karyotype characterization of andean solanoideae … characterization of andean solanoideae...

14
CARYOLOGIA Vol. 63, no. 3: 278-291, 2010 *Corresponding author: phone (fax) ++54 351-4332104; e-mail: [email protected] Karyotype characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Casilla de Correo 495, 5000 Córdoba, Argentina. Abstract — Solanaceae has a center of diversity in South America, with several genera endemic to the Andes. Molecular studies recognize the “x = 12” clade, including subfamily Solanoideae, Nicotiana, and Anthocerci- deae. Solanoideae is the largest group in the family having still many members cytologically unexplored. The mitotic chromosomes and karyotypes of 16 species and two varieties of Andean Solanoideae are here reported, from Brugmansia, Datura, Jaborosa, Latua, Leucophysalis, Lycianthes, Nolana, Salpichroa, Saracha, Solanum, and Witheringia. All species presented 2n = 24, being the numbers of ten taxa reported for the first time. In addition, the diploid number found for Latua pubiflora differed from the previous meiotic one. Average chromosome sizes varied from 1.64 to 4.92 μm. Karyotypes for the genera Saracha (the first for tribe Iochrominae), Leucophysalis, Nolana, and Salpichroa and the Regmandra clade of Solanum were heretofore unknown. In general, karyotypes showed low asymmetry, predominance of m and sm chromosomes, and one satellited pair. The exception was Salpichroa tristis, with no m chromosomes and four st pairs. Karyotype data were useful to single out the species and some of the genera examined. Data are discussed to dilucidate its value in the understanding of the phyl- ogeny and the systematics of the group. The first karyotype for Nolana showed that it is typical of a Solanaceae and very close of Lycium and Grabowskia, as suggested by molecular phylogenies. Key words: Andes, asymmetry, chromosome numbers, karyotypes, Solanoideae, South America. INTRODUCTION Mountain ranges are remarkable centers of biological diversification (SIMPSON and TODZIA 1990; NORES 1995). Indeed, several studies point out the relationship among plant diversifica- tion (VON HAGEN and KADEREIT 2003; KAY et al. 2005), animal radiation (BATES and ZINK 1994; BLEIWEISS 1998), and the Andean folding of the Miocene (ca. 20 mya) and Pliocene (ca. 3 mya) (HOORN et al. 1995; HOOGHIEMSTRA and VAN DER HAMMEN 1998). Some plant families, though cos- mopolitan, have centers of diversity in the Andes of South America, for example, Orchidaceae (DRESSLER 1981), Ericaceae (LUTEYN 2002), and Solanaceae (D’ARCY 1991; HUNZIKER 2001). Solanaceae includes 98 genera and 2716 species (OLMSTEAD and BOHS 2007), some of them having great economic, ethnobotanic, experimental and ornamental value. Addition- ally, members of the family have been useful to botanists in elucidating evolutionary processes (BOWERS 1975; WHALEN 1978), plant virology (KIM and FULTON 1984), and chromosome spe- ciation (BADR et al. 1997; MOSCONE et al. 2007). Potatoes (Solanum tuberosum L.) and tomatoes (Solanum lycopersicum L.), two of the most im- portant crops in the world, are originary to the Andes of South America, together with other sixteen genera (HUNZIKER 2001; FOOLAD 2007). In addition, the clade Iochrominae has remark- ably radiated in floral morphology and pollina- tion system in this region (COCUCCI 1999; SMITH and BAUM 2006). The phylogeny of the Solanaceae is relatively resolved (e.g., OLMSTEAD and PALMER 1992; OL- MSTEAD et al. 1999, 2008; MARTINS and BARKMAN 2005). Some subfamilies recognized in tradi- tional systems (D’ARCY 1991; HUNZIKER 2001) had not support in molecular phylogenies (OLM- STEAD et al. 1999; 2008) and even more, the lim-

Upload: lamdung

Post on 30-May-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

CARYOLOGIA Vol. 63, no. 3: 278-291, 2010

*Corresponding author: phone (fax) ++54 351-4332104; e-mail: [email protected]

Karyotype characterization of Andean Solanoideae (Solanaceae)

Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Casilla de Correo 495, 5000 Córdoba, Argentina.

Abstract — Solanaceae has a center of diversity in South America, with several genera endemic to the Andes. Molecular studies recognize the “x = 12” clade, including subfamily Solanoideae, Nicotiana, and Anthocerci-deae. Solanoideae is the largest group in the family having still many members cytologically unexplored. The mitotic chromosomes and karyotypes of 16 species and two varieties of Andean Solanoideae are here reported, from Brugmansia, Datura, Jaborosa, Latua, Leucophysalis, Lycianthes, Nolana, Salpichroa, Saracha, Solanum, and Witheringia. All species presented 2n = 24, being the numbers of ten taxa reported for the fi rst time. In addition, the diploid number found for Latua pubifl ora differed from the previous meiotic one. Average chromosome sizes varied from 1.64 to 4.92 μm. Karyotypes for the genera Saracha (the fi rst for tribe Iochrominae), Leucophysalis, Nolana, and Salpichroa and the Regmandra clade of Solanum were heretofore unknown. In general, karyotypes showed low asymmetry, predominance of m and sm chromosomes, and one satellited pair. The exception was Salpichroa tristis, with no m chromosomes and four st pairs. Karyotype data were useful to single out the species and some of the genera examined. Data are discussed to dilucidate its value in the understanding of the phyl-ogeny and the systematics of the group. The fi rst karyotype for Nolana showed that it is typical of a Solanaceae and very close of Lycium and Grabowskia, as suggested by molecular phylogenies.

Key words: Andes, asymmetry, chromosome numbers, karyotypes, Solanoideae, South America.

INTRODUCTION

Mountain ranges are remarkable centers of biological diversifi cation (SIMPSON and TODZIA 1990; NORES 1995). Indeed, several studies point out the relationship among plant diversifi ca-tion (VON HAGEN and KADEREIT 2003; KAY et al. 2005), animal radiation (BATES and ZINK 1994; BLEIWEISS 1998), and the Andean folding of the Miocene (ca. 20 mya) and Pliocene (ca. 3 mya) (HOORN et al. 1995; HOOGHIEMSTRA and VAN DER HAMMEN 1998). Some plant families, though cos-mopolitan, have centers of diversity in the Andes of South America, for example, Orchidaceae (DRESSLER 1981), Ericaceae (LUTEYN 2002), and Solanaceae (D’ARCY 1991; HUNZIKER 2001).

