kac moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_koehl.pdf · 2017-06-10 · examples:...

58
Kac–Moody symmetric spaces Ralf Köhl 8 June 2017

Upload: others

Post on 21-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Kac–Moody symmetric spaces

Ralf Köhl

8 June 2017

Page 2: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Overview

1 Topologies on Lie groups

2 Topological Kac–Moody groups

3 Symmetric spaces

4 Kac–Moody symmetric spaces

Page 3: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Overview

1 Topologies on Lie groups

2 Topological Kac–Moody groups

3 Symmetric spaces

4 Kac–Moody symmetric spaces

Page 4: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

An open mapping theorem

Proposition 1

A surjective, continuous homomorphism

f : G → H

between Hausdorff topological groups where G is σ-compact and H is aBaire space, is open; moreover, H is locally compact.

Proof.

By hypothesis, G =⋃

n∈N Kn for certain compact sets Kn ⊆ G and thusH =

⋃n∈N f (Kn) with f (Kn) compact.

Since H is a Baire space, f (Kn) has non-empty interior for some n ∈ N,and thus H is locally compact. Moreover, f |Kn : Kn → f (Kn) is aquotient map.

[...]

Page 5: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

An open mapping theorem

Proposition 1

A surjective, continuous homomorphism

f : G → H

between Hausdorff topological groups where G is σ-compact and H is aBaire space, is open; moreover, H is locally compact.

Proof.

By hypothesis, G =⋃

n∈N Kn for certain compact sets Kn ⊆ G and thusH =

⋃n∈N f (Kn) with f (Kn) compact.

Since H is a Baire space, f (Kn) has non-empty interior for some n ∈ N,and thus H is locally compact. Moreover, f |Kn : Kn → f (Kn) is aquotient map.

[...]

Page 6: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

An open mapping theorem

Proposition 1

A surjective, continuous homomorphism

f : G → H

between Hausdorff topological groups where G is σ-compact and H is aBaire space, is open; moreover, H is locally compact.

Proof.

By hypothesis, G =⋃

n∈N Kn for certain compact sets Kn ⊆ G and thusH =

⋃n∈N f (Kn) with f (Kn) compact.

Since H is a Baire space, f (Kn) has non-empty interior for some n ∈ N,and thus H is locally compact. Moreover, f |Kn : Kn → f (Kn) is aquotient map.

[...]

Page 7: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

An open mapping theorem

Proposition 1

A surjective, continuous homomorphism

f : G → H

between Hausdorff topological groups where G is σ-compact and H is aBaire space, is open; moreover, H is locally compact.

Proof.

[...]Let q : G → G/ ker(f ) be the quotient homomorphism andφ : G/ ker(f )→ H be the bijective continuous homomorphism inducedby f .

Then φ−1 ◦ f |Kn = q|Kn is continuous, whence φ−1|f (Kn) is continuous,φ−1 is a continuous homomorphism, and φ is a topologicalisomorphism.

Page 8: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

An open mapping theorem

Proposition 1

A surjective, continuous homomorphism

f : G → H

between Hausdorff topological groups where G is σ-compact and H is aBaire space, is open; moreover, H is locally compact.

Proof.

[...]Let q : G → G/ ker(f ) be the quotient homomorphism andφ : G/ ker(f )→ H be the bijective continuous homomorphism inducedby f .Then φ−1 ◦ f |Kn = q|Kn is continuous, whence φ−1|f (Kn) is continuous,φ−1 is a continuous homomorphism, and φ is a topologicalisomorphism.

Page 9: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Colimits

A diagram in a category A is a covariant functor δ : I→ A from a smallcategory I to A.

A cone over a diagram δ : I→ A is a natural transformation φ : δ·→ γ

to a constant diagram γ.(That is, to a diagram γ : I→ A such that G := γ(i) = γ(j) for alli , j ∈ ob(I) and γ(α) = idG for each morphism α in I.)One can think of a cone as the object G ∈ ob(A), together with thefamily (φ(i))i∈ob(I) of morphisms φ(i) : δ(i)→ G , such that

φ(j) ◦ δ(α) = φ(i) for all i , j ∈ ob(I) and α ∈ Mor(i , j) .

A cone (G , (φi )i∈ob(I)) is called a colimit of δ if, for each cone(H, (ψi )i∈ob(I)), there is a unique morphism ψ : G → H such thatψ ◦ φi = ψi for all i ∈ ob(I).If it exists, a colimit is unique up to natural isomorphism.

Examples: direct limits, free products, amalgamated products A ∗C B

Page 10: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Colimits

A diagram in a category A is a covariant functor δ : I→ A from a smallcategory I to A.A cone over a diagram δ : I→ A is a natural transformation φ : δ

·→ γ

to a constant diagram γ.

(That is, to a diagram γ : I→ A such that G := γ(i) = γ(j) for alli , j ∈ ob(I) and γ(α) = idG for each morphism α in I.)One can think of a cone as the object G ∈ ob(A), together with thefamily (φ(i))i∈ob(I) of morphisms φ(i) : δ(i)→ G , such that

φ(j) ◦ δ(α) = φ(i) for all i , j ∈ ob(I) and α ∈ Mor(i , j) .

