jurnal discovery learning 1

Upload: putri-syahreni-harahap

Post on 07-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Jurnal Discovery Learning 1

    1/26

    How to make guided discovery learning practical

    for student teachers

    Fred J. J. M. Janssen   • Hanna B. Westbroek   • Jan H. van Driel

    Received: 14 July 2012 / Accepted: 31 October 2013 / Published online: 15 November 2013  Springer Science+Business Media Dordrecht 2013

    Abstract   Many innovative teaching approaches lack classroom impact because teachers

    consider the proposals impractical. Making a teaching approach practical requires instru-

    mentality (procedures), congruence (local fit), and affordable cost (limited time and

    resources).This paper concerns a study on the development and effects of a participatory

    design based teacher training trajectory aimed at making guided discovery learning (GDL)

    practical for student biology teachers. First, we identified practical heuristics for designing

    GDL lessons by analyzing design protocols made by biology teachers who are experts inGDL. Next we inventoried student responses to their regular lessons and to GDL based

    lessons. Based on this we prepared a teacher training program for eleven student biology

    teachers in which they applied the heuristics and stepwise extended their teaching reper-

    toire in the direction of GDL. The participants’ design processes and resulting lesson plans

    were scored on both use of design heuristics and GDL characteristics. The participants

    were interviewed about their motivational beliefs before and after the program. Results

    showed that student teachers are able to design GDL lessons and used the heuristics to

    design GDL lessons. Their motivation for implementing GDL in their classroom had

    increased substantially. The paper concludes with a critical reflection on our method of 

    participatory design and its applicability.

    Keywords   Guided discovery learning   Student teachers    Student learning  

    Practicality     Biology education    Participatory design

    F. J. J. M. Janssen (&)   J. H. van Driel

    ICLON, Leiden University Graduate School of Teaching, P.O. Box 905, 2300 AX Leiden,

    The Netherlands

    e-mail: [email protected]

    J. H. van Driel

    e-mail: [email protected]

    H. B. Westbroek 

    Centre for Educational Training, Assessment and Research, VU University Amsterdam,

    De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

    e-mail: [email protected]

    Instr Sci (2014) 42:67–90

    DOI 10.1007/s11251-013-9296-z

  • 8/18/2019 Jurnal Discovery Learning 1

    2/26

    Introduction

    Several educational innovators and researchers have advocated the implementation of guided

    discovery learning (GDL) practices in secondary education (Bruner   1961; Brown and

    Campione 1994; Hmelo-Silver et al. 2007). The common aspect in different GDL practices isthat teaching starts by posing a challenging problem, and that students themselves contribute

    to the knowledge development needed to solve the problem (Hmelo-Silver et al. 2007). When

    students receive sufficient support in developing the necessary knowledge, GDL can help

    them to become more motivated, develop flexible knowledge, and learn how knowledge is

    developed in a specific domain (Reiser 2004; Hmelo-Silver et al. 2007; Lijnse and Klaassen

    2004). Many teachers also recognize the potential of GDL and are in principle positive about

    adding this teaching approach to their repertoire (Keys and Bryan 2001).

    In spite of the perceived benefits of GDL, and even though GDL practices are generally

    part of teacher training curricula in most countries, large-scale observation studies show

    that teachers have scarcely practiced GDL (Gage 2009). Most teaching is still more or less

    dominated by a structure that may be described as ‘the teacher first explains the theory,

    after which students practice’. Furthermore, teachers tend to ask students lower-order

    questions that do not challenge them to discover new knowledge (Borko and Putnam 1996;

    Chin 2007).

    The disappointing classroom impact of this potentially valuable teaching approach can be

    explained by the differences in perspectives that educational designers and teachers have on

    developing new teaching practices. Roughly put, educational designers generally primarily

    focus on optimizing student learning when developing formats for teaching practices. When

    teachers evaluate new teaching approaches, potential benefits for learning processes of stu-dents play a role, but are not decisive. Teachers evaluate new practices primarily on practi-

    cality criteria (Doyle and Ponder 1977; Janssen et al. 2013). Teachers consider new teaching

    practices practical when (a) efficient procedures (heuristics) are available to translate inno-

    vative ideals into concrete instruction (instrumentality); (b) the proposed change sufficiently

    fits the teacher’s current practice and goals (congruence), and (c) implementation of the

    innovation will take limited investment but the expected benefits are substantial ( cost ). A

    change proposal that does not meet these criteria raises an impregnable barrier for imple-

    mentation: a teacher will decline the proposal or adapt it to make it fit the criteria, often losing

    the core characteristics of innovation (e.g., Spillane et al. 2002).

    Thus, to enhance the classroom impact of GDL, professional development arrangementsor teacher training arrangements should ensure that the perspective of student learning

    through GDL  and  the practicality perspective of teachers are both sufficiently elaborated.

    For this, it is advisable that educational designers become involved in design activities in

    cooperation with teachers (Könings et al. 2005). Participatory design is common practice in

    many domains in (information) technology and services (Simonson and Robertson  2012).

    The idea is that involving users at an early stage in the design process ensures that the end

    product will be fit for use, which enhances implementation. In the field of education par-

    ticipatory design is still rather uncommon, but gaining momentum (Könings et al. 2011).

    In the case of professional development or teacher training trajectories that aim at

    supporting teachers to develop new teaching repertoires, the challenge is to structure

    participatory design activities in such a way that, on the one hand, the core content of the

    new teaching practice (e.g. GDL) is preserved and, on the other hand, that this is done in

    such a way that the teachers consider the new teaching practice as practical. This way,

    teachers are offered tools for implementing a new teaching practice that is generally

    considered important. They are enabled to explore GLD in different variations according to

    68 F. J. J. M. Janssen et al.

  • 8/18/2019 Jurnal Discovery Learning 1

    3/26

    their own preferences, and for topics that they choose themselves. Based on these expe-

    riences they can make an informed decision about how to add GDL to their repertoire.

    This aim asks for an approach that supports the utilization of the expertise of the

    educational designer about effective characteristics of the new practice, as well as the

    expertise of the teachers about the context they work in (his/her own capacities, his/herstudents, the curriculum, the available resources and time and the goals that need to be

    achieved simultaneously). If this can be realized, mutual learning can take place.

    In this study, educational designer and teachers cooperated in the design of GDL-based

    lessons. Starting point for the development of the participatory design trajectory was a set

    of research based design criteria for GDL lessons. The criteria were the result of an earlier

    design research project conducted by the first author (Janssen  1999; Janssen and Waarlo

    2010). Next, a group of experienced teachers, in cooperation with the educational

    researcher, developed design heuristics for designing GDL based lessons. These heuristics

    enable teachers to realise GDL lessons in a practical way, that is: within the limited time

    and resources that they have at their disposal, and given their regular teaching context.

    The GDL criteria, together with the heuristics formed the basis for the development of 

    the teacher-training trajectory that aimed at making designing GDL-based lessons practical

    for student teachers. To establish what practicality means for this particular group, the

    development of this trajectory started with the systematic identification of goals, capacities

    and work conditions of the participating student teachers. After being introduced to GDL

    and addressing a GDL based lesson conducted by the educational designer, the student

    teachers were specifically asked to respond to GDL lessons: what they considered pros,

    cons and difficulties. Based on this information a trajectory was developed that enabled

    student teachers to stepwise develop GDL based lessons in cooperation with each other andthe educational designer. Furthermore, the student teachers decided on the topics, on which

    key features they wanted to implement successively in their lessons and in what way. The

    educational researcher provided feedback.

    The study at hand concerns a teacher training trajectory for  biology student teachers.