Solanaceae includes 98 genera and 2716

species (OLMSTEAD and BOHS 2007), some of them having great economic, ethnobotanic, experimental and ornamental value. Addition-ally, members of the family have been useful to botanists in elucidating evolutionary processes (BOWERS 1975; WHALEN 1978), plant virology (KIM and FULTON 1984), and chromosome spe-ciation (BADR et al. 1997; MOSCONE et al. 2007). Potatoes (Solanum tuberosum L.) and tomatoes (Solanum lycopersicum L.), two of the most im-portant crops in the world, are originary to the Andes of South America, together with other sixteen genera (HUNZIKER 2001; FOOLAD 2007). In addition, the clade Iochrominae has remark-ably radiated in fl oral morphology and pollina-tion system in this region (COCUCCI 1999; SMITH and BAUM 2006).

The phylogeny of the Solanaceae is relatively resolved (e.g., OLMSTEAD and PALMER 1992; OL-MSTEAD et al. 1999, 2008; MARTINS and BARKMAN 2005). Some subfamilies recognized in tradi-tional systems (D’ARCY 1991; HUNZIKER 2001) had not support in molecular phylogenies (OLM-STEAD et al. 1999; 2008) and even more, the lim-

Page 2: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

KARYOTYPE CHARACTERIZATION OF ANDEAN SOLANOIDEAE (SOLANACEAE) 279

its of the family were expanded to also embrace Sclerophylacaceae, Nolanaceae, Goetzeaceae, and Duckeodendraceae. This new scheme is sus-tained by strong evidence, being interesting to fi nd supplementary chromosomal synapomor-phies that support it.

Subfamily Solanoideae forms a well sup-ported clade (OLMSTEAD et al. 2008) comprising seven clades: Atropina (Hyoscyameae, Lycieae, Nolana, Jaborosa, Sclerophylax, and Latua), Juanulloeae (with Schultesianthus and Solandra), Datureae, Salpichroina, Physaleae (with sub-tribes Physalinae, Iochrominae, Withaninae, and Cuatresia), Capsiceae (Capsicum nested within Lycianthes), and Solaneae (Jaltomata and Sola-num). Solanoideae is part of a larger clade to-gether with Nicotiana and Anthocercideae. This major group is so-called “x = 12” clade, despite the fact that species of Nicotiana may present x = 8, 9, 10 and 12 and Anthocercideae x = 9 and 10. Particularly the Solanoideae clade is remark-able for the large number of species and their ecological adaptations, being the basic chromo-some number of most species efectively x = 12.

In spite of the relevance of cytology for the di-versifi cation and systematics of the family (PRIN-GLE and MURRAY 1991; TU et al. 2005; MOSCONE et al. 2007), and Angiosperms as a whole (JONES 1970; STEBBINS 1971), chromosome counts and karyotypes are still lacking. Particularly in the clade Solanoideae, many genera (e.g., Larnax, Saracha, Cuatresia, Nolana, Witheringia, etc.), and many species (e.g., half of the ca. 1400 spe-cies of Solanum) are unknown. To fi ll this gap, we here performed a karyotype analysis in most-ly unexplored Andean Solanoideae in order to try to understand its diversifi cation and chromo-some evolution.

MATERIALS AND METHODS

Details of the studied material and voucher specimens are included in Table 1.

Mitotic chromosomes were examined in squashes of root tips obtained from germinating seeds. Seeds were soaked for 24 hr in running water and then put in Petri dishes on moist fi l-ter paper at 30°C. Root tips were fi xed in a 3:1 ethanol:acetic acid mixture, after pretreatment in a saturated solution of p-dichlorobenzene in water for 2 hr, and stained with alcoholic hy-drochloric acid carmine (SNOW 1963). Perma-nent mounts were made following the method of BOWEN (1956). At least ten metaphases per

taxon were photographed with a phase contrast optic Axiophot microscope. Photomicrographs were used to take measurements for each chro-mosome pair: s (short arm), l (long arm), and c (mean total chromosome length). The arm ratio (r = l/s) was then calculated and used to clas-sify the chromosomes as recognized by LEVAN et al. (1964). In addition, total haploid chro-mosome length of the karyotype, based on the mean chromosome length (tl), average chromo-some length (C), and average arm ratio (R) were calculated. Idiograms were based on the mean values for each taxon. The chromosomes were arranged fi rst into groups according to their in-creasing arm ratio and then to the decreasing length within each group. Karyotype asymmetry was estimated using the intrachromosomal (A1) and the interchromosomal (A2) indices of ROME-RO ZARCO (1986). Satellites were designated ac-cording to BATTAGLIA (1955) and their lengths were added to those of the corresponding arms. To look for associations between pairs of the mentioned karyotype variables, linear regression tests were performed using INFOSTAT (2001).

RESULTS

All taxa examined resulted diploid with 2n = 24 (x = 12). Figures 1-3 illustrate the range of chromosomes observed.

Solanum, Datura, and Lycianthes species studied had small-sized chromosomes, being the lowest average chromosome length 1.64 μm in S. pinnatum (Table 2; Fig. 3C). On the other hand, Witheringia, Latua, and Saracha species showed medium-sized chromosomes (Table 2; Fig. 1E, 2D, 2F), being the highest average chromosome length 4.92 μm in Latua pubifl ora. The shortest measured chromosome pair was # 8 in Salpicho-ra tristis var. tristis (1.09 μm) and the longest was pair # 1 in Latua pubifl ora (5.90 μm).