A cone (G , (φi )i∈ob(I)) is called a colimit of δ if, for each cone(H, (ψi )i∈ob(I)), there is a unique morphism ψ : G → H such thatψ ◦ φi = ψi for all i ∈ ob(I).If it exists, a colimit is unique up to natural isomorphism.

Examples: direct limits, free products, amalgamated products A ∗C B

Page 11: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Colimits

A diagram in a category A is a covariant functor δ : I→ A from a smallcategory I to A.A cone over a diagram δ : I→ A is a natural transformation φ : δ

·→ γ

to a constant diagram γ.(That is, to a diagram γ : I→ A such that G := γ(i) = γ(j) for alli , j ∈ ob(I) and γ(α) = idG for each morphism α in I.)

One can think of a cone as the object G ∈ ob(A), together with thefamily (φ(i))i∈ob(I) of morphisms φ(i) : δ(i)→ G , such that

φ(j) ◦ δ(α) = φ(i) for all i , j ∈ ob(I) and α ∈ Mor(i , j) .

A cone (G , (φi )i∈ob(I)) is called a colimit of δ if, for each cone(H, (ψi )i∈ob(I)), there is a unique morphism ψ : G → H such thatψ ◦ φi = ψi for all i ∈ ob(I).If it exists, a colimit is unique up to natural isomorphism.

Examples: direct limits, free products, amalgamated products A ∗C B

Page 12: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Colimits

A diagram in a category A is a covariant functor δ : I→ A from a smallcategory I to A.A cone over a diagram δ : I→ A is a natural transformation φ : δ

·→ γ

to a constant diagram γ.(That is, to a diagram γ : I→ A such that G := γ(i) = γ(j) for alli , j ∈ ob(I) and γ(α) = idG for each morphism α in I.)One can think of a cone as the object G ∈ ob(A), together with thefamily (φ(i))i∈ob(I) of morphisms φ(i) : δ(i)→ G , such that

φ(j) ◦ δ(α) = φ(i) for all i , j ∈ ob(I) and α ∈ Mor(i , j) .

A cone (G , (φi )i∈ob(I)) is called a colimit of δ if, for each cone(H, (ψi )i∈ob(I)), there is a unique morphism ψ : G → H such thatψ ◦ φi = ψi for all i ∈ ob(I).If it exists, a colimit is unique up to natural isomorphism.

Examples: direct limits, free products, amalgamated products A ∗C B

Page 13: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Colimits

A diagram in a category A is a covariant functor δ : I→ A from a smallcategory I to A.A cone over a diagram δ : I→ A is a natural transformation φ : δ

·→ γ

to a constant diagram γ.(That is, to a diagram γ : I→ A such that G := γ(i) = γ(j) for alli , j ∈ ob(I) and γ(α) = idG for each morphism α in I.)One can think of a cone as the object G ∈ ob(A), together with thefamily (φ(i))i∈ob(I) of morphisms φ(i) : δ(i)→ G , such that

φ(j) ◦ δ(α) = φ(i) for all i , j ∈ ob(I) and α ∈ Mor(i , j) .

A cone (G , (φi )i∈ob(I)) is called a colimit of δ if, for each cone(H, (ψi )i∈ob(I)), there is a unique morphism ψ : G → H such thatψ ◦ φi = ψi for all i ∈ ob(I).If it exists, a colimit is unique up to natural isomorphism.

Examples: direct limits, free products, amalgamated products A ∗C B

Page 14: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Colimits

A diagram in a category A is a covariant functor δ : I→ A from a smallcategory I to A.A cone over a diagram δ : I→ A is a natural transformation φ : δ

·→ γ

to a constant diagram γ.(That is, to a diagram γ : I→ A such that G := γ(i) = γ(j) for alli , j ∈ ob(I) and γ(α) = idG for each morphism α in I.)One can think of a cone as the object G ∈ ob(A), together with thefamily (φ(i))i∈ob(I) of morphisms φ(i) : δ(i)→ G , such that

φ(j) ◦ δ(α) = φ(i) for all i , j ∈ ob(I) and α ∈ Mor(i , j) .

A cone (G , (φi )i∈ob(I)) is called a colimit of δ if, for each cone(H, (ψi )i∈ob(I)), there is a unique morphism ψ : G → H such thatψ ◦ φi = ψi for all i ∈ ob(I).If it exists, a colimit is unique up to natural isomorphism.

Examples: direct limits, free products, amalgamated products A ∗C B

Page 15: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Amalgams

A diagram δ : I→ G of groups is called an amalgam of groups if

I is the category associated with some partially ordered set (J,≤)and

δ(α) is a monomorphism of groups for each morphism α in I.

The first condition means that ob(I) = J, and furthermore for a, b ∈ Jthere exists one (and only one) morphism a→ b if and only if a ≤ b.

A cone (G , (φi )i∈ob(I)) over δ in the category of abstract groups G iscalled an enveloping group of the amalgam and its colimit a universalenveloping group.