    First of all, the way GDL criteria play out exactly, is domain dependent (Shulman and

    Quinlan 1996). Furthermore Seidel and Shavelson (2007) have shown that domain specific

    learning activities contribute the most to learning effects. Moreover, this study concerns a

    teacher-training trajectory as research shows that beginning teachers play a crucial role in

    the implementation and dissemination of innovations in the science subjects in schools

    (Davis et al. 2006). It has additionally been shown that beginning teachers who implementinnovative teaching approaches such as GDL teaching are more effective teachers, which

    promotes/enhances student learning, but also lowers the chance that they leave the teaching

    profession at an early stage (Davis et al.  2006).

    In this paper we will first describe the key characteristics of effective GDL lessons and

    present a general framework for making teacher training trajectories practical, that is:

    instrumental, congruent, and low cost. Next, we will discuss an empirical investigation into

    applying the general framework in the design of a teacher training trajectory in order to

    make GDL practical for student biology teachers. We will conclude with a critical

    reflection on our method and its applicability.

    What makes guided discovery learning effective?

    There is ample evidence that unguided or minimally GDL is not effective (Kirschner et al.

    2006; Mayer 2004) and that the success of discovery learning critically depends on how it

    GDL practical for student teachers 69

  • 8/18/2019 Jurnal Discovery Learning 1

    4/26

    is supported (Brown and Campione  1994; Hmelo-Silver et al.  2007; Reiser  2004; Lijnse

    and Klaassen  2004). Reiser (2004) distinguishes two ways of support: (1) structuring the

    problem and (2) problematizing student solutions. First, students need guidance in struc-

    turing the problem they have to solve. An important way to do this is by dividing the

    problem into sub problems for them (Reiser 2004). If these sub problems can be sequencedin such a way that solving each sub problem makes students feel the need to solve the next

    sub problem, students will experience the problems as their own (Lijnse and Klaassen

    2004). Second, students need to be supported to problematize their solutions, i.e., to

    critically evaluate and improve the solutions they develop (Reiser  2004).

    How to sequence problems and how to evaluate solutions is to a large extent determined

    by the domain students are to develop knowledge about (Shulman and Quinlan 1996). Our

    study focused on the domain of biology. A biological system, such as the immune system,

    generally consists of many sub-systems (e.g., different types of white blood cells such as

    macrophages) that cooperate. Every sub-system fulfils one or more functions of the system

    as a whole (in this case, destroying invading pathogens). Characteristic of biological

    systems is that these functions are typically realized in such a way as to have the fewest

    disadvantages for both the survival and the reproduction of the organism it is part of 

    (Dennett   1995; Lewens   2009). This allows biologists to approach function-structure

    relations of biological systems as design problems, and develop knowledge about bio-

    logical systems by redesigning them within the constraint that solutions should have the

    fewest disadvantages for survival and reproduction (Dennett 1995; Lewens 2009; Wouters

    2007).

    It has earlier been shown that it is possible for students in secondary biology education

    to develop flexible knowledge about the functions and mechanisms of complex biologicalsystems by having them redesign the system (Janssen   1999; Janssen and Waarlo   2010).

    The flow of lesson segments in such a biology GDL lesson is as follows (see Table  1,

    showing part of a lesson about the immune system). The starting point is the function of the

    biological system as whole, which is reformulated as a design problem (e.g., how can

    invading pathogens be destroyed?, lesson segment 1). Next, students work on a solution

    (first individually, then in groups), and are instructed to search for the simplest solution.

    The heuristic search for disadvantages of different solutions and choosing the solution with

    the fewest disadvantages for the organism as a whole helps students to problematize and

    further develop their solutions (lesson segments 2 and 3). Then, guided by the teacher, the

    best solution from each group (for example: eating cell) is discussed, evaluated, and relatedto the solution selected by nature (macrophage, lesson segment 4). At this point, students

    have developed knowledge about a part of the system (in this case the macrophage as part

    of the immune system). However, if the system only consisted of that particular part

    (‘eating cell’), this would have disadvantages (i.e., a possible attack of one’s own body

    material). This disadvantage can now be rephrased as the next design problem in a natural

    way (lesson segment 6). This way, students discover that for the realisation of one function

    of a biological system cooperating sub-systems with different functions are needed. Before

    students turn to the next design problem they first apply the newly discovered knowledge

    to consolidate that knowledge (lesson segment 5).

    How to make guided discovery learning practical for student teachers

    Although our knowledge about how to make GDL effective for students has substantially

    increased, it has had hardly any impact on classroom practice (Macalalag and Duncan

    70 F. J. J. M. Janssen et al.

  • 8/18/2019 Jurnal Discovery Learning 1

    5/26      T    a      b      l    e      1

        F    l   o   w   o    f    l   e   s   s   o   n   s   e   g   m   e   n   t   s    i   n   a    G    D    b    i   o    l   o   g   y    l   e   s

       s   o   n ,    i    l    l   u   s   t   r   a   t   e    d    f   o   r   p   a   r   t   o    f   a    l   e   s   s   o   n   a    b   o   u   t   t   e   a   c    h    i   n   g   t    h   e    i   m   m   u   n   e   s   y   s   t   e   m

        F    l   o   w   o    f    l   e   s   s   o   n   s   e   g   m   e   n   t   s

        S   a   m   p    l   e    f   r   a   g   m   e   n   t   o    f   a    l   e   s   s   o   n

        1 .    S   t   a   r   t   w    i   t    h   t    h   e    f   u   n   c

       t    i   o   n   o    f   t    h   e    b    i   o    l   o   g    i   c   a    l   s   y   s   t   e   m   a   s   a

       w    h   o    l   e   a   n    d

       r   e    f   o   r   m   u    l   a   t   e   t    h    i   s    i   n   a    d   e   s    i   g   n   p   r   o    b    l   e   m

        F   u   n   c   t    i   o   n   o    f   t    h   e    i   m   m   u   n   e   s   y   s   t   e   m   :   r   e   n    d   e   r    i   n   g    i   n   v   a    d    i   n   g   p   a   t    h   o   g   e   n   s    h   a   r   m    l   e   s   s .

        H   o   w   c   a   n    i   n

       v   a    d    i   n   g   p   a   t    h   o   g   e   n   s    b   e   r   e   n    d   e   r   e    d    h   a   r   m    l   e   s   s    ?

        2 .    D   e   v   e    l   o   p    i   n   g   m   u    l   t    i   p

        l   e   s   o    l   u   t    i   o   n   s   a   n    d    d   e   t   e   r   m    i   n    i   n   g   t    h   e    d    i   s   a    d   v   a   n   t   a   g   e   s   o    f   t    h   e

       s   o    l   u   t    i   o   n   s   s   t   u    d   e   n   t   s   c

       a   n   c   o   n   t   r    i    b   u   t   e

        S   o    l   u   t    i   o   n    A

        S   o    l   u   t    i   o   n    B

        S   o    l   u   t    i   o   n    C

        L   e   t   t    h   e   p   a   t    h   o   g   e   n    b   e   e   a   t   e   n    b   y

       a   n   e   a   t    i   n   g

       c   e    l    l

        S   u   r   r   o   u   n    d   t    h   e

       p   a   t    h   o   g   e   n

        T    h    i   n   g   s   t    h   a   t    b   r   e   a    k    d   o   w   n   a

       p   a   t    h   o   g   e   n    (    l    i    k   e

       a    k    i   n    d   o    f   n   e   e    d    l   e    )

        D    i   s   a    d   v   a   n   t   a   g   e

        D    i   s   a    d   v   a   n   t   a   g   e

        D    i   s   a    d   v   a   n   t   a   g   e

       c   a   n   a   t   t   a   c    k   m   a   t   e   r    i   a    l   o    f   t    h   e

        b   o    d   y    i   t   s   e    l    f

       c   a   n   a   t   t   a   c    k

       m   a   t   e   r    i   a    l   o    f   t    h   e

        b   o    d   y

        i   t   s   e    l    f

       p   a   t    h   o   g   e   n   s   a   r   e

       s   t    i    l    l

        i   n   o   u   r    b   o    d   y

       c   a   n   a   t   t   a   c    k   m   a   t   e   r    i   a    l   o    f   t    h   e    b   o    d   y    i   t   s   e    l    f

       p   o    i   s   o   n   c   o   u    l    d   c   o   m   e   o   u   t   t    h   e   p   a   t    h   o   g   e   n   a   n    d

       s   p   r   e   a    d    i   n   y   o   u   r    b   o    d   y

        3 .    A    l   t   e   r   n   a   t    i   v   e   s   o    l   u   t    i   o   n   s   a   r   e   w   e    i   g    h   e    d   a   n    d   t    h   e   s    i   m   p    l   e   s   t   s

       o    l   u   t    i   o   n   t    h   a   t    h   a   s   t    h   e

        f   e   w   e   s   t    d    i   s   a    d   v   a   n   t   a   g   e   s    i   s   c    h   o   s   e   n