Most accessions presented one chromosome pair with small spherical satellites whose diam-eter was equal to, or less than one-half of, the chromosome diameter (Fig. 1-4). Only Datura inoxia showed two satellited pairs (Fig. 1C). In Witheringia solanacea, Saracha punctata, and Ja-borosa cabrerae secondary constrictions were not visible (Fig. 1E, 2F, 3B, respectively). In general, satellites were attached to the short arms of large m pairs. The exceptions were Leucophysalis vis-cosa (Fig. 3A) and Solanum albidum (Fig. 3D) with satellites on long arms, Salpichroa scandens (Fig. 2A) with an sm satellited pair, and Sal-

Page 3: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

CHIARINI, MORENO, BARBOZA and BERNARDELLO280

pichroa tristis var. tristis with satellites on an sm pair attached to the long arms (Fig. 2B).

Species can be distinguished by a combina-tion of karyotype formulae, total haploid genome length, asymmetry indices, and position of satel-lites on a particular chromosome pair (Table 2, Fig. 4). Karyotype formulae were established for 17 taxa (Table 2, Fig. 4). For Salpichroa tristis var.

lehmanii, we only obtained a few metaphases, all with 2n = 24, but chromosome morphology var-ied among the cells making it diffi cult to deter-mine the karyotype.

Most species presented 8 to 12 m pairs (Table 2, Fig. 4). The remaining pairs are sm, except So-lanum urticans that had one st pair (Fig. 3F). On the other hand, Salpichroa tristis var. tristis had

Fig. 1 — Photomicrographs of mitotic metaphases of Andean Solanoideae. (A) Datura metel. (B) Brugmansia candida. (C) Datura inoxia. (D) Datura stramonium. (E) Witheringia solanacea. (F) Nolana crassulifolia. Arrows indicate satel-lites. All at the same scale. Bar = 5 μm.

Page 4: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

KARYOTYPE CHARACTERIZATION OF ANDEAN SOLANOIDEAE (SOLANACEAE) 281T

AB

LE 1

— C

olle

ctio

n da

ta a

nd c

hrom

osom

e nu

mbe

rs o

f th

e A

ndea

n So

lano

idea

e st

udie

d, in

dica

ting

prev

ious

rep

orts

whe

n av

aila

ble.

Cla

des

acco

rdin

g to

OL

MST

EA

D

et a

l. (2

008)

.

SPE

CIE

SV

OU

CH

ER

IN

FO

RM

AT

ION

2nP

RE

VIO

US

RE

PO

RT

S

Atr

opin

a

Jabo

rosa

cab

rera

e B

arbo

za

AR

GE

NT

INA

. Cat

amar

ca p

rov.

, Bel

én d

pt.,

Cue

sta

de R

ando

lfo, 2

6º 5

2’17

’’ S,

66

º 43’

57’’

W, B

arbo

za e

t al.

2005

(CO

RD

).24

Lat

ua p

ubifl

ora

(Gri

seb.

) Bai

llon

CH

ILE

. X R

egio

n, n

ear

Par

que

Onc

ol, 3

9º 4

4’ 2

9’’ S

, 73º

21’

02’

’ W, C

hiap

ella

et

al.

1774

(CO

RD

).24

n =

9 (P

LO

WM

AN

et a

l. 19

71)

Nol

ana

cras

sulif

olia

Poe

pp.

CH

ILE

. V R

egio

n, L

os M

olle

s, 3

2º 1

4’ 5

7’’ S

, 71º

30’

50’

’ W, C

hiap

ella

et

al.

1636

(CO

RD

).24

Dat

urea

e

Bru

gman

sia

cand

ida

Per

s.C

OL

OM

BIA

. C

undi

nam

arca

dp

t.,

Bog

otá.

In

cu

ltiva

tion.

O

bert

i s.

n.

(CO

RD

).24

2n =

24

(OR

TE

GA 1

974)

Dat

ura

inox

ia M

ill.

AR

GE

NT

INA

. La

Rio

ja p

rov.

, Fam

atin

a dp

t., B

arbo

za e

t al.

573

(CO

RD

).24

2n =

24

(BY

E 1

986)

Dat

ura

met

el L

. B

RA

ZIL

, San

ta C

atar

ina,

Flo

rian

ópol

is, C

anaj

uré.

In

culti

vatio

n. B

onza

ni s

.n.

(CO

RD

)24

2n =

24,

48

(MU

KH

ER

JEE 1

981)

2n =

24+

0-6B

(BH

AT

TA

CH

ARY

A 1

983)

2n =

24 (B

AD

R e

t al.

1997

)

Dat

ura

stra

mon

ium

L.

SPA

IN. B

arce

lona

, nea

r A

gbar

tow

er, C

hiar

ini 7

01bi

s (C

OR

D).

242n

= 2

4 (B

AQ

UA

R 1

967)

Ioch

rom

inae

Sara

cha

punc

tata

Rui

z et

Pav

. P

ER

U. C

ajam

arca

dpt

., C

uter

vo p

rov.

, La

Cap

illa,

6º1

8’ 3

9.8”

S, 7

8º49

’ 51.

8”W

, L

eiva

Gon

zále

z et

al.

3992

(HA

O)

24

Phy

sali

nae

Wit

heri

ngia

sol

anac

ea L

’Hér

. P

ER

U. C

ajam

arca

dpt

., Sa

n Ig

naci

o pr

ov.,

San

José

de

Lou

rdes

, 4º5

6’ 2

2” S

, 78

º57’

18.

6” W

, Lei

va G

onzá

lez

et a

l. 38

12 (H

AO

)24

n =

12

(BO

HS

2000

)

Leu

coph

ysal

is v

isco

sa (S

chra

d.) H

unz.

C

ultiv

ated

at t

he B

otan

ical

and

Exp

erim

enta

l Gar

den,

Rad

boud

Uni

vers

ity N

i-jm

egen

. Acc

essi

on n

umbe

r 88

4750

184.

242n

= 2

4 (M

EN

ZE

L 1

950)

Salp

ichr

oina

Salp

ichr

oa s

cand

ens

Dam

mer

A

RG

EN

TIN

A. S

alta

pro

v., S

anta

Vic

tori

a dp

t., 2

2º 1

4’ 0

6.9’

’ S, 6

5º 0

1’ 5

2.4’

’ W

, Bar

boza

et a

l. 17

76 (C

OR

D).

24

Salp

ichr

oa tr

isti

s M

iers

var

. tri

stis

A

RG

EN

TIN

A. T

ucum

án p

rov.

, Taf

í dpt

., B

arbo

za e

t al.