Example: A Coxeter group is by definition the universal envelopinggroup of the amalgam of its standard subgroups of ranks one and two.

E10

Page 16: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Amalgams

A diagram δ : I→ G of groups is called an amalgam of groups if

I is the category associated with some partially ordered set (J,≤)and

δ(α) is a monomorphism of groups for each morphism α in I.

The first condition means that ob(I) = J, and furthermore for a, b ∈ Jthere exists one (and only one) morphism a→ b if and only if a ≤ b.

A cone (G , (φi )i∈ob(I)) over δ in the category of abstract groups G iscalled an enveloping group of the amalgam and its colimit a universalenveloping group.

Example: A Coxeter group is by definition the universal envelopinggroup of the amalgam of its standard subgroups of ranks one and two.

E10

Page 17: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Amalgams

A diagram δ : I→ G of groups is called an amalgam of groups if

I is the category associated with some partially ordered set (J,≤)and

δ(α) is a monomorphism of groups for each morphism α in I.

The first condition means that ob(I) = J, and furthermore for a, b ∈ Jthere exists one (and only one) morphism a→ b if and only if a ≤ b.

A cone (G , (φi )i∈ob(I)) over δ in the category of abstract groups G iscalled an enveloping group of the amalgam and its colimit a universalenveloping group.

Example: A Coxeter group is by definition the universal envelopinggroup of the amalgam of its standard subgroups of ranks one and two.

E10

Page 18: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Amalgams

A diagram δ : I→ G of groups is called an amalgam of groups if

I is the category associated with some partially ordered set (J,≤)and

δ(α) is a monomorphism of groups for each morphism α in I.

The first condition means that ob(I) = J, and furthermore for a, b ∈ Jthere exists one (and only one) morphism a→ b if and only if a ≤ b.

A cone (G , (φi )i∈ob(I)) over δ in the category of abstract groups G iscalled an enveloping group of the amalgam and its colimit a universalenveloping group.

Example: A Coxeter group is by definition the universal envelopinggroup of the amalgam of its standard subgroups of ranks one and two.

E10

Page 19: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Amalgams

A diagram δ : I→ G of groups is called an amalgam of groups if

I is the category associated with some partially ordered set (J,≤)and

δ(α) is a monomorphism of groups for each morphism α in I.

The first condition means that ob(I) = J, and furthermore for a, b ∈ Jthere exists one (and only one) morphism a→ b if and only if a ≤ b.

A cone (G , (φi )i∈ob(I)) over δ in the category of abstract groups G iscalled an enveloping group of the amalgam and its colimit a universalenveloping group.

Example: A Coxeter group is by definition the universal envelopinggroup of the amalgam of its standard subgroups of ranks one and two.

E10

Page 20: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Topologies on colimits

Let δ : I→ LCG be a diagram ofσ-compact locally compact groups Gi := δ(i) for i ∈ I := ob(I) andcontinuous homomorphisms φα := δ(α) : Gi → Gj for i , j ∈ I andα ∈ Mor(i , j)

such that I is countable.

Furthermore, let (G , (λi )i∈I ) be a colimit of the diagram δ in thecategory of abstract groups, with homomorphisms λi : Gi → G .

If there exists a locally compact Hausdorff group topology O on Gmaking λi : Gi → (G ,O) continuous for each i ∈ I , then

((G ,O), (λi )i∈I )

is a colimit of δ in the category oftopological groups,Hausdorff topological groups,locally compact groups,Lie groups (if Gi , (G ,O) are σ-compact Lie groups).

Page 21: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Topologies on colimits

Let δ : I→ LCG be a diagram ofσ-compact locally compact groups Gi := δ(i) for i ∈ I := ob(I) andcontinuous homomorphisms φα := δ(α) : Gi → Gj for i , j ∈ I andα ∈ Mor(i , j)

such that I is countable.

Furthermore, let (G , (λi )i∈I ) be a colimit of the diagram δ in thecategory of abstract groups, with homomorphisms λi : Gi → G .

If there exists a locally compact Hausdorff group topology O on Gmaking λi : Gi → (G ,O) continuous for each i ∈ I , then

((G ,O), (λi )i∈I )

is a colimit of δ in the category oftopological groups,Hausdorff topological groups,locally compact groups,Lie groups (if Gi , (G ,O) are σ-compact Lie groups).

Page 22: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Topologies on colimits

Let δ : I→ LCG be a diagram ofσ-compact locally compact groups Gi := δ(i) for i ∈ I := ob(I) andcontinuous homomorphisms φα := δ(α) : Gi → Gj for i , j ∈ I andα ∈ Mor(i , j)

such that I is countable.

Furthermore, let (G , (λi )i∈I ) be a colimit of the diagram δ in thecategory of abstract groups, with homomorphisms λi : Gi → G .

If there exists a locally compact Hausdorff group topology O on Gmaking λi : Gi → (G ,O) continuous for each i ∈ I ,

then

((G ,O), (λi )i∈I )

is a colimit of δ in the category oftopological groups,Hausdorff topological groups,locally compact groups,Lie groups (if Gi , (G ,O) are σ-compact Lie groups).