        T    h   e   e   a   t    i   n   g

       c   e    l    l    h   a   s   n   o   t   t    h   e    d   r   a   w    b   a   c    k   s   o    f   t    h   e   o   t    h   e   r   s   o    l   u   t    i   o   n   s    b   u   t   s   t    i    l    l   c   a   n   a   t   t   a   c    k

       m   a   t   e   r    i   a    l   o    f   t    h   e

        b   o    d   y    i   t   s   e    l    f

        4 .    T    h   e   s   o    l   u   t    i   o   n    i   s   c   o   m   p   a   r   e    d   w    i   t    h   t    h   e   s   o    l   u   t    i   o   n    ‘   s   e    l   e   c   t   e    d

        b   y   n   a   t   u   r   e    ’ .

        A    d    d    i   t    i   o   n   a    l    k   n   o   w    l   e    d

       g   e    i   s   p   r   o   v    i    d   e    d   w    h   e   n   n   e   e    d   e    d

        E   a   t    i   n   g   c   e    l    l   s   a   c   t   u   a    l    l   y   e   x    i   s   t   s    !    I   m   m   u   n   o    l   o   g    i   s   t   c   a

        l    l   t    h   e   m   m   a   c   r   o   p    h   a   g   e   s .    T    h   e   p   r   o   c   e   s   s   o    f   e   a   t    i   n   g   a   n    d

        d    i   g   e   s   t    i   n   g

        b   y   p    h   a   g   o   c   y   t   o   s    i   s    i   s   c    l   a   r    i    fi   e    d .

        5 .    S   t   u    d   e   n   t   s   a   p   p    l   y   t    h   e

       a   c   q   u    i   r   e    d    k   n   o   w    l   e    d   g   e    i   n   a    d    d    i   t    i   o   n   a    l   q   u   e   s   t    i   o   n   s

        E .   g . ,   c   o   n   s    i    d

       e   r    i   n   g   t    h   e    f   u   n   c   t    i   o   n   s   o    f   m   a   c   r   o   p    h   a   g   e

       s   :   w    h   e   r   e    i   n   o   u   r    b   o    d   y    d   o   y   o   u   e   x   p   e   c   t   a    h    i   g    h    d   e   n   s    i   t   y

       o    f   m   a   c   r   o   p    h   a   g   e   s ,   a   n    d   w    h   y   t    h   e   r   e    ?

        6 .    T    h   e    d    i   s   a    d   v   a   n   t   a   g   e   o    f   t    h   e   c    h   o   s   e   n   s   o    l   u   t    i   o   n    i   s   r   e   p    h   r   a   s   e    d   a   s   a   n   e   w    d   e   s    i   g   n

       p   r   o    b    l   e   m .

        D    i   s   a    d   v   a   n   t   a   g   e

        M   a   c   r   o   p    h   a   g

       e   s   c   a   n   p   o   t   e   n   t    i   a    l    l   y   a   t   t   a   c    k   o   u   r   m   a   t   e

       r    i   a    l   o    f   t    h   e    b   o    d   y    i   t   s   e    l    f .

        N   e   w    d   e   s    i   g   n

       p   r   o    b    l   e   m

        H   o   w   c   a   n   t    h

       e   m   a   c   r   o   p    h   a   g   e    b   e   p   r   e   v   e   n   t   e    d    f   r   o   m

       a   t   t   a   c    k    i   n   g   m   a   t   e   r    i   a    l   s   o    f   o   u   r   o   w   n    b   o    d   y    ?

    GDL practical for student teachers 71

  • 8/18/2019 Jurnal Discovery Learning 1

    6/26

    2010; Gage 2009) Practicality theory helps us explain why GDL is not implemented on a

    large scale by teachers in general and student teachers in particular (Doyle and Ponder

    1977; Janssen et al. 2013). Teachers will often consider proposals for GDL impractical for

    the three related reasons mentioned above. We will discuss these reasons in more detail.

    First, efficient procedures to translate principles of GDL into concrete instruction andplans for action are lacking (instrumentality). The blueprints or design criteria of GDL

    often offered to teachers are too general, whereas the exemplary materials typically are too

    specific to provide teachers with efficient design procedures (Borko and Putnam 1996).

    Second, teachers often do not know how proposals for GDL fit their current practice and

    goals (congruence). It is important to note here that teachers are not focused solely on

    optimizing student learning; rather, they need to realize different goals simultaneously.

    Student teachers in particular have concerns about the content that needs to be covered and

    the classroom order that needs to be maintained. Student teachers typically also have more

    personal needs, such as keeping teaching situations predictable (Borko and Putnam  1996;

    Davis et al.  2006; Kennedy 2010). An implementation of GDL in which students have to

    struggle with challenging tasks and specific support is needed makes it difficult for teachers

    to realize all their other goals simultaneously. This is especially the case for student

    teachers (Davis et al.  2006; Borko and Putnam 1996).

    Finally, teachers often expect that implementing GDL requires large investments

    against what would be at least unpredictable benefits (cost-benefit). An important cost

    factor is time, because time is particularly limited (Kennedy   2010). Designing GDL les-

    sons takes especially student teachers a lot of time as they do not have the necessary

    expertise yet. They often lack knowledge about what might be suitable problems for a

    specific topic and what relevant prior knowledge their students have (Borko and Putnam1996; Davis et al.   2006). The development of such knowledge is both time and resource

    intensive. On top of that, student teachers often are unsure whether they are able to

    implement GDL in way that the expected benefits are realized (Davis et al.  2006). In sum,

    it is especially student teachers who will generally consider GDL impractical because it

    lacks instrumentality and congruence, and costs are high.

    Although practicality theory helps us understand why student teachers do not implement

    GDL, it does not provide us with guidelines for making GDL practical without losing its

    core characteristics. We first need to understand exactly which practicality aspects deter-

    mine a student teacher’s response to GDL. For this, we draw on two theories that can help

    us identify guiding factors that underlie the practical reasoning of student teachers: thetheory on fast and frugal heuristics (Gigerenzer and Gaissmaier   2011), and evolutionary

    planning theory (Pollock  2006).

    How people act in complex practical situations

    We have limited time and resources when we need to make decisions, not only in daily life

    but also in professional practices such as sports, medicine, and law. Gigerenzer and his

    colleagues have shown that in order to deal with these constraints we make simplified

    models of a situation and typically use heuristics to find solutions (Gigerenzer and Gai-ssmaier   2011). As methods to realize certain goals heuristics are cost-effective, because

    they enable us to ignore most of the information, and select only that relevant information

    that may relatively easily be accessed and processed. And, although this might seem

    counterintuitive, Gigerenzer and colleagues show that such simple heuristics often lead to

    better solutions than complex optimizing methods.

    72 F. J. J. M. Janssen et al.

  • 8/18/2019 Jurnal Discovery Learning 1

    7/26

    Baseball players, for example, use the gaze heuristic: If they want to catch a high ball,

    they (1) fix their gaze on the ball; (2) start running, and (3) adjust their running speed so

    that the angle between the eye and the ball remains constant (Gigerenzer 2004). In order to

    position themselves baseball players only need to focus on the angle of the gaze, which

    they can easily exploit, and ignore all causal variables necessary to compute the trajectoryof the ball such as initial distance, velocity, air resistance, etc. Heuristics can underlie both

    intuitive and deliberative performance. Often heuristics, like the gaze heuristic, are learned

    in a deliberate fashion but after practice become routinized to a point that they are used

    effortlessly and intuitively.