771

(CO

RD

).24

Salp

ichr

oa tr

isti

s va

r. le

hman

ii (D

amm

er)

S. K

eel

AR

GE

NT

INA

. Juj

uy p

rov.

, Yav

i dpt

., 22

º 05’

54’

’ S, 6

5º 2

7’ 1

8’’ W

, Bar

boza

et

al. 1

734

(CO

RD

).24

Page 5: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

CHIARINI, MORENO, BARBOZA and BERNARDELLO282

SPE

CIE

SV

OU

CH

ER

IN

FO

RM

AT

ION

2nP

RE

VIO

US

RE

PO

RT

S

Cap

sice

ae

Lyci

anth

es ly

cioi

des

(L.)

Has

sl.

BO

LIV

IA. L

a P

az d

pt.,

Mur

illo,

Ove

juyo

, 16°

16’

19”

S, 6

8° 0

1’ 0

2” W

, Pel

áez

221

(CO

RD

).24

n =

12

(MO

SCO

NE 1

992)

Sola

neae

Sola

num

alb

idum

Dun

al

BO

LIV

IA. L

a P

az d

pt.,

Nor

Yun

gas

prov

., 16

km

from

Chu

spip

ata

to C

oroi

co,

16º

13’

34.6

’’ S,

67º

47’

12.

5’’W

, B

arbo

za e

t al

. 18

32 (

CO

RD

). -

Sud

Yun

gas

prov

., 5

km fr

om A

pa A

pa to

Cir

cuat

a, B

arbo

za e

t al.

1853

(CO

RD

).

24

Sola

num

asp

erol

anat

um R

uiz

et P

av.

BO

LIV

IA. S

anta

Cru

z dp

t., 6

km

fro

m C

omar

apa

to L

agun

a V

erde

, Bar

boza

et

al.

1902

(CO

RD

).24

Sola

num

pin

natu

m C

av.

CH

ILE

. V R

egio

n, L

os M

olle

s, C

hiap

ella

et a

l. 16

41 (C

OR

D).

24

Sola

num

urt

ican

s D

unal

B

OL

IVIA

. San

ta C

ruz

dpt.,

Ich

ilo p

rov.

, 4 k

m f

rom

Bue

na V

ista

, Bar

boza

et

al. 1

915

(CO

RD

).24

no m chromosomes, but 8 sm and 4 st pairs (Fig. 2B). Telocentric chromosomes were absent.

In general, karyotypes were symmetrical, con-sidering both centromere position and chromo-some size variation (Table 2, Fig. 4). The majority of species displayed complements with chro-mosomes of about the same size, being Saracha punctata the extreme case. Salpichora tristis var. tristis showed the highest difference between the shortest and the longest chromosomes. A1 and A2 indices ranges were 0.17-0.59 and 0.11-0.25, respectively (Table 2, Fig. 4). The karyotypes of Salpichora tristis var. tristis (with A1 + A2 = 0.84 and the highest R) and Solanum urticans (with A1 + A2 = 0.47) resulted the most asymmetrical, whereas those of Saracha punctata (A1 + A2 = 0.28) and Lycianthes lycioides (A1 + A2 = 0.31) the most symmetrical. No association between total kary-otype length and asymmetry, or any other asso-ciation with biological meaning, could be drawn from regression tests applied (data not shown).

DISCUSSION

Even though Solanoideae is a derived, very diversifi ed group with representatives adapted to all sort of habitats (COCUCCI 1999; HUNZIKER 2001; SMITH and BAUM 2006), it is cytogenetically very conservative since most taxa present x = 12 (BADR et al. 1997; HUNZIKER 2001), as we found here. The exceptions are Nicandra physalodes with x = 10 (DARLINGTON and JANAKI-AMMAL 1945), Quincula lobata and two Solanum sub-gen. Leptostemonum species with x = 11 (MEN-ZEL 1950; CHIARINI and BERNARDELLO 2006), some members of Hyoscyameae with x = 11, 14 and 17 (SHEIDAI et al. 1999; TU et al. 2005), sev-en Capsicum species with x = 13 (MOSCONE et al. 2007) and the seven species of Solanum subgen. Achaeosolanum with x = 23 (BAYLIS 1963).

The basic number x = 12 of Solanoideae may be a derived condition reached by aneuploidy, since the remainig clades have several numbers (x = 7, 8, 9, 10, 11, 12, 13, e.g. HUNZIKER 2001; CHIARINI 2003; CLARKSON et al. 2004; LAS PEÑAS et al. 2006). However, the absence of information on several genera, as well as on Convolvulaceae the sister clade of Solanaceae, makes diffi cult to speculate on the ancestral chromosome number for the family (OLMSTEAD et al. 2008). The main gaps are in Schwenckieae, Juanulloeae, and Io-chrominae clades.

All species studied here resulted diploid, al-though polyploids are not rare in Solanaceae in T

AB

LE 1

— C

ondt

.

Page 6: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

KARYOTYPE CHARACTERIZATION OF ANDEAN SOLANOIDEAE (SOLANACEAE) 283

Fig. 2 — Photomicrographs of mitotic metaphases of Andean Solanoideae. (A) Salpichroa scandens. (B) Salpichroa tristis var. tristis. (C) Salpichroa tristis var. lehmanii. (D) Latua pubifl ora. (E) Lycianthes lycioides. (F) Saracha punctata. Arrows indicate satellites. All at the same scale. Bar = 5 μm.

Page 7: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

CHIARINI, MORENO, BARBOZA and BERNARDELLO284

particular and Angiosperms in general (SOLTIS and SOLTIS 1993, 1999; RAMSEY and SCHEMSKE 1998). Within the “x = 12” clade, it has been reported in aproximately 22 genera. It pre-dominates in Nicotianoideae (40% of Nicotiana species are tetraploids often arisen by amphidip-loidy; GOODSPEED 1954), whereas in Solanoide-ae it is less frequent (e.g., in Hyoscyameae, Mandragora, Physalis, Lycium, Chamaesaracha, Withania; BORGEN 1969; FERNANDEZ et al. 1985; SHEIDAI et al. 1999; TU et al. 2005; STIEFKENS and BERNARDELLO 2006).