Page 23: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Topologies on colimits

Let δ : I→ LCG be a diagram ofσ-compact locally compact groups Gi := δ(i) for i ∈ I := ob(I) andcontinuous homomorphisms φα := δ(α) : Gi → Gj for i , j ∈ I andα ∈ Mor(i , j)

such that I is countable.

Furthermore, let (G , (λi )i∈I ) be a colimit of the diagram δ in thecategory of abstract groups, with homomorphisms λi : Gi → G .

If there exists a locally compact Hausdorff group topology O on Gmaking λi : Gi → (G ,O) continuous for each i ∈ I , then

((G ,O), (λi )i∈I )

is a colimit of δ in the category oftopological groups,Hausdorff topological groups,locally compact groups,

Lie groups (if Gi , (G ,O) are σ-compact Lie groups).

Page 24: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Topologies on colimits

Let δ : I→ LCG be a diagram ofσ-compact locally compact groups Gi := δ(i) for i ∈ I := ob(I) andcontinuous homomorphisms φα := δ(α) : Gi → Gj for i , j ∈ I andα ∈ Mor(i , j)

such that I is countable.

Furthermore, let (G , (λi )i∈I ) be a colimit of the diagram δ in thecategory of abstract groups, with homomorphisms λi : Gi → G .

If there exists a locally compact Hausdorff group topology O on Gmaking λi : Gi → (G ,O) continuous for each i ∈ I , then

((G ,O), (λi )i∈I )

is a colimit of δ in the category oftopological groups,Hausdorff topological groups,locally compact groups,Lie groups (if Gi , (G ,O) are σ-compact Lie groups).

Page 25: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Lie groups as colimits

Theorem 2 (Glöckner, Hartnick, K. 2010)

Let G be a simply connected compact/split real semisimple Lie groupwith Lie group topology O, let T be a maximal torus of G, letΣ = Σ(GC,TC) be its root system, and let Π be a system offundamental roots of Σ.

Let I be a small category with objects(

Π1

)∪(

Π2

)and morphisms

{α} → {α, β}, for all α, β ∈ Π, and let δ : I→ LCG be a diagram with

δ({α}) = Gα := 〈Uα,U−α〉 ∩ G,

δ({α, β}) = Gαβ := 〈Uα,U−α,Uβ,U−β〉 ∩ G, and

δ({α} → {α, β}) = (Gα ↪→ Gαβ).

Then ((G ,O), (ιi )i∈(Π1)∪(Π

2)) is a colimit of δ in the category LIE of Lie

groups.

The fact that (G , (ιi )i∈(Π1)∪(Π

2)) is a colimit of δ in the category of

abstract groups goes back to Tits (1974).

Page 26: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Lie groups as colimits

Theorem 2 (Glöckner, Hartnick, K. 2010)

Let G be a simply connected compact/split real semisimple Lie groupwith Lie group topology O, let T be a maximal torus of G, letΣ = Σ(GC,TC) be its root system, and let Π be a system offundamental roots of Σ.Let I be a small category with objects

(Π1

)∪(

Π2

)and morphisms

{α} → {α, β}, for all α, β ∈ Π, and let δ : I→ LCG be a diagram with

δ({α}) = Gα := 〈Uα,U−α〉 ∩ G,

δ({α, β}) = Gαβ := 〈Uα,U−α,Uβ,U−β〉 ∩ G, and

δ({α} → {α, β}) = (Gα ↪→ Gαβ).

Then ((G ,O), (ιi )i∈(Π1)∪(Π

2)) is a colimit of δ in the category LIE of Lie

groups.

The fact that (G , (ιi )i∈(Π1)∪(Π

2)) is a colimit of δ in the category of

abstract groups goes back to Tits (1974).

Page 27: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Lie groups as colimits

Theorem 2 (Glöckner, Hartnick, K. 2010)

Let G be a simply connected compact/split real semisimple Lie groupwith Lie group topology O, let T be a maximal torus of G, letΣ = Σ(GC,TC) be its root system, and let Π be a system offundamental roots of Σ.Let I be a small category with objects

(Π1

)∪(

Π2

)and morphisms

{α} → {α, β}, for all α, β ∈ Π, and let δ : I→ LCG be a diagram with

δ({α}) = Gα := 〈Uα,U−α〉 ∩ G,

δ({α, β}) = Gαβ := 〈Uα,U−α,Uβ,U−β〉 ∩ G, and

δ({α} → {α, β}) = (Gα ↪→ Gαβ).

Then ((G ,O), (ιi )i∈(Π1)∪(Π

2)) is a colimit of δ in the category LIE of Lie

groups.

The fact that (G , (ιi )i∈(Π1)∪(Π

2)) is a colimit of δ in the category of

abstract groups goes back to Tits (1974).