    Gigerenzer and colleagues have studied the use of heuristics in various domains, such as

    medicine, sports, law, economics, however, not for the domain of teaching. We therefore

    provide an example from our own research of a deliberative heuristic that a teacher used to

    redesign a ‘cookbook’ practical where students were given detailed step-by-step instruc-

    tions on what to do, into a more open, inquiry based practical. This teacher operated as

    follows: (a) he cut the original prescriptions of the practical in the following bits: question,

    method for collecting data, method for organizing data etc.; (b) next he offered his students

    the topic the practical was about and the practical materials; (c) next, he let his students

    first think a few minutes about each next step in the practical (what would be a good

    question?, what might be a method for collecting data?, etc.). If students got stuck the

    teacher offered them the respective bit of the practical prescription that he had cut

    beforehand. This way, the bits of prescriptions provided a clue for the students how to

    move on. By using this heuristic—cut the cookbook prescription in bits that reflect steps in

    inquiry and provide students with the respective bit when they get stuck—the teacher was

    able to transform a cookbook practical into a differentiating and more open practical,within limited time and with limited resources.

    The theory of fast and frugal heuristics helps us to explain and elaborate the practicality

    dimensions of instrumentality, and partly also the cost/benefit trade-off. Thus, in order to

    make GDL practical for student teachers we need to identify cost-effective procedures (fast

    and frugal heuristics) that they can use to translate the abstract design characteristics of 

    GDL into concrete instruction.

    How people extend their repertoire

    Even if we provide teachers with the heuristics by which they can implement an innovativeteaching approach such as GDL, they still have to consider whether this teaching approach

    will fit their current goals and circumstances sufficiently (congruence), and whether they

    consider the innovative alternative will be an improvement (cost/benefit trade-off ). Pol-

    lock’s theory on evolutionary planning can help us to address these issues. Pollock argues

    that people in complex practical situations do not aim for the best, optimal solution, but

    instead plan for actions that are geared at  improving the current situation. In other words: a

    decision maker starts with a good enough plan for action and over time can improve this

    plan step by step. People can do this, because a plan typically consists of a sequence of 

    action segments  that can be recombined and/or somewhat adjusted in order to create aslightly new plan. Pollock formulated rules by which this evolution is guided: people

    consider any adjustment to be an improvement if it leads to an increased expected value of 

    the action plan. The  expected value  of an action is defined as the product of values of the

    outcomes (desirability) of that action, discounting each by the probability of that outcome

    occurs when the action is performed. Thus, people will  only replace their existing plan for

    action if the expected value of the new plan is higher than that of the original one. This

    GDL practical for student teachers 73

  • 8/18/2019 Jurnal Discovery Learning 1

    8/26

    does not imply that people always perform these calculations deliberately; on the contrary,

    these evaluative responses are often formed automatically (Fishbein and Ajzen  2010).

    The cost/benefit trade-off criterion used in teachers’ practical reasoning can now be cast

    in terms of Pollock’s more precise expected value framework. Pollock also takes the

    congruence dimension explicitly into account, by making regular teaching practice (i.e.,the sequence of lesson segments that constitutes a lesson) the reference point in decision-

    making, instead of an unreachable optimum. Evolutionary planning theory predicts that

    teachers are willing to use a certain heuristic only if they expect the resulting flow of lesson

    segments to have a higher expected value than their regular way of teaching. Expected

    value in turn is based on motivational beliefs (Fishbein and Ajzen  2010). The desirability

    component of expected value is based on the estimated advantages and disadvantages of a

    plan for action. The probability component of expected value is based on the estimated

    difficulties with designing and enacting an action plan.

    Theories on evolutionary planning (Pollock) and on fast and frugal heuristics (Gige-

    renzer) elaborate complementary aspects of practicality. Gigerenzer has shown the

    importance of fast and frugal heuristics in addressing complex practical problems. Gige-

    renzer does not work out how such heuristics can be developed and how people decide to

    use certain heuristics to improve their existing situation. Pollock (2006) explains fairly

    precisely what makes people decide to adjust their current plans of action. Additionally he

    shows that people tend to adjust their plans of action by recombining their action plan

    segments. When we combine the work on heuristics and the work on evolutionary plan-

    ning, we conclude that heuristics in fact describe how someone can recombine his/her

    action segments, in order to realize the desired situation in a time and resources saving

    way. Additionally we conclude that people are willing to use such heuristics for adjustingtheir action plans this way, when they estimate that the expected value their new action

    plan is higher than the expected value of their current action plan (desirability and prob-

    ability) (Janssen et al.  2013).

    Based on these insights, we expected in the case of the GDL trajectory, that the student

    teachers are able to stepwise implement GDL aspects in their lessons by subsequently

    recombining their lesson segments when offered fast and frugal design heuristics. We also

    expected that for an implementation of each of the GDL aspects, they would be willing to

    use heuristics for recombining their lesson segments if they estimated that the expected

    value of the outcome (the more GDL like lesson) would outperform the expected value of 

    their current lessons. For a more detailed elaboration of this theoretical framework on how(student) teachers think and act, including empirical research that emerged from this

    framework on how to make different innovative teaching approaches practical see Janssen

    et al. (2013).

    Drawing on practicality theory and the theories on fast and frugal heuristics (Gige-

    renzer) and evolutionary planning (Pollock), we formulated the following characteristics of 

    an intervention aimed at making GDL practical for student biology teachers. Such an

    intervention should:

    •   Start with the student teachers’ regular flow of lesson segments

    •   Provide the student teachers with heuristics that enable them to stepwise recombineand/or adapt regular lesson segments in the direction of GDL

    •   Make the student teachers consider each adaption an increase of the expected value,

    Based on our theoretical framework, we formulated the following hypotheses about the

    outcomes of the trajectory. We expected that the student teachers after the intervention

    would:

    74 F. J. J. M. Janssen et al.

  • 8/18/2019 Jurnal Discovery Learning 1

    9/26

    1. Design lessons in which more lesson segments meet the GDL criteria than before the

    intervention.

    2. Use the identified heuristics more than before the intervention.

    3. Estimate the desirability of GDL lessons higher than before the intervention.

    4. Estimate the probability of GDL lessons higher than before the intervention.5. Estimate the expected value of GDL lessons higher than expected value of their

    regular lessons.

    Methods

    Participants and context

    Our trajectory aimed at making GDL practical was part of a subject-specific pedagogycourse for biology student teachers in the context of a 1-year postgraduate teacher edu-

    cation program. Eleven biology student teachers participated in this study. Prior to entering

    the program all had gained a Master’s degree in biology or biomedical sciences. At the

    time these student teachers were in the fourth month of their postgraduate biology teacher

    training year. 1 day per week the student teachers attend courses at the teacher training

    institute; besides that, they have a traineeship at a secondary school. The student teachers

    had been independently teaching a few biology classes for 3 months, with a teaching load

    ranging from 5 to 12 h per week. At the teacher training institute they had taken general

    courses on classroom management, teacher-directed types of instruction, and assessment.

    In the subject-specific pedagogy course teacher-directed types of instruction were appliedin teaching biology topics.

    Teacher training trajectory for GDL in biology

    For the design of the teacher training trajectory we needed information about the  desired 

    situation   (desired flow of lesson segments and accompanying heuristics) and the  existing

    situation of the student teachers (their regular flow of lesson segments, expected value, and

    underlying motivational beliefs). On the basis of this information we developed a teacher

    training trajectory that helped the student teachers to adapt their regular flow of lesson

    segments stepwise in the direction of the desired flow of lesson segments.

