopolská 135, C Z-61265,Brno,C zech R epublic 2 “Istituto Pasteur-Fondazione C enci-Bolognetti”c/o D ipartim ento di Biologia e Biotecnologie “C harles D arw in”, “Sapienza”U niversità di R om a,P.le Aldo M oro,5,R om e 00185,Italy

Upload: rosamund-jeremiah

Post on 02-Jan-2016

23 views

Category:

Documents


0 download

DESCRIPTION

The route from formamide to simple ribozymes – structures and mechanisms from advanced computational studies. Judit E. Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and Ernesto Di Mauro 2. in silico “cooking”. Molecular dynamics (MD) simulations - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

The route from formamide to simple ribozymes –

structures and mechanisms from advanced

computational studies

Judit E. Šponer,1 Jiří Šponer1, Petr Stadlbauer1 and Ernesto Di Mauro2

1 Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265, Brno, Czech Republic

2 “Istituto Pasteur-Fondazione Cenci-Bolognetti” c/o Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” Università di Roma, P.le Aldo Moro, 5, Rome 00185, Italy

Page 2: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

Quantum chemistry (QC)

Solving the Schrödinger equation to get information about the structure, energy and electronic structure of the studied system.

in silico “cooking”

Aim: to supplement experiments

Commercially available softwares

Molecular dynamics (MD) simulations

Force field based representation of the total energy. Information about the time-development of the structure and energy of the studied system.

Page 3: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

Purine synthesis from formamide:

Saladino, R.; Crestini, C.; Ciciriello, F.; Costanzo, G.; Di Mauro, E., Chem. Biodivers. 2007, 4, 694-720.

Page 4: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

Free energy profile of the reaction route leading to the formation of the 6-membered heterocyclic ring. The energies were computed at B3LYP/6-311++G(2d,2p) level. Bulk solvent effects were treated using the C-PCM approximation.

gas-phase

bulk water

bulk formamide

J. E. Sponer et al. J. Phys. Chem. A 2012, 116,720-726

CNH

CH

NH2

OH

O

H

Page 5: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

Free energy profile for the dehydration step of the hexahydropyrimidine intermediate. The energies were computed at B3LYP/6-311++G(2d,2p) level. Bulk solvent effects were treated using the C-PCM approximation. Numbers in parenthesis refer to the free energy changes calculated relative to the initial state complex formed from formamide dimer, HCN and water.

bulk formamide

bulk water

gas-phase

J. E. Sponer et al. J. Phys. Chem. A 2012, 116,720-726

Page 6: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

Free energy profile for the formation of purines from the tetrahydro-pyrimidine precursor. The energies were computed at B3LYP/6-311++G(2d,2p) level. Bulk solvent effects were treated using the C-PCM approximation. Numbers in parenthesis refer to the free energy changes calculated relative to the initial state complex formed from formamide dimer, HCN and water.

bulk formamide

bulk water

gas-phase

J. E. Sponer et al. J. Phys. Chem. A 2012, 116,720-726

Page 7: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

New information inferred from computations

● In HCN-chemistry the synthetic routes leading to purines and pyrimidines are entirely different. In contrast, the formamide-based synthesis of purines may proceed via pyrimidine-intermediates, which enables the simultaneous production of purine and pyrimidine bases.

● Catalytic water molecules ● Catalysis by HCN

Page 8: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

Formamide-based synthesis of nucleobases in a high-energy impact event (i.e. meteoritic impact, simulated with a laser spark)

Formamide is one of the most abundant molecules in the space. Simulation of meteoritic impact: irradiation with high-power laser → •CN radical.Formamide + •CN radical → nucleobases

S. Civíš (Prague)

M. Ferus (Prague)

Page 9: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

Vapor phase FTIR spectra of liquid formamide and its ice in the MIR and NIR spectral regions.

A: irradiated formamide ice mixed with an FeNi meteorite B: non−irradiated pure formamide ice C: gas phase pure formamide sample

M. Ferus, S. Civiš, A. Mládek, J. Šponer, L. Juha, J. E. Šponer, J. Am. Chem. Soc. 2012, 134, 20788−20796.

Page 10: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

-400

-350

-300

-250

-200

-150

-100

-50

0

50

ΔG,kcal/mol

CNH2

O

H+ CNH2

O

H

CN

CN

CNH2

O

H

CN

CNH2

O

CN+ H

CNH2

O

CNCN+ CNH2

O

CN

CN

CNH2

OH

CN

CN

CN+ CNH2

OH

C

CN

N

CN

+ H CNH2 C

CN

NH

CN+ H 2O

CNH2

OH

C

CN

NH

CN

CNH2 C

CN

NH

CN+ H CHNH2 C

CN

NH

CN

CNH2

OH

C

CN

N

CNH+ CNH2

OH

C

CN

NH

CN

CNH2

O

CN

CN+ H CNH2

OH

CN

CN

CNH2

OHH

CN

CNH2

OHCN

CN

2-amino-2-hydroxy-malononitrile (AHMN)

2-amino-2-hydroxy-acetonitrile(AHAN)

Energy profile of the formation of 2,3-diaminomaleonitrile from the reaction of formamide with CN∙ radical computed at B3LYP/6−311++G(2d,2p) level. Grey curve: CCSD(T)/6−311++G(2d,2p) benchmark energy data using the B3LYP/6−311++G(2d,2p) optimized geometries .