Page 28: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Lie groups as colimits

Theorem 2 (Glöckner, Hartnick, K. 2010)

Let G be a simply connected compact/split real semisimple Lie groupwith Lie group topology O, let T be a maximal torus of G, letΣ = Σ(GC,TC) be its root system, and let Π be a system offundamental roots of Σ.Let I be a small category with objects

(Π1

)∪(

Π2

)and morphisms

{α} → {α, β}, for all α, β ∈ Π, and let δ : I→ LCG be a diagram with

δ({α}) = Gα := 〈Uα,U−α〉 ∩ G,

δ({α, β}) = Gαβ := 〈Uα,U−α,Uβ,U−β〉 ∩ G, and

δ({α} → {α, β}) = (Gα ↪→ Gαβ).

Then ((G ,O), (ιi )i∈(Π1)∪(Π

2)) is a colimit of δ in the category LIE of Lie

groups.

The fact that (G , (ιi )i∈(Π1)∪(Π

2)) is a colimit of δ in the category of

abstract groups goes back to Tits (1974).

Page 29: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Overview

1 Topologies on Lie groups

2 Topological Kac–Moody groups

3 Symmetric spaces

4 Kac–Moody symmetric spaces

Page 30: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Definition via colimits

Definition 3

Let

∆ be an arbitrary Dynkin diagram without label ∞,

(Gα)α∈∆ be a family of copies of SL2(R),

(Gαβ){α,β}∈(∆2) be a family of appropriate simply connected split

real Lie groups, and

Gα → Gαβ the natural embeddings.

The (simply connected split real) topological Kac–Moody group G oftype ∆ is defined as the colimit of the above amalgam in the categoryof topological groups.

Abramenko–Mühlherr (1997) established the above approach in thecategory of abstract groups.The topological version is established by Hartnick–K.–Mars (2013)based on ideas by Kac–Peterson (1980s).

Page 31: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Definition via colimits

Definition 3

Let

∆ be an arbitrary Dynkin diagram without label ∞,

(Gα)α∈∆ be a family of copies of SL2(R),

(Gαβ){α,β}∈(∆2) be a family of appropriate simply connected split

real Lie groups, and

Gα → Gαβ the natural embeddings.

The (simply connected split real) topological Kac–Moody group G oftype ∆ is defined as the colimit of the above amalgam in the categoryof topological groups.

Abramenko–Mühlherr (1997) established the above approach in thecategory of abstract groups.The topological version is established by Hartnick–K.–Mars (2013)based on ideas by Kac–Peterson (1980s).

Page 32: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Definition via colimits

Definition 3

Let

∆ be an arbitrary Dynkin diagram without label ∞,

(Gα)α∈∆ be a family of copies of SL2(R),

(Gαβ){α,β}∈(∆2) be a family of appropriate simply connected split

real Lie groups, and

Gα → Gαβ the natural embeddings.

The (simply connected split real) topological Kac–Moody group G oftype ∆ is defined as the colimit of the above amalgam in the categoryof topological groups.

Abramenko–Mühlherr (1997) established the above approach in thecategory of abstract groups.

The topological version is established by Hartnick–K.–Mars (2013)based on ideas by Kac–Peterson (1980s).

Page 33: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Definition via colimits

Definition 3

Let

∆ be an arbitrary Dynkin diagram without label ∞,

(Gα)α∈∆ be a family of copies of SL2(R),

(Gαβ){α,β}∈(∆2) be a family of appropriate simply connected split

real Lie groups, and

Gα → Gαβ the natural embeddings.

The (simply connected split real) topological Kac–Moody group G oftype ∆ is defined as the colimit of the above amalgam in the categoryof topological groups.

Abramenko–Mühlherr (1997) established the above approach in thecategory of abstract groups.The topological version is established by Hartnick–K.–Mars (2013)based on ideas by Kac–Peterson (1980s).

Page 34: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties

A topological Kac–Moody group is Hausdorff and kω.(Kac–Peterson 1980s and Hartnick–K.–Mars 2013)

Subgroups of finite type carry the Lie group topology.(Hartnick–K.–Mars 2013)

The Iwasawa decomposition G = KAN is a homeomorphism.(Freyn–Hartnick–Horn–K. 2017)

A topological Kac–Moody group is Kazhdan.(Hartnick–K. 2015)

G/B+, G/B− form a topological twin building(in the sense of the theory by Kramer 2002).

Goal: Construct a symmetric space for a topological Kac–Moody group.

Page 35: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties

A topological Kac–Moody group is Hausdorff and kω.(Kac–Peterson 1980s and Hartnick–K.–Mars 2013)

Subgroups of finite type carry the Lie group topology.(Hartnick–K.–Mars 2013)

The Iwasawa decomposition G = KAN is a homeomorphism.(Freyn–Hartnick–Horn–K. 2017)

A topological Kac–Moody group is Kazhdan.(Hartnick–K. 2015)

G/B+, G/B− form a topological twin building(in the sense of the theory by Kramer 2002).

Goal: Construct a symmetric space for a topological Kac–Moody group.