Chromosomes of Solanaceae are small- to medium-sized (GUERRA 2000), with a range of 0.80-14 μm (e.g. BOHS 1994, 2001; BADR et al. 1997) and most taxa within 1-3 μm. Solanoideae displays the smallest chromosomes of the family (e.g. species of Atropa and Potato and Leptos-temonum clades of Solamum; BADR et al. 1997; BERNARDELLO and ANDERSON 1990; CHIARINI et al. 2006), as well as the longest ones (e.g. in Cy-phomandra clade; BOHS 1994, 2001). It should be mentioned that clade Cestreae is characterized by having chromosomes of about 6-7 μm (BERG and GREILHUBER 1992; LAS PEÑAS et al. 2006).

Stebbins (1971) pointed out an association between habit and chromosome size, with peren-nial species having small chromosomes. How-ever, within woody Solanoideae, chromosomes are either small (e.g. Lycium, STIEFKENS and BER-NARDELLO 1996, 2006; Lycianthes, ACOSTA et al.

2005), or medium-sized (e.g. Saracha punctata, Latua pubifl ora, this work).

After the available literature, in Solanaceae the number of satellited chromosome pairs per complement is variable. In Solanoideae, for instance, Capsicum showed one to four pairs (MOSCONE et al. 2007), Hyoscyamus and Jaborosa one to three pairs (SHEIDAI et al. 1999; CHIARINI and BARBOZA 2008), whereas Solanum species either no satellites or one pair (BERNARDELLO et al. 1994; ACOSTA et al. 2005). In fact, the So-lanoideae here examined presented one, none, or, exceptionally, two satellited pairs.

Within the family, satellites are usually at-tached to short arms of m or sm chromosomes (e.g. MENZEL 1950; MADHAVADIAN 1967, 1968; PRINGLE and MURRAY 1991; STIEFKENS and BERNARDELLO 1996, 2006; ACOSTA et al. 2006; MOSCONE et al. 2007; BERNARDELLO et al. 2008; TATE et al. 2008) while species with satellites in long arms are infrequent (e.g. MENZEL 1950; GOODSPEED 1954; BERNARDELLO and ANDER-SON 1990; BERNARDELLO et al. 1994). Satellites attached to st pairs are restricted to some spe-cies of Nicotiana (GOODSPEED 1954), Cypho-mandra (PRINGLE and MURRAY 1991), Capsicum (MOSCONE et al. 2007), and Solanum (ACOSTA et al. 2005).

In the case of Solanum, there is normally one chromosome pair with satellites attached to short arms (TRIVEDI and SINHA 1986; BERNARDELLO

TABLE 2 — Solanoideae taxa studied, karyotype formulae, total haploid genome length in μm (tl), average chromo-some length in μm (C) ± standard deviation, average arm ratio (R) ± standard deviation, intrachromosomal asymmetry index (A1) and interchromosomal asymmetry index (A2). An asterisk means a chromosome pair with satellites.

SPECIES Karyotype formulae lt C R A1 A2

Brugmansia candida 10m* + 2sm 26.82 ± 1.59 2.24 ± 0.13 1.56 ± 0.10 0.25 0.12Datura inoxia 10m** + 2sm 32.70 ± 4.82 2.73 ± 0.40 2.18 ± 0.44 0.25 0.12Datura metel 11m* + 1sm 29.92 ± 3.60 2.40 ± 0.30 1.74 ± 0.10 0.22 0.15Datura stramonium 9m* + 3sm 24.51 ± 5.35 2.04 ± 0.45 1.80 ± 0.47 0.26 0.18Jaborosa cabrerae 8m + 4sm 44.85 ± 3.53 3.74 ± 0.29 1.66 ± 0.08 0.33 0.11Latua pubifl ora 11m* + 1sm 59.02 ± 2.80 4.92 ± 1.07 1.33 ± 0.11 0.22 0.13Leucophysalis viscosa 10m* + 2sm 42.50 ± 4.88 3.54 ± 0.41 1.56 ± 0.09 0.22 0.12Lycianthes lycioides 12 m* 23.45 ± 3.05 1.95 ± 0.25 1.27 ± 0.07 0.19 0.12Nolana crassulifolia 11m* + 1sm 32.05 ± 4.62 2.67 ± 0.39 1.32 ± 0.05 0.21 0.11Salpichroa scandens 9m + 3sm* 55.95 ± 9.05 4.66 ± 0.75 1.35 ± 0.06 0.23 0.11Salpichroa tristis var. tristis 8sm* + 4st 35.02 ± 4.76 2.92 ± 0.81 2.64 ± 0.63 0.59 0.25Saracha punctata 11m + 1sm 49.75 ± 4.55 4.15 ± 0.33 1.26 ± 0.07 0.17 0.11Solanum albidum 9m* + 3sm 27.28 ± 3.85 2.27 ± 0.32 1.41 ± 0.06 0.26 0.13Solanum asperolanatum 9m* + 3sm 28.12 ± 3.95 2.34 ± 0.33 1.40 ± 0.04 0.25 0.13Solanum pinnatum 10m* + 2sm 19.65 ± 2.59 1.64 ± 0.22 1.40 ± 0.10 0.25 0.14Solanum urticans 8m* +3sm +1st 34.38 ± 5.32 2.87 ± 0.44 1.68 ± 0.06 0.34 0.13Witheringia solanacea 9m + 3 sm 49.00 ± 10.53 4.08 ± 0.88 1.46 ± 0.04 0.27 0.13

Page 8: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

KARYOTYPE CHARACTERIZATION OF ANDEAN SOLANOIDEAE (SOLANACEAE) 285

Fig. 3 — Photomicrographs of mitotic metaphases of Andean Solanoideae. (A) Leucophysalis viscosa. (B) Jaborosa cabrerae. (C) Solanum pinnatum. (D) Solanum albidum. (E) Solanum asperolanatum. (F) Solanum urticans. Arrows indicate satellites. All at the same scale. Bar = 5 μm.