    In order to establish the  desired situation  we first formulated GDL for biology in terms

    of lesson segments, as discussed earlier (see Table 1). On this basis we developed a rubric

    by which to assess the student teachers’ lesson designs for every typical lesson segment. A

    fragment of this rubric, showing one of the six lesson segments, is presented in Table  2.

    Establishing the desired situation

    In a pilot, we identified fast and frugal design heuristics that might be used to design GDL

    lessons. For this, we identified heuristics that experienced GDL biology teachers use todesign GDL lessons. We contacted fifteen biology teachers who had attended a workshop

    about teaching immunology according to GDL organized by the first author 2 years earlier.

    Since then, these teachers have regularly reported to the first author about how they design

    and enact GDL in their teaching (with respect to the topic of immunology as well as other

    topics). Thirteen teachers were willing to participate. From each of them we collected two

    GDL practical for student teachers 75

  • 8/18/2019 Jurnal Discovery Learning 1

    10/26      T    a      b      l    e      2

        F   r   a   g   m   e   n   t   o    f   t    h   e   r   u    b   r    i   c   u   s   e    d   t   o   a   s   s   e   s   s   s   t   u    d   e   n   t   t   e   a   c    h   e   r   s    ’    l   e   s   s   o   n    d   e   s    i   g   n   s

        L   e   s   s   o   n   s   e   g   m   e   n   t

        U   n   s   a   t    i   s    f   a   c   t   o   r   y

        A    d   e   q   u   a   t   e

        G   o   o    d

        6 .    T    h   e    d    i   s   a    d   v   a   n   t   a   g   e   o    f   t    h   e   c    h   o   s   e   n

       s   o    l   u   t    i   o   n    i   s   r   e   p    h   r   a   s   e    d   a   s   a   n   e   w

        d   e   s    i   g   n   p   r   o    b    l   e   m

        T    h   e   n   e   w    d   e   s    i   g   n   p   r   o    b    l   e   m    h   a   s   n   o   t

       e   m   e   r   g   e    d    f   r   o   m

       a    d    i   s   a    d   v   a   n   t   a   g   e   o    f

       t    h   e   s   o    l   u   t    i   o   n

        T    h   e   n   e   w    d

       e   s    i   g   n   p   r   o    b    l   e   m    h   a   s   e   m   e   r   g   e    d    f   r   o   m

       a

        d    i   s   a    d   v   a   n

       t   a   g   e    d   o    f   t    h   e   s   o    l   u   t    i   o   n ,    b   u   t   n   e   w   c   r    i   t   e   r    i   a

       a   r   e    f   o   r   m

       u    l   a   t   e    d

        T    h   e   n   e   w    d   e   s    i   g   n   p   r   o    b    l   e   m

        i   s   a

       r   e    f   o   r   m   u    l   a   t    i   o   n   o    f   t    h   e    d    i   s

       a    d   v   a   n   t   a   g   e   o    f

       t    h   e   s   o    l   u   t    i   o   n

        E   x   a   m   p    l   e

        D   e   s    i   g   n   p   r   o    b    l   e   m

        D   e   s    i   g   n   p   r   o    b    l   e   m

        D   e   s    i   g   n   p   r   o    b    l   e   m

        S   o    l   u   t    i   o   n   :   e   a   t    i   n   g   c   e    l    l    (    M   a   c   r   o   p    h   a   g   e    )

        D    i   s   a    d   v   a   n   t   a   g   e   :   c   a   n   a   t   t   a   c    k   m   a   t   e   r    i   a    l   o    f

       t    h   e    b   o    d   y    i   t   s   e    l    f

        H   o   w   c   a   n   a   n   e   a   t    i   n   g   c   e    l    l    d    i   s   a   r   m    b   o    d   y

       c   e    l    l   s   t    h   a   t   a   r   e

        i   n    f   e   c   t   e    d    b   y   v    i   r   u   s   e   s    ?

        H   o   w   c   a   n   a   n   e   a   t    i   n   g   c   e    l    l   s   p   e   c    i    fi   c   a    l    l   y   r   e   c   o   g   n    i   z   e

       m   a   t   e   r    i   a    l   s   o    f   t    h   e   o   w   n    b   o    d   y    ?

        H   o   w   c   a   n    i   t   t    h   a   t   a   m   a   c   r   o   p

        h   a   g   e    b   e

       p   r   e   v   e   n   t   e    d    f   r   o   m   a   t   t   a   c    k    i   n

       g   m   a   t   e   r    i   a    l   s   o    f

       t    h   e    b   o    d   y    i   t   s   e    l    f    ?

    76 F. J. J. M. Janssen et al.

  • 8/18/2019 Jurnal Discovery Learning 1

    11/26

    lesson designs for the use of GDL for a particular biology topic (among others: plant

    anatomy; hormones; the working of the human eye; nerves, lungs and excretion), and

    assessed these by means of the rubric. For eleven teachers the lesson designs appeared to

    be sufficient (scoring ‘adequate’ or ‘good’ on at least four lesson segments). In order to

    establish which design heuristics these eleven teachers used to design GDL biology lessonsthey were asked to write down which activities they had undertaken so far (design notes)

    every 3 min during the design process. In these notes we searched for information and time

    saving procedures: fast and frugal heuristics that teachers use to realise certain GDL lesson

    segments in their lessons. Two raters underlined independently the heuristics they found in

    de design notes. Below is an example of a design note of an experienced teacher, after

    3 min of designing a lesson. The underlining is done by one of the raters.

    I first established what the function actually is of the eyes. First I though of seeing,

    but than I realized that seeing images is in fact a complex form of orienting yourself 

    in a space. So, I then formulated as a problem how do you orient in space using yoursight. Next I started to think about what would be the most simple solution for this

    problem? For this I thought of other animals that do this in a more simple way than

    we. Via Euglena I thought of a light sensitive spot, just a simple sense—cell that can

    distinguish between light and dark.

    After identifying the heuristics, the two raters independently categorized the heuristics

    they had found, placing similar heuristics in one category. This way the following heuristic

    was, for example, formulated: Find the function of a biological system as a whole and

    reformulate this as the first design problem (Table 3 no. 4). With respect to one heuristic

    there was a difference between the assessors that could easily be solved (Table 3 no. 6):this appeared to consist of three sub heuristics (i.e., using technological, historical, and

    comparative analogies) that one assessor had rated as separate heuristics and the other

    assessor as part of one overarching heuristic. Analysis of the design notes resulted in the

    identification of eight different design heuristics. These heuristics are presented in Table 3,

    together with an indication of how often they were used in the lesson designs of the

    experienced teachers.

    Establishing the existing situation

    Next, we determined the  existing situation  of the participating student teachers: to whatextent they were already capable of designing a GDL lesson and which design heuristics

    they used. We additionally determined what new aspects of GDL they were willing to

    develop on the basis of their motivational beliefs.