Page 36: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties

A topological Kac–Moody group is Hausdorff and kω.(Kac–Peterson 1980s and Hartnick–K.–Mars 2013)

Subgroups of finite type carry the Lie group topology.(Hartnick–K.–Mars 2013)

The Iwasawa decomposition G = KAN is a homeomorphism.(Freyn–Hartnick–Horn–K. 2017)

A topological Kac–Moody group is Kazhdan.(Hartnick–K. 2015)

G/B+, G/B− form a topological twin building(in the sense of the theory by Kramer 2002).

Goal: Construct a symmetric space for a topological Kac–Moody group.

Page 37: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties

A topological Kac–Moody group is Hausdorff and kω.(Kac–Peterson 1980s and Hartnick–K.–Mars 2013)

Subgroups of finite type carry the Lie group topology.(Hartnick–K.–Mars 2013)

The Iwasawa decomposition G = KAN is a homeomorphism.(Freyn–Hartnick–Horn–K. 2017)

A topological Kac–Moody group is Kazhdan.(Hartnick–K. 2015)

G/B+, G/B− form a topological twin building(in the sense of the theory by Kramer 2002).

Goal: Construct a symmetric space for a topological Kac–Moody group.

Page 38: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties

A topological Kac–Moody group is Hausdorff and kω.(Kac–Peterson 1980s and Hartnick–K.–Mars 2013)

Subgroups of finite type carry the Lie group topology.(Hartnick–K.–Mars 2013)

The Iwasawa decomposition G = KAN is a homeomorphism.(Freyn–Hartnick–Horn–K. 2017)

A topological Kac–Moody group is Kazhdan.(Hartnick–K. 2015)

G/B+, G/B− form a topological twin building(in the sense of the theory by Kramer 2002).

Goal: Construct a symmetric space for a topological Kac–Moody group.

Page 39: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties

A topological Kac–Moody group is Hausdorff and kω.(Kac–Peterson 1980s and Hartnick–K.–Mars 2013)

Subgroups of finite type carry the Lie group topology.(Hartnick–K.–Mars 2013)

The Iwasawa decomposition G = KAN is a homeomorphism.(Freyn–Hartnick–Horn–K. 2017)

A topological Kac–Moody group is Kazhdan.(Hartnick–K. 2015)

G/B+, G/B− form a topological twin building(in the sense of the theory by Kramer 2002).

Goal: Construct a symmetric space for a topological Kac–Moody group.

Page 40: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties

A topological Kac–Moody group is Hausdorff and kω.(Kac–Peterson 1980s and Hartnick–K.–Mars 2013)

Subgroups of finite type carry the Lie group topology.(Hartnick–K.–Mars 2013)

The Iwasawa decomposition G = KAN is a homeomorphism.(Freyn–Hartnick–Horn–K. 2017)

A topological Kac–Moody group is Kazhdan.(Hartnick–K. 2015)

G/B+, G/B− form a topological twin building(in the sense of the theory by Kramer 2002).

Goal: Construct a symmetric space for a topological Kac–Moody group.

Page 41: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Overview

1 Topologies on Lie groups

2 Topological Kac–Moody groups

3 Symmetric spaces

4 Kac–Moody symmetric spaces

Page 42: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

A theorem by Loos

Theorem 4 (Loos 1967)

Let X be an affine symmetric space, and given x , y ∈ X denote by x · ythe point reflection of y at x. Then

µ : X × X → X : (x , y) 7→ x · y

is a C 1-map satisfying the following axioms:

1 for any x ∈ X one has x · x = x,

2 for any pair of points x , y ∈ X one has x · (x · y) = y ,

3 for any triple of points x , y , z ∈ X one has

x · (y · z) = (x · y) · (x · z),

4 every x ∈ X has a neighbourhood U such that x · y = y impliesy = x for all y ∈ U.

Page 43: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

A theorem by Loos

Theorem 4 (continued)

Conversely, if X is a smooth manifold and µ : X × X → X is a C 1-mapsubject to the axioms above, then X is an affine symmetric space, andµ(x , y) is the point reflection of y at x.

If X is a Riemannian symmetric space, then the isometries of X areexactly the C 1-maps α : X → X satisfying α(x · y) = α(x) · α(y).

If X is moreover of the non-compact type, then instead of the localcondition it satisfies the global condition

4 x · y = y implies y = x for all y ∈ X.

Example: For any topological group G the assignment

G × G → G : (x , y) 7→ xy−1x

satisfies axioms 1, 2, 3.

Page 44: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

A theorem by Loos

Theorem 4 (continued)

Conversely, if X is a smooth manifold and µ : X × X → X is a C 1-mapsubject to the axioms above, then X is an affine symmetric space, andµ(x , y) is the point reflection of y at x.

If X is a Riemannian symmetric space, then the isometries of X areexactly the C 1-maps α : X → X satisfying α(x · y) = α(x) · α(y).

If X is moreover of the non-compact type, then instead of the localcondition it satisfies the global condition

4 x · y = y implies y = x for all y ∈ X.

Example: For any topological group G the assignment

G × G → G : (x , y) 7→ xy−1x

satisfies axioms 1, 2, 3.