Page 9: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

CHIARINI, MORENO, BARBOZA and BERNARDELLO286

and ANDERSON 1990; BERNARDELLO et al. 1994; CHIARINI and BERNARDELLO 2006). There are few exceptions reported: Solanum albidum (this work), S. basendopogon (BERNARDELLO and AN-DERSON 1990), S. pseudolulo (BERNARDELLO et al. 1994), and S. guaraniticum (CHIARINI and BER-NARDELLO 2006). In addition, satellites are fre-quently placed on sm chromosomes in Solanum, although in sect. Lasiocarpa they are common on m chromosomes (BERNARDELLO et al. 1994). Furthermore, the comparatively large size of the satellited pair (among the six largest of the kary-otype) is also a common phenomenon in the ge-nus (e.g., TRIVEDI and SINHA 1986; BERNARDELLO and ANDERSON 1990; ACOSTA et al. 2005).

In Solanaceae, the majority of chromosomes are m or sm (e.g. BADR et al. 1997; MOSCONE et al. 2007). The records of arm ratios reported by BADR et al. (1997) vary from 1.17 in Atropa acuminata to 2.78 in Nicotiana acuminata, which are low to intermediate values in the context of Angiosperms. On the other hand, st chromo-somes are rare (e.g., in Solanum, BERNARDELLO and ANDERSON 1990; BERNARDELLO et al. 1994; in Nicotiana, GOODSPEED 1954; in Phrodus, BER-NARDELLO et al. 2008) and t chromosomes are exceptional (Nicotiana plumbaginifolia, VILLA 1984; Solanum muricatum and S. basendopogon, BERNARDELLO and ANDERSON 1990). Thus, karyo-types are mainly symmetrical in the family and in Solanoideae as well (e.g. MENZEL 1950; MADHA-VADIAN 1967, 1968; MOSCONE 1989; PRINGLE and MURRAY 1991; STIEFKENS and BERNARDELLO 1996, 2006; ACOSTA et al. 2006; MOSCONE et al. 2007; TATE et al. 2008; this work). In this context, Sal-pichroa tristis var. tristis is remarkable because it is the fi rst species reported so far within the clade Solanoideae without m chromosomes. At the same time, in Solanaceae there are a few Nic-otiana species reported with this unusual feature (GOOSPEED 1954).

Considering our data and the available litera-ture, there is no relationship between habit and karyotype features in Solanaceae, as suggested by several authors (STEBBINS 1971; BRANDHAM 1983). Symmetrical karyotypes may be found in woody species (e.g. Lycium species; STIEFKENS and BERNARDELLO 1996, 2006; Saracha punctata and Lycianthes lycioides, this work) as well as in herbs (e.g. Solanum pinnatum; Jaborosa runci-nata, CHIARINI and BARBOZA 2008), and there are asymmetrical karyotypes in herbs (Salpichroa tristis var. tristis, this work; Solanum sect. Acan-thophora; ACOSTA et al. 2005), but also in tree-lets like Solanum urticans and S. hexandrum [sub

nom. Solanum (Melongena) sp. 2, ACOSTA et al. 2005].

In the recent molecular phylogeny of OLM-STEAD et al. (2008), the basal clade in Solanoide-ae is Atropina. For Latua, a monotypic genus endemic to Chile included in it, a different chromosome number than the only one previ-ously reported was found (n = 9, PLOWMAN et al. 1971). These authors made this count on pollen mother cells providing hand drawings of biva-lents in metaphase I (their Plate V). Our counts, made on root cell tips, clearly showed 2n = 24 (Fig. 2D), a number coincident with the position of Latua pubifl ora within the “x = 12” clade (OL-MSTEAD et al. 2008), near Jaborosa and Lycium. In addition, our karyotypic data indicate that Latua is chromosomically differentiated from other members of the clade because of the long chromosome size.

Compared to other members of the Atro-pina clade, Jaborosa chromosomes are medium-sized (3.01-4.93 μm) and slightly asymmetrical (CHIARINI and BARBOZA, 2008); thus, Jaborosa cabrerae karyotype features follow the observed trend.

Nolana, also in the Atropina clade, was previ-ously seggregated from Solanaceae because of its peculiar gynoecium and fruit structure (HUNZIK-ER 2001). However, molecular phylogenies (OL-MSTEAD et al. 2008; TU et al. 2008) indicate that it is a sister clade of tribe Lycieae and Sclerophylax, a position supported by our data. Effectively, the fi rst karyotype for a Nolana species here report-ed, showed that it is typical of a Solanaceae and very close of Lycium and Grabowskia (STIEFKENS and BERNARDELLO 1996, 2006; BERNARDELLO et al. 2008).

Within the Datureae clade, the studied spe-cies of Datura and Brugmansia can be singled out by their karyotype features. Although both genera are morphologically and phylogeneti-cally different (HUNZIKER, 2001; OLMSTEAD et al., 2008), there are no cytological differences worth to mention to distinguish them.

Considering the Salpichroina clade, the karyotypes of Salpichroa tristis var. tristis and S. scandens are the fi rst known for the genus. Al-though supplementary information is needed on the 13 remaining species (HUNZIKER 2001), our data suggest that chromosome rearrangements have ocurred in the diversifi cation of the ge-nus, contrary to other Solanoideae (e.g. Lycium, STIEFKENS and BERNARDELLO 1996, 2006) with a remarkable karyotypic homogeneity.

Unfortunately, for the Iochrominae clade

Page 10: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

KARYOTYPE CHARACTERIZATION OF ANDEAN SOLANOIDEAE (SOLANACEAE) 287

Fig. 4 — Idiograms for Andean Solanoi-deae species, based on mean values.

Page 11: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

CHIARINI, MORENO, BARBOZA and BERNARDELLO288

there are only a few chromosome counts available (MADHAVADIAN 1967, 1968; MOSCONE 1992). The karyotype of Saracha punctata is relevant because it is the fi rst for the clade, although addittional data are needed for comparison purposes.

The systematic position of the Leucophysalis viscosa has been controversial for a long time (HUNZIKER 2001; AVERETT 2009). Molecular phy-logenies include it in clade Physalinae, suggest-ing it is a distinct genus though closely related to Witheringia (WHITSON and MANOS 2005). Our data on karyotypes of one species of each genus, indicate that morphological diversifi cation was accompained by chromosomal changes, such as chromosome size, presence of satellites, and karyotype formula.