    We first analyzed two lesson plans of each student teacher (which they had already

    included in their portfolios for the teacher education program), in order to establish how

    the participants taught their regular flow of lesson segments and how they scored the

    expected value of their regular lessons. Next, student teachers were introduced to the

    principles of GDL for biology by having them redesign the immune system as if they were

    students, similar to the way described earlier (see Table  1). Afterwards they were asked todesign a GDL based lesson about the heart. We assessed the resulting lesson plans by

    means of the rubric, to see to what extent they were capable of implementing GDL lesson

    segments, and which heuristics they used without practical support (see Table 3, column

    ‘before’). Finally, for all student teachers we established their expected values for GDL

    lessons and the corresponding motivational beliefs: their perceptions of the advantages,

    disadvantages, and difficulties with respect to designing and enacting GDL lessons

    GDL practical for student teachers 77

  • 8/18/2019 Jurnal Discovery Learning 1

    12/26      T    a      b      l    e      3

        N   u   m    b   e   r   o    f   e   x   p   e   r    i   e   n   c   e    d   t   e   a   c    h   e   r   s   a   n    d   s   t   u    d   e   n   t   t   e   a   c    h   e   r   s   u   s    i   n   g   a    h   e   u   r    i   s   t    i   c   t   o    d   e   s    i   g   n   a   n    d   e   n   a   c   t    G    D    L    b    i   o    l   o   g   y    l   e   s   s   o   n   s   ;

        f   o   r   s   t   u    d   e   n   t   t   e   a   c    h   e   r   s ,    b   e    f   o   r   e   a   n    d   a    f   t   e   r   t    h   e   t   e   a   c    h   e   r

       t   r   a    i   n    i   n   g   t   r   a    j   e   c   t   o   r   y

        N

       u   m    b   e   r   o    f   t   e   a   c    h   e   r   s

          a

       u   s    i   n   g   t    h   e    h   e   u   r    i   s   t    i   c

        E   x   p   e   r    i   e   n   c   e    d   t   e   a   c    h   e   r   s

        S   t   u    d   e   n   t   t   e   a   c    h   e   r   s

        H   e   u   r    i   s   t    i   c   s

        B   e    f   o   r   e

        A    f   t   e   r

        1 .    D   e   t   e   r   m    i   n   e   o   n   t    h   e    b   a   s    i   s   o    f   t    h   e   c   u   r   r    i   c   u    l   u   m   s   t   a   n    d   a   r    d   s   t    h   e

        k   n   o   w    l   e    d   g   e   t    h   a   t   n   e   e

        d   s   t   o    b   e   c   o   v   e   r   e    d   w    i   t    h   r   e   s   p   e   c   t   t   o   t    h   e

        b    i   o    l   o   g    i   c   a    l   s   y   s   t   e   m   a   t    h   a   n    d

        9

        6

        1    0

        2 .    R   e   v   e   r   s   e   s   t   r   u   c   t   u   r   e  –    f   u   n   c   t    i   o   n   o   r    d   e   r

        8

        2

        9    *    *

        3 .    W   o   r    k   o   u   t   w    h   a   t   t    h   e

        d    i   s   a    d   v   a   n   t   a   g   e   w   o   u    l    d    b   e    f   o   r   t    h   e   o   r   g   a   n    i   s   m

       t    h   a   t   t    h   e    b    i   o    l   o   g    i   c   a    l   s   y   s   t   e   m    i   s   p   a   r   t   o    f    i    f    i   t   w   o   u    l    d   n   o   t    b   e   t    h   e   r   e

        8

        0

        4

        4 .    F    i   n    d   t    h   e    f   u   n   c   t    i   o   n   o    f   t    h   e    b    i   o    l   o   g    i   c   a    l   s   y   s   t   e   m   a   s   a   w    h   o    l   e   a   n    d

       r   e    f   o   r   m   u    l   a   t   e   t    h    i   s   a   s

       t    h   e    fi   r   s   t    d   e   s    i   g   n   p   r   o    b    l   e   m

        1    0

        3

        9    *    *

        5 .    F   o   r   e   a   c    h    d   e   s    i   g   n   p   r

       o    b    l   e   m ,    f   o   r   m   u    l   a   t   e   m   u    l   t    i   p    l   e   p   o   s   s    i    b    l   e

       s   o    l   u   t    i   o   n   s   a   n    d    fi   n    d   t    h   e    i   r    d    i   s   a    d   v   a   n   t   a   g   e   s

        1    0

        3

        7

        6 .    I    f   n   o   a    l   t   e   r   n   a   t    i   v   e   s   c

       a   n    b   e   t    h   o   u   g    h   t   o    f ,   t    h    i   n    k   o    f   t   e   c    h   n    i   c

       a    l ,

       c   o   m   p   a   r   a   t    i   v   e ,   o   r    h    i   s   t   o   r    i   c   a    l   a   n   a    l   o   g    i   e   s

        6

        2

        7    *

        7 .    T   e   s   t    (    i   n   a   t    h   o   u   g    h   t

       e   x   p   e   r    i   m   e   n   t    )   w    h   e   t    h   e   r   s   t   u    d   e   n   t   s   w   o   u    l    d    b   e

       a    b    l   e   t   o   t    h    i   n    k   o    f   a   s   o    l   u   t    i   o   n    b   y   e   x   a   m    i   n    i   n   g   w    h   a   t   p   r    i   o   r

        k   n   o   w    l   e    d   g   e    i   s   r   e   q   u    i   r   e    d

        7

        2

        9    *    *

        8 .    I    f   s   t   u    d   e   n   t   s   a   r   e   n   o   t

        l    i    k   e    l   y   t   o   t    h    i   n    k   o    f   a   s   o    l   u   t    i   o   n ,    d    i   v    i    d   e   t    h   e

       p   r   o    b    l   e   m    i   n   t   o   s   u    b  -   p   r   o    b    l   e   m   s ,   a   n    d    /   o   r   g    i   v   e    h    i   n   t   s ,   a   n    d    /   o   r

       o    f    f   e   r

       p   o   s   s    i    b    l   e   c    h   o    i   c   e   s

        9

        3

        7

        N   o   t   e   c   o    l   u   m   n    2   s    h   o   w   s

       t    h   e    f   r   e   q   u   e   n   c   y   w    i   t    h   w    h    i   c    h   e   a   c    h   o    f   t    h   e    h   e   u   r    i   s   t    i   c   s   w   e   r   e   u   s   e    d    b   y   t    h   e   e   x   p   e   r    i   e   n   c   e    d   t   e   a   c    h   e   r   s .    T    h   e    h   e   u   r    i   s   t    i   c   s   w   e   r   e   o    f    f   e   r   e    d   t   o   t    h   e   s   t   u    d   e   n   t   t   e   a   c    h

       e   r   s .    C   o    l   u   m   n   s    3

       a   n    d    4   s    h   o   w   t    h   e   n   u   m    b

       e   r   o    f   s   t   u    d   e   n   t   t   e   a   c    h   e   r   s   u   s   e    d   t    h   e    h   e   u   r    i   s   t    i   c   s    b   e    f   o   r   e   a   n    d   a    f   t   e   r   t    h   e   t   e   a   c    h

       e   r   t   r   a    i   n    i   n   g   t   r   a    j   e   c   t   o   r   y ,   r   e   s   p   e   c   t    i   v   e    l   y

        *   p     \

        0 .    0    5   ;    *    *   p     \    0 .    0    1    (   o   n   e  -   s    i    d   e    d    )

          a

       n   =

        1    1    f   o   r   a    l    l   g   r   o   u

       p   s

    78 F. J. J. M. Janssen et al.

  • 8/18/2019 Jurnal Discovery Learning 1

    13/26

    (Table 4, column 2). This information was used to establish the existing situation of the

    student teachers and guided the design of our teacher training trajectory.

    Development of teacher training program

    On the basis of the information about both the desired and existing situations we developed

    a teacher training trajectory aimed at making GDL practical for student teachers. The

    student teachers’ regular lessons typically have the following flow of lesson segments: they

    start with an explanation of the structure of a biological sub-system and explain its function

    afterwards. This is followed by exercises, after which the structure of a new sub-system is

    explained, and so on. GDL lessons can be gradually developed by recombining and

    adapting this typical lesson segment flow in four steps. The trajectory consists of the

    following steps (see for numbered heuristics Table  3).

    (1)   Reverse structure– function order.   In their regular lesson segments student teachersoften start by introducing the structure. Thus, student teachers were now invited to

    start by introducing the function of the biological system, followed by an explanation

    of its structure (heuristics 1 and 2);

    (2)   Formulate functions as design problems and structures as solutions for these

     problems. For instance, instead of telling students that invading pathogens should be

    rendered harmless (function), the student teachers were invited to present this as a

    design problem, such as ‘how can invading pathogens be rendered harmless?’ and to

    present a macrophage as the solution to this problem (heuristics 3 and 4);

    (3) In addition to steps 1 and 2 the student teachers were asked to  present and evaluate

    multiple solutions   (heuristics 5 and 6), such as surrounding, eating, and breakingdown (see Table 1);

    (4) Finally the student teachers were stimulated to gradually   help their students to

    develop their own solutions and evaluate these independently   (heuristics 7 and 8).