Page 45: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

A theorem by Loos

Theorem 4 (continued)

Conversely, if X is a smooth manifold and µ : X × X → X is a C 1-mapsubject to the axioms above, then X is an affine symmetric space, andµ(x , y) is the point reflection of y at x.

If X is a Riemannian symmetric space, then the isometries of X areexactly the C 1-maps α : X → X satisfying α(x · y) = α(x) · α(y).

If X is moreover of the non-compact type, then instead of the localcondition it satisfies the global condition

4 x · y = y implies y = x for all y ∈ X.

Example: For any topological group G the assignment

G × G → G : (x , y) 7→ xy−1x

satisfies axioms 1, 2, 3.

Page 46: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

A theorem by Loos

Theorem 4 (continued)

Conversely, if X is a smooth manifold and µ : X × X → X is a C 1-mapsubject to the axioms above, then X is an affine symmetric space, andµ(x , y) is the point reflection of y at x.

If X is a Riemannian symmetric space, then the isometries of X areexactly the C 1-maps α : X → X satisfying α(x · y) = α(x) · α(y).

If X is moreover of the non-compact type, then instead of the localcondition it satisfies the global condition

4 x · y = y implies y = x for all y ∈ X.

Example: For any topological group G the assignment

G × G → G : (x , y) 7→ xy−1x

satisfies axioms 1, 2, 3.

Page 47: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

One-parameter groups without C 1 hypothesis

Theorem 5 (Freyn, Hartnick, Horn, K. 2017)

Let (X , µ) be a topological space with continuous µ satisfying axioms1, 2, 3, 4.

Given x ∈ X let sx (y) := µ(x , y) and given a geodesic γ ⊂ Xlet

Tγ := {sp ◦ sq | p, q ∈ γ} ⊂ Aut(X , µ).

Then the following hold:

Tγ ∼= (R,+) is a one-parameter subgroup of Aut(X , µ).

Tγ acts sharply transitively on γ by Euclidean translations.

A geodesic γ ⊂ X is defined to be the image of a bijection

φ : R→ γ

such that

φ(2x − y) = µ(φ(x), φ(y)) for all x , y ∈ R.

Page 48: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

One-parameter groups without C 1 hypothesis

Theorem 5 (Freyn, Hartnick, Horn, K. 2017)

Let (X , µ) be a topological space with continuous µ satisfying axioms1, 2, 3, 4. Given x ∈ X let sx (y) := µ(x , y) and given a geodesic γ ⊂ Xlet

Tγ := {sp ◦ sq | p, q ∈ γ} ⊂ Aut(X , µ).

Then the following hold:

Tγ ∼= (R,+) is a one-parameter subgroup of Aut(X , µ).

Tγ acts sharply transitively on γ by Euclidean translations.

A geodesic γ ⊂ X is defined to be the image of a bijection

φ : R→ γ

such that

φ(2x − y) = µ(φ(x), φ(y)) for all x , y ∈ R.

Page 49: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

One-parameter groups without C 1 hypothesis

Theorem 5 (Freyn, Hartnick, Horn, K. 2017)

Let (X , µ) be a topological space with continuous µ satisfying axioms1, 2, 3, 4. Given x ∈ X let sx (y) := µ(x , y) and given a geodesic γ ⊂ Xlet

Tγ := {sp ◦ sq | p, q ∈ γ} ⊂ Aut(X , µ).

Then the following hold:

Tγ ∼= (R,+) is a one-parameter subgroup of Aut(X , µ).

Tγ acts sharply transitively on γ by Euclidean translations.

A geodesic γ ⊂ X is defined to be the image of a bijection

φ : R→ γ

such that

φ(2x − y) = µ(φ(x), φ(y)) for all x , y ∈ R.

Page 50: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

One-parameter groups without C 1 hypothesis

Theorem 5 (Freyn, Hartnick, Horn, K. 2017)

Let (X , µ) be a topological space with continuous µ satisfying axioms1, 2, 3, 4. Given x ∈ X let sx (y) := µ(x , y) and given a geodesic γ ⊂ Xlet

Tγ := {sp ◦ sq | p, q ∈ γ} ⊂ Aut(X , µ).

Then the following hold:

Tγ ∼= (R,+) is a one-parameter subgroup of Aut(X , µ).

Tγ acts sharply transitively on γ by Euclidean translations.

A geodesic γ ⊂ X is defined to be the image of a bijection

φ : R→ γ

such that

φ(2x − y) = µ(φ(x), φ(y)) for all x , y ∈ R.

Page 51: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Overview

1 Topologies on Lie groups

2 Topological Kac–Moody groups

3 Symmetric spaces

4 Kac–Moody symmetric spaces

Page 52: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties of Kac–Moody symmetric spacesFreyn, Hartnick, Horn, K. 2017

G/K is a topological space with continuous multiplication

µ(gK , hK ) = gθ(g)−1θ(h)K

satisfying axioms 1, 2, 3, 4

(where G is a top. Kac–Moody group,K its subgroup generated by the maximal compact subgroups ofthe Gα ∼= SL2(R), and θ the involution of G fixing K pointwise.)