Lycianthes has ca. 150 species (HUNZIKER 2001), but only two were examined (ACOSTA et al. 2005; this work), showing small chromo-somes, one secondary constriction per comple-ment, and symmetrical karyotypes. Lycianthes is included in clade Capsiceae together with Cap-sicum, which is cytologically different because of its larger chromosomes, several secondary constrictions per karyotype, and comparatively more asymmetrical karyotypes (MOSCONE et al. 2007).

Solanum, from the Solaneae clade, displays symmetrical karyotypes with rather homoge-neous chromosome sizes with differences in asymmetry between species seldom conspicuous (cf. MOSCONE 1989; BERNARDELLO and ANDER-SON 1990; BERNARDELLO et al. 1994; ACOSTA et al. 2005; CHIARINI and BERNARDELLO 2006). In general, diversifi cation in the genus has been as-sociated with few chromosome rearrangements (ACOSTA et al. 2005). Three of the species here analyzed are in Leptostemonum clade, character-ized by prickles and stellate hairs. This subge-nus includes groups with symmetrical (e.g., S. albidum, S. asperolanatum, both here studied, S. consimile, S. tabacifolium, all from sect. Torva; CHIARINI and BERNARDELLO 2006) and asymmet-rical complements (e.g. Solanum urticans from Sect. Crinitum here studied; species of section Acanthophora, ACOSTA et al. 2005, CHIARINI and BERNARDELLO 2006). The remaining species anal-ysed, S. pinnatum, belongs to clade Regmandra (BOHS 2005), a small group of 11 unarmed spe-cies endemic to Chile and Peru with no previous cytological data (BENNETT 2008). Its relationship with other non-spiny clades is unresolved (BOHS 2005; WEESE and BOHS 2007) and, unfortunately, our data do not clarify its position either.

Andean Solanaceae are morphologically di-

versifi ed, but chromosome features observed with the techniques here applied do not showed extreme differences. However, the different karyotype parameters taken are useful to single out the species and some of the genera examined. Additional karyotype studies are badly needed in more members, using not only classical, but also fl uorescent banding and FISH techniques to reach an embracing view of the evolutionary tendencies in the Solanoideae clade.

Acknowledgements — The authors thank CONI-CET (Consejo Nacional de Investigaciones Científi -cas y Técnicas), Secretaría de Ciencia yTecnología de la Universidad Nacional de Córdoba, Fondos para la Investigación Científi ca y Tecnológica, and Ministerio de Ciencia y Tecnología de la provincia de Córdoba, all from Argentina, for fi nancial support, and Seg-undo Leiva (Universidad Antenor Orrego, Trujillo, Peru) and G. van der Weerden (Botanical and Ex-perimental Garden, Radboud University, Nijmegen, Netherlands) for providing seed material.

REFERENCES

ACOSTA M.C., BERNARDELLO G., GUERRA M. and MO-SCONE E., 2005 — Karyotype analysis in several South American species of Solanum and Lycianthes rantonnei (Solanaceae). Taxon, 54: 713-723.

ACOSTA M.C., ORDOÑEZ A.V., COCUCCI A.A., MO-SCONE E.A., 2006 — Chromosome reports in South American Nicotianeae (Solanaceae), with particu-lar reference to Nierembergia. Annals of the Mis-souri Botanical Garden, 93: 634-646.

AVERETT J.E., 2009 — Schraderanthus, a new genus of Solanaceae. Phytologia, 91: 54-61.

BADR A., KHALIFA S.F., ABOEL-ATTA A.I, and ABOU-EL-ENAIN M.M., 1997 — Chromosomal criteria and taxonomic relationships in the Solanaceae. Cytolo-gia, 62: 103-113.

BAQUAR S.R.,1967 — Cytomorphological studies in the family Solanaceae from West Pakistan. Genetica, 38: 388-397.

BATES J.M. and ZINK R.M., 1994 — Evolution into the Andes: molecular evidence for species relationships in the genus Leptopogon. Auk, 111: 507-515.

BATTAGLIA E., 1955 — Chromosome morphology and terminology. Caryologia, 8: 179-187.

BAYLIS G.T.S., 1963 — A cytogenetical study of the Solanum aviculare species complex. Australian Journal of Botany, 11: 168-177.

BENNETT J.R., 2008 — Revision of Solanum section Regmandra (Solanaceae). Edinburgh Journal of Botany, 65: 69-112.

BERG C. and GREILHUBER J., 1992 — Cold-sensitive chromosome regions and heterochromatin in Ces-trum (Solanaceae): C. strigillatum, C. fasciculatum and C. elegans. Plant Systematics and Evolution, 185: 259-273.

Page 12: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

KARYOTYPE CHARACTERIZATION OF ANDEAN SOLANOIDEAE (SOLANACEAE) 289

BERNARDELLO G., STIEFKENS L. and LAS PEÑAS M.L., 2008 — Karyotype studies in Grabowskia and Ph-rodus (Solanaceae). Plant Systematics and Evolu-tion, 275: 265-269.

BERNARDELLO L.M. and ANDERSON G.J., 1990 — Karyotypic studies in Solanum section Basarthrum (Solanaceae). American Journal of Botany, 77: 420-431.

BERNARDELLO L.M., HEISER C.B. and PIAZZANO M., 1994 — Karyotypic studies in Solanum section La-siocarpa (Solanaceae). American Journal of Botany, 81: 95-103.

BHATTACHARYA S., 1983 — B chromosomes in natural-ly occuring Datura metel L. Cell and Chromosome Reserach, 6: 73-75.

BLEIWEISS R. 1998 — Origin of hummingbird faunas. Biological Journal of the Linnean Society, 65: 77-97.

BOHS L., 1994 — Cyphomandra (Solanaceae). Flora Neotropica, 63: 1-75.

BOHS L., 2000 — Insights into the Witheringia solana-cea (Solanaceae) Complex in Costa Rica. I. Breed-ing Systems and Crossing Studies. Biotropica, 32: 70-79.