    For each step student teachers were offered specific heuristics. These were first applied

    by the teacher educator (modelling), and then practiced by the student teachers. In each

    step the teacher educator provided feedback on the lesson plans. Afterwards the student

    teachers taught at least one lesson in their own classes and evaluated the lesson. They

    discussed and reflected on their experiences in the next session of the teacher training

    trajectory. In this way the design and enactment task for student teachers was graduallybuilt up from simple to more complex. This incremental development was intended to

    allow student teachers to actually experience the expected benefits of GDL, and at the same

    time postpone any anticipated disadvantages and difficulties.

    Data collection and analysis

    We will now discuss  how we identified the lesson segments and heuristics, and estimated

    the expected values and underlying motivational beliefs.

    To determine the  lesson segments  and their quality, written lesson plans were collected

    and evaluated using the rubric (see for a fragment Table  2). For any lesson segment three

    levels were defined (1   =   unsatisfactory, 2   =  adequate, and 3   =  good). The student

    teachers’ lessons were independently assessed by two assessors (the first author and an

    expert in biology education), using the rubric. We examined how many teachers scored

    ‘adequate’ or ‘good’ on implementing a particular GDL lesson segment. The raters agreed

    in 8 of the 11 cases (73 %). In three cases there was disagreement on whether the

    GDL practical for student teachers 79

  • 8/18/2019 Jurnal Discovery Learning 1

    14/26      T    a      b      l    e      4

        E   s   t    i   m   a   t   e    d   a

        d   v   a   n   t   a   g   e   s   a   n    d    d    i   s   a    d   v   a   n   t   a   g   e   s   a   n    d

        d    i    f    fi   c   u    l   t    i   e   s   o    f    G    D    L   a   c   c   o   r    d    i   n   g   t   o   s   t   u    d   e   n   t   t   e   a   c    h   e   r   s ,    b   e    f   o   r   e   a   n    d   a    f   t   e   r

       t    h   e   t   e   a   c    h   e   r   t   r   a    i   n    i   n   g   t   r   a    j   e   c   t   o   r   y

        C   a   t   e   g   o   r   y

        M   o   t    i   v   a   t    i   o   n   a    l    b   e    l    i   e    f   s

        S   t   u    d   e   n   t   t   e   a   c    h   e   r   s

        b   e    f   o   r   e    (   n   =

        1    1    )

        S   t   u    d   e   n   t   t   e   a   c    h   e   r   s

       a    f   t   e   r    (   n   =

        1    1    )

        A    d   v   a   n   t   a   g   e   s

        S   t   u    d   e   n   t   s    l   e   a   r   n    h   o   w   a   s   y

       s   t   e   m   w   o   r    k   s   a   n    d   w    h   y    i   t    i   s    b   u    i    l   t    l    i    k

       e    i   t    i   s

        8

        1    1

        S   t   u    d   e   n   t   s   s   t   u    d   y   t    h   e   s   u    b    j   e

       c   t   m   a   t   t   e   r   m   o   r   e   c   r   e   a   t    i   v   e    l   y   a   n    d   c   r    i   t    i   c   a    l    l   y

        7

        9

        S   t   u    d   e   n   t   s    l   e   a   r   n    h   o   w   t   o    h   a   n    d    l   e    f   u   n   c   t    i   o   n   a    l    b    i   o    l   o   g    i   c   a    l   p   r   o    b    l   e   m   s   t    h   e   m   s   e    l   v   e   s

        5

        7

        S   t   u    d   e   n   t   s   w   o   r    k   o   n   t    h   e   s   u

        b    j   e   c   t   m   a   t   t   e   r   m   o   r   e   m   o   t    i   v   a   t   e    d   a   n    d

       a   c   t    i   v   e    l   y

        6

        1    0

        A   s   a   t   e   a   c    h   e   r   y   o   u    l   e   a   r   n    b   e   t   t   e   r    h   o   w   t    h   e   s   y   s   t   e   m   w   o   r    k   s   a   n    d   w    h   y    i   t   w   o   r    k   s   t    h    i   s   w   a   y

        6

        9

        Y   o   u   g   a    i   n   m   o   r   e    i   n   s    i   g    h   t    i

       n   t   o   s   t   u    d   e   n   t   s    ’   t    h    i   n    k    i   n   g

        3

        8

        Y   o   u   g   o   o   u   t   s    i    d   e   t    h   e   t   e   x   t    b   o   o    k   ;   t   e   a   c    h    i   n   g    b   e   c   o   m   e   s   e   x   c    i   t    i   n   g   a   g   a    i   n

        3

        7

        D    i   s  -   a    d   v   a   n   t   a   g   e   s

        T   a    k   e   s   m   o   r   e   p   r   e   p   a   r   a   t    i   o   n

       t    i   m   e

        1    1

        5

        T   a    k   e   s   m   o   r   e   t    i   m   e   t   o   e   x   e   c   u   t   e   a    l   e   s   s   o   n

        1    0

        2

        O   n    l   y   g   o   o    d   s   t   u    d   e   n   t   s   c   a   n

        h   a   n    d    l   e   t    h    i   s

        7

        3

        H    i   g    h   e   r   p   r   o    b   a    b    i    l    i   t   y   o    f   c    l   a   s   s   m   a   n   a   g   e   m   e   n   t   p   r   o    b    l   e   m   s

        8

        4

        S   t   u    d   e   n   t   s   m   a   y    i   n   c   o   r   r   e   c   t    l   y   t    h    i   n    k   t    h   a   t   o   r   g   a   n    i   s   m   s   a   r   e    ‘    d   e   s    i   g   n

       e    d    ’

        2

        3

        S   t   u    d   e   n   t   s   w    i    l    l   r   e   m   e   m    b   e   r

        i   n   c   o   r   r   e   c   t   a    l   t   e   r   n   a   t    i   v   e   s   o    l   u   t    i   o   n   s   a   s

       w   e    l    l

        6

        2

        D    i    f    fi   c   u    l   t    i   e   s    (    d   e   s    i   g   n    i   n   g    )

        E   s   t   a    b    l    i   s    h    i   n   g   w    h    i   c    h   s   y   s   t   e   m    l   e   v   e    l   y   o   u   s   t   a   r   t   w    i   t    h    ?

        0

        3

        H   o   w   t   o   t    h    i   n    k   u   p   a    l   t   e   r   n   a

       t    i   v   e   s   o    l   u   t    i   o   n   s   a   n    d    d    i   s   a    d   v   a   n   t   a   g   e   s    ?

        9

        4

        H   o   w   t   o    h   a   n    d    l   e    d   e   s    i   g   n   p

       r   o    b    l   e   m   s   t    h   a   t    b   u    i    l    d   o   n   e   a   r    l    i   e   r   p   r   o    b

        l   e   m   s    ?

        1

        2

        H   o   w   t   o   e   s   t    i   m   a   t   e    b   e    f   o   r   e    h   a   n    d   w    h   a   t   s   t   u    d   e   n   t   s   w    i    l    l   c   o   m   e   u   p   w    i   t    h    ?

        7

        4

        W    h   a   t   t   o    d   o    i    f   t    h   e   a    l   t   e   r   n   a   t    i   v   e   s   o    l   u   t    i   o   n    i   s    b   e   t   t   e   r   t    h   a   n   n   a   t   u   r   e

        ’   s   s   o    l   u   t    i   o   n    ?

        2

        2

        H   o   w   t   o    d   e   t   e   r   m    i   n   e   w    h   a   t

       s   t   u    d   e   n   t   s   s    h   o   u    l    d    d    i   s   c   o   v   e   r   t    h   e   m   s   e    l   v   e   s   a   n    d   w    h   a   t   s    h   o   u    l    d    b   e    i   n   s   t   r   u   c   t   e    d

        ?