M. Ferus, S. Civiš, A. Mládek, J. Šponer, L. Juha, J. E. Šponer, J. Am. Chem. Soc. 2012, 134, 20788−20796.

Page 11: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

CNH2

OHH

CNCNH2

OHCN

CN

AHMN AHAN

Vapor phase FTIR spectra of liquid formamide and its ice in the MIR and NIR spectral regions.

A: irradiated formamide ice mixed with an FeNi meteorite B: non−irradiated pure formamide ice C: gas phase pure formamide sample

M. Ferus, S. Civiš, A. Mládek, J. Šponer, L. Juha, J. E. Šponer, J. Am. Chem. Soc. 2012, 134, 20788−20796.

Page 12: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

Polymerization of 3’,5’-cGMPSelectively produces 3’,5’-linkages

3’,5’-cGMP: prebiotic building block, can be synthesized from formamide

NO

O

O-

OOP

N

NHN

NH2

O

OH

NO

O

O-

OH

OH

O

P N

NHN

NH2

O

OH

NO

O

O-

OOP

N

NHN

NH2

O

OH

NO

O

O-

OOP

N

NHN

NH2

O

OH

OH- NO

O

O-

OOP

N

NHN

NH2

O

OH

NO

O

O-

OH

OH

O

P N

NHN

NH2

O

OH

pH=9

G. Costanzo, R. Saladino, G. Botta, A. Giorgi, A. Scipioni, S. Pino and E. Di Mauro, Chembiochem, 2012, 13, 999-1008.

Page 13: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

Mechanism of the polymerization of 3’,5’-cGMPs from quantum chemical calculations

(TPSS-D2/TZVP level of theory)

Page 14: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

E, kcal/mol

-20-15-10

-505

10152025

Page 15: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

E, kcal/mol

-20-15-10

-505

10152025

Page 16: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

E, kcal/mol

-20-15-10

-505

10152025

Page 17: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

E, kcal/mol

-20-15-10

-505

10152025

Page 18: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

E, kcal/mol

-20-15-10

-505

10152025

Page 19: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

E, kcal/mol

-20-15-10

-505

10152025

Page 20: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

E, kcal/mol

-20-15-10

-505

10152025

Page 21: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

E, kcal/mol

-20-15-10

-505

10152025

Page 22: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

E, kcal/mol

-20-15-10

-505

10152025

Page 23: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

E, kcal/mol

-20-15-10

-505

10152025

Page 24: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

The “Ligation following Intermolecular Cleavage” (LIC) mechanism

5’P-G-3’OH+

G24

P5’

3’-OH

5’C24

P3’

G24 P5’

3’-OH

5’C24

P3’

C24G24

C24G23

G24

P5’ 3’-OH

5’C24

3’pG

C24G

ligation

cleavage

terminal recombination

LIC

C24 + pG24

Tetraloops ?

S. Pino, G. Costanzo, A. Giorgi, J. Šponer, J. E. Šponer and E. Di Mauro, Entropy, 2013, 15, 5362-5383.

Page 25: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

MD-simulations of tetraloop-like geometries enabling ligation and terminal cleavage

Ligation Cleavage Ligation Cleavage

Page 26: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

MD-simulations of tetraloop-like geometries enabling terminal recombination

Page 27: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

AMP

cGMP

cGMP

cGMP

cGMP

cGMP

cGMP

cGMP

cGMPC

C

C

AAA

AAA

AMP

c-GMP polymerizationligation and catalysis

templated templated

3’

3’

5’

5’ AAAAAAA

3’

5’

5’

3’

C

CCCCCC

CC

GGGGG

5’ 3’

CCCCCC

C

GG

GGG

C

5’ 3’C

3’

5’

CC

CCCCC

C

G

GGG

5’ 3’

cAMP

AAA

cAMP

AAA

3’

5’

cGMP

cGMP

cGMPcGMP

cGMPcGMPcGMP

5’cGMP

non-templated

3’

3’

5’

stacking

Unifying concept for the origin of catalytically active oligonucleotides from 3’,5’ cGMP and 3’,5’ cAMP

G. Costanzo, R. Saladino, G. Botta,A. Giorgi, A. Scipioni, S. Pino and E. Di Mauro, Chembiochem, 2012, 13, 999-1008.

S. Pino, G. Costanzo, A. Giorgi and E. Di Mauro, Biochemistry, 2011, 50, 2994-3003.

S. Pino, G. Costanzo, A. Giorgi, J. Šponer, J. E. Šponer and E. Di Mauro, Entropy, 2013, 15, 5362-5383.

S. Pino, F. Ciciriello, G. Costanzo and E. Di Mauro, J. Biol. Chem., 2008, 283, 36494-36503.

Page 28: Judit  E.  Š poner, 1 Ji ří Š poner 1 , Petr Stadlbauer 1 and  Ernesto  Di  Mauro 2

Prof. Ernesto Di Mauro, Rome, ItalyDr. Samanta Pino, Rome, ItalyDr. Alessandra Giorgi, Rome, ItalyDr. Giovanna Costanzo, Rome, ItalyDr. Martin Ferus, Prague, Czech RepublicProf. Svatopluk Civíš, Prague, Czech RepublicProf. Jiří Šponer, Brno, Czech RepublicMr. Petr Stadlbauer, Brno, Czech Republic

GAČR grant No. P208/12/1878

Acknowledgement