BOHS L., 2001 — A revision of Solanum section Cy-phomandropsis (Solanaceae). Systematic Botany Monographs, 61: 1-85

BOHS L., 2005 — Major clades in Solanum based on ndhF sequence data. In Hollowell V., Keating R., Lewis W. and Croat T. (Eds.), A Festschrift for William D’Arcy. Monographs in Systematic Bota-ny from the Missouri Botanical Garden, 104: 27-50. Missouri Botanical Garden Press, St. Louis, Missouri.

BOWEN C.C., 1956 — Freezing by liquid carbon diox-ide in making slides permanent. Stain Technology, 31: 87-90.

BOWERS K.A.W., 1975 — The pollination ecology of Solanum rostratum (Solanaceae). American Jour-nal of Botany, 62: 633-638.

BORGEN L., 1969 — Chromosome number of vascular plants from the Canary Islands, with special refer-ence to the occurrence of popyploidy. Nytt Magasin for Botanik, 16: 18-121.

BRANDHAM P.E., 1983 — Evolution in a stable chromo-some system. In Brandham P.E and Bennett M.D. (Eds.), Kew chromosome conference II, pp. 251-260. G. Allen & Unwin, London.

BYE RA., 1986 — Datura lanosa, a new species of Dat-ura from Mexico. Phytologia, 61: 204-206.

CHIARINI F., 2003 — Los cromosomas somáticos de Schwenckia americana (Solanaceae). Boletín de la Sociedad Argentina de Botánica, 38: 325-327.

CHIARINI F. and BARBOZA G., 2008 — Karyological studies in Jaborosa (Solanaceae). Botanical Journal of the Linnean Society, 156: 467-478.

CHIARINI F. and BERNARDELLO G., 2006 — Karyotypic studies in South American species of Solanum sub-gen. Leptostemonum (Solanaceae). Plant Biology (Stuttg.), 8: 486-493.

CHIARINI F., BERNARDELLO G., ANDERSON G. and SAN-TOS GUERRA A., 2006 — Chromosomal differentia-

tion of Solanum vespertilio and S. lidii (Solanaceae), rare, endemic species of the Canary Islands (Spain). Caryologia, 59: 277-283.

CLARKSON J.J., KNAPP S., GARCIA V.F., OLMSTEAD R., LEITCH A.R. and CHASE M.W., 2004 — Phyloge-netic relationships in Nicotiana (Solanaceae) in-ferred from multiple plastid DNA regions. Molecu-lar Phylogenetics and Evolution, 33: 75-90.

COCUCCI A., 1999 — Evolutionary radiation in Neo-tropical Solanaceae. In Nee M., Symon D.E., Lest-er R.N. and Jessop J.P. (Eds.), Solanaceae IV ad-vances in biology and utilization, pp. 9-22. Royal Botanic Gardens, Kew.

D’ARCY W.G., 1991 — The Solanaceae since 1976, with a review of its biogeography. In Hawkes J.G., Lester R., Nee M. and Estrada, N. (Eds.), Solanaceae III: Taxonomy, Chemistry, Evolution, pp. 75-137. Royal Botanic Gardens, Kew, Rich-mond, Surrey.

DARLINGTON C.D. and JANAKI-AMMAL E.K., 1945 — Adaptive isochromosomes in Nicandra. Annals of Botany, 9: 267-281.

DRESSLER R.L., 1981 — The orchids: natural history and classifi cation. Harvard University Press, Cam-bridge, Massachusetts.

FERNÁNDEZ I., DIEZ M.J. and PASTOR J., 1985 — Números cromosómicos para la fl ora española. 373-381.Lagascalia, 13: 299-302.

FOOLAD M.R., 2007 — Genome mapping and mo-lecular breeding of tomato. International Journal of Plant Genomics, 2007: Article ID 64358, 52 pages.

GUERRA M., 2000 — Patterns of heterochromatin dis-tribution in plant chromosomes. Genetics and Mo-lecular Biology, 23: 1029-1041.

GOODSPEED T.H., 1954 — The genus Nicotiana. Chronica Botanica Company, Waltham, Massa-chusetts.

HOOGHIEMSTRA H. and VAN DER HAMMEN T., 1998 — Neogene and quaternary development of the Neo-tropical rain forest: the forest refugia hypothesis, and a literature overview. Earth Science Reviews, 44: 147-183.

HOORN C., GUERRERO J., SARMIENTO G.A. and LORENTE M.A., 1995 — Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23: 237-240.

HUNZIKER A.T., 2001 — Genera Solanacearum. The genera of Solanaceae illustrated, arranged accord-ing to a new system. A.R.G. Gantner Verlag K.-G., Ruggell.

INFOSTAT. 2001 — Versión 1.0. Estadística y Biometría, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba.

JONES K., 1970 — Chromosome changes in plant evo-lution. Taxon, 19: 172-179.

KAY K.M., REEVES P.A., OLMSTEAD R.G. and SCHEM-SKE D.W., 2005 — Rapid speciation and the evo-lution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA ITS and ETS sequences. American Journal of Botany, 92: 1899-1910.

Page 13: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

CHIARINI, MORENO, BARBOZA and BERNARDELLO290

KIM K.S. and FULTON R.W., 1984 — Ultrastructure of Datura stramonium infected with Euphorbia virus suggestive of a whitefl y-transmitted geminivirus. Phytopathology, 74: 236-241.

LAS PEÑAS M.L., CHIARINI F., BERNARDELLO G. and BENÍTEZ C., 2006 — Karyotypes in some species of Cestrum, Sessea and Vestia. Caryologia, 59: 131-137.

LEVAN A., FREDGA, L. and SANDBERG A., 1964 — No-menclature for centromeric position on chromo-somes. Hereditas, 52: 201-220.

LUTEYN J.L., 2002 — Diversity, adaptation and en-demism in Neotropical Ericaceae: biogeographical patterns in the Vaccinieae. Botanical Review, 68: 55-87.

MADHAVADIAN P., 1967 — The cytology of Iochroma tubulosa Benth. Caryologia, 20: 309-315.

MADHAVADIAN P., 1968 — Chromosome number in South. Indian Solanaceae. Caryologia, 2: 343-347.

MARTINS T.R. and BARKMAN T.J., 2005 — Reconstruc-tion of Solanaceae phylogeny using the nuclear gene SAMT. Systematic Botany, 30: 435-447.

MENZEL