        1

        4

        D    i    f    fi   c   u    l   t    i   e   s    (   e   n   a   c   t   m   e   n   t    )

        H   o   w   t   o   s   t    i   m   u    l   a   t   e   s   t   u    d   e   n

       t   s   t   o   t    h    i   n    k   o    f   a    l   t   e   r   n   a   t    i   v   e   s   o    l   u   t    i   o   n   s    ?

        2

        3

        H   o   w   t   o    h   a   n    d    l   e   s   t   u    d   e   n   t   s

       w    h   o    k   n   o   w   t    h   e   a   n   s   w   e   r   r    i   g    h   t   a   w   a   y

        ?

        4

        1

        H   o   w   t   o    h   a   n    d    l   e   u   n   e   x   p   e   c   t   e    d   a   n   s   w   e   r   s    ?

        8

        4

        H   o   w   t   o   g    i   v   e    d   u   e   a   t   t   e   n   t    i   o   n   t   o   a    l   t   e   r   n   a   t    i   v   e   s   a   n    d   y   e   t   a   r   r    i   v   e   a

       t   t    h   e   r    i   g    h   t   a   n   s   w   e   r    ?

        3

        2

        H   o   w   a   n    d   w    h   e   r   e   t   o   w   r   a   p

       u   p   t    h   e    l   e   s   s   o   n    i   n   o   r    d   e   r   t   o   e   a   s    i    l   y   p

        i   c    k   u   p   t    h   e   t    h   r   e   a    d    ?

        1

        1

        W    h   e   n   t   o   o    f    f   e   r   a    d    d    i   t    i   o   n   a

        l    i   n    f   o   r   m   a   t    i   o   n    ?

        1

        2

    80 F. J. J. M. Janssen et al.

  • 8/18/2019 Jurnal Discovery Learning 1

    15/26

    implementation of a GDL lesson segment should be scored as 2 (adequate) or 3 (good).

    However, this made no difference to the final score because the characteristics on which

    these scores were based were added, because we considered both adequate and good as

    good enough. We conducted the Wilcoxon Signed Rank test to test our hypothesis that

    student teachers will implement more lesson segments that meet the criteria of GDL intheir lessons after the intervention compared to before.

    To determine the   heuristics   student teachers used, they were asked to write down in

    their own words which activities they had undertaken so far (design notes), every 3 min

    during the design process. Next, two raters independently analyzed the design notes using

    the category descriptions that were identified based on the heuristics that the experienced

    teachers used. The raters each underlined the heuristics and additionally established to

    which category the heuristics belonged. No additional category of heuristics were found.

    Next, we established for every design heuristic how many student teachers used it. We

    conducted the McNemar test to establish for each heuristic whether changes in the use of 

    that heuristic were significant. The Wilcoxon Signed Ranks test was used subsequently to

    test our hypothesis that student teachers use more heuristics after the intervention com-

    pared to before.

    The student teachers’ expected values were established regarding their regular teaching

    approach and GDL, respectively. Because the expected value was determined by the

    product of the estimated desirability and probability, the student teachers were asked to

    score both desirability and probability on a bipolar 7-point scale (Ajzen and Fishbein

    2008). This is based on the desirability scale ranged from ‘very undesirable’ (-3) to ‘very

    desirable’ (?3). The probability scale ranged from ‘I will certainly not succeed in that’

    (-3) to ‘I will certainly succeed in that’ (?3). On the basis of these data we determinedaverage scores for desirability and probability at the beginning and the end of the pro-

    fessional development trajectory. A Wilcoxon Signed Ranks test was used to test our

    hypotheses that after the intervention student teachers estimate (a) the probability and

    (b) the desirability of implementing GDL, higher than prior to the intervention. We

    additionally expected that the student teachers would estimate the expected value of GDL

    higher than the expected value of their regular lessons after the intervention. To test this

    hypothesis we first established for each student teacher their estimated value of GDL and

    of their regular lessons. Following Ajzen and Fishbein (2008) we transformed bipolar

    scores (-3 to   ?3) for probability and desirability to unipolar scores (1–7), by adding 4

    points to each score. Next, we estimated the expected value by multiplying the probabilityscores with the desirability scores. The Wilcoxon Signed Ranks test was used subsequently

    to test our hypotheses.

    As we explained in the section on how people extend their repertoire, the estimated

    desirability and probability were determined by a person’s underlying motivational beliefs.

    Desirability was determined by someone’s estimation of the advantages and disadvantages

    of their regular lessons and of GDL lessons. Probability was determined by someone’s

    estimation of the difficulties of designing and enacting regular lessons and GDL lessons

    respectively. Estimated   advantages, disadvantages, and difficulties   were identified by

    asking the participating student teachers to mention the four most striking pros and cons,and the four most serious difficulties with regard to both the design and the enactment of 

    GDL. We chose to limit the number of estimated advantages, disadvantages, and diffi-

    culties we asked the participants to mention, because research on attitudes shows that when

    making decisions people can take only a few salient beliefs into account (Fishbein and

    Ajzen 2010). Thus, we aimed at getting a view on those beliefs which potentially deter-

    mine the student teachers’ decisions the most. Student teacher’s responses were

    GDL practical for student teachers 81

  • 8/18/2019 Jurnal Discovery Learning 1

    16/26

  • 8/18/2019 Jurnal Discovery Learning 1

    17/26      T    a      b      l    e      5

        N   u   m    b   e   r   o    f

       s   t   u    d   e   n   t   t   e   a   c    h   e   r   s   w    h   o   s   c   o   r   e    d    ‘   a    d   e   q   u   a   t   e    ’   o   r    ‘   g   o   o    d    ’   o   n   t    h   e   u   s   e   o    f   a   p

       a   r   t    i   c   u    l   a   r    G    D    L    l   e   s   s   o   n   s   e   g   m   e   n   t   ;    b   e

        f   o   r   e   a   n    d   a    f   t   e   r   t    h   e   t   e   a   c    h   e   r   t   r   a    i   n    i   n   g

       t   r   a    j   e   c   t   o   r   y

        N   u   m    b   e   r   o    f   s   t   u    d   e   n   t   t   e   a   c    h   e   r   s      a   u   s    i   n   g   t    h   e    l   e   s   s   o   n   s   e   g   m   e   n   t

       a    d   e   q   u   a   t   e   o   r   g   o   o    d

        L   e   s   s   o   n   s   e   g   m   e   n   t   s

        B   e    f   o   r   e

        A    f   t   e   r

        Z

       r

        1 .    S   t   a   r   t   w    i   t    h   t    h   e    f   u   n   c

       t    i   o   n   o    f   t    h   e    b    i   o    l   o   g    i   c   a    l   s   y   s   t   e   m   a   s   a

       w    h   o    l   e   a   n    d   r   e    f   o   r   m   u    l   a   t   e   t    h    i   s    i   n   a    d   e   s    i   g   n   p   r   o    b    l   e   m

        4

        7    *

       -    2 .    0    0

       -    0 .    4    3

        2 .    D   e   v   e    l   o   p   m   e   n   t   o    f   m

       u    l   t    i   p    l   e   s   o    l   u   t    i   o   n   s   a   n    d   t    h   e

        d    i   s   a    d   v   a   n   t   a   g   e   s   o    f   t    h   e   s   o    l   u   t    i   o   n   s .    S   t   u    d   e   n   t   s   c   a   n

       c   o   n   t   r    i    b   u   t   e

        2

        8    *    *

       -    2 .    5    9

       -    0 .    5    5

        3 .    A    l   t   e   r   n   a   t    i   v   e   s   o    l   u   t    i   o   n   s   a   r   e   w   e    i   g    h   e    d   a   n    d   t    h   e   s    i   m   p    l   e   s   t

       s   o    l   u   t    i   o   n   t    h   a   t    h   a   s �