The maximal flats of G/K are in 1-1 correspondence to themaximal tori of G .

Aut(G/K , µ) = Aut(G ).

G/K admits a causal structure with the two halves of thetopological twin building as the future and past boundaries.

G/K admits a partial order, if Kostant convexity holds for G .(E.g., for type E10.)

Page 53: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties of Kac–Moody symmetric spacesFreyn, Hartnick, Horn, K. 2017

G/K is a topological space with continuous multiplication

µ(gK , hK ) = gθ(g)−1θ(h)K

satisfying axioms 1, 2, 3, 4

(where G is a top. Kac–Moody group,K its subgroup generated by the maximal compact subgroups ofthe Gα ∼= SL2(R), and θ the involution of G fixing K pointwise.)

The maximal flats of G/K are in 1-1 correspondence to themaximal tori of G .

Aut(G/K , µ) = Aut(G ).

G/K admits a causal structure with the two halves of thetopological twin building as the future and past boundaries.

G/K admits a partial order, if Kostant convexity holds for G .(E.g., for type E10.)

Page 54: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties of Kac–Moody symmetric spacesFreyn, Hartnick, Horn, K. 2017

G/K is a topological space with continuous multiplication

µ(gK , hK ) = gθ(g)−1θ(h)K

satisfying axioms 1, 2, 3, 4 (where G is a top. Kac–Moody group,K its subgroup generated by the maximal compact subgroups ofthe Gα ∼= SL2(R), and θ the involution of G fixing K pointwise.)

The maximal flats of G/K are in 1-1 correspondence to themaximal tori of G .

Aut(G/K , µ) = Aut(G ).

G/K admits a causal structure with the two halves of thetopological twin building as the future and past boundaries.

G/K admits a partial order, if Kostant convexity holds for G .(E.g., for type E10.)

Page 55: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties of Kac–Moody symmetric spacesFreyn, Hartnick, Horn, K. 2017

G/K is a topological space with continuous multiplication

µ(gK , hK ) = gθ(g)−1θ(h)K

satisfying axioms 1, 2, 3, 4 (where G is a top. Kac–Moody group,K its subgroup generated by the maximal compact subgroups ofthe Gα ∼= SL2(R), and θ the involution of G fixing K pointwise.)

The maximal flats of G/K are in 1-1 correspondence to themaximal tori of G .

Aut(G/K , µ) = Aut(G ).

G/K admits a causal structure with the two halves of thetopological twin building as the future and past boundaries.

G/K admits a partial order, if Kostant convexity holds for G .(E.g., for type E10.)

Page 56: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties of Kac–Moody symmetric spacesFreyn, Hartnick, Horn, K. 2017

G/K is a topological space with continuous multiplication

µ(gK , hK ) = gθ(g)−1θ(h)K

satisfying axioms 1, 2, 3, 4 (where G is a top. Kac–Moody group,K its subgroup generated by the maximal compact subgroups ofthe Gα ∼= SL2(R), and θ the involution of G fixing K pointwise.)

The maximal flats of G/K are in 1-1 correspondence to themaximal tori of G .

Aut(G/K , µ) = Aut(G ).

G/K admits a causal structure with the two halves of thetopological twin building as the future and past boundaries.

G/K admits a partial order, if Kostant convexity holds for G .(E.g., for type E10.)

Page 57: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties of Kac–Moody symmetric spacesFreyn, Hartnick, Horn, K. 2017

G/K is a topological space with continuous multiplication

µ(gK , hK ) = gθ(g)−1θ(h)K

satisfying axioms 1, 2, 3, 4 (where G is a top. Kac–Moody group,K its subgroup generated by the maximal compact subgroups ofthe Gα ∼= SL2(R), and θ the involution of G fixing K pointwise.)

The maximal flats of G/K are in 1-1 correspondence to themaximal tori of G .

Aut(G/K , µ) = Aut(G ).

G/K admits a causal structure with the two halves of thetopological twin building as the future and past boundaries.

G/K admits a partial order, if Kostant convexity holds for G .(E.g., for type E10.)

Page 58: Kac Moody symmetric spacesmath.uni.lu/~rahm/ggn/slides_Koehl.pdf · 2017-06-10 · Examples: directlimits,freeproducts,amalgamatedproductsA C B. Colimits AdiagraminacategoryA isacovariantfunctor

Properties of Kac–Moody symmetric spacesFreyn, Hartnick, Horn, K. 2017

G/K is a topological space with continuous multiplication

µ(gK , hK ) = gθ(g)−1θ(h)K

satisfying axioms 1, 2, 3, 4 (where G is a top. Kac–Moody group,K its subgroup generated by the maximal compact subgroups ofthe Gα ∼= SL2(R), and θ the involution of G fixing K pointwise.)

The maximal flats of G/K are in 1-1 correspondence to themaximal tori of G .

Aut(G/K , µ) = Aut(G ).

G/K admits a causal structure with the two halves of thetopological twin building as the future and past boundaries.

G/K admits a partial order, if Kostant convexity holds for G .(E.g., for type E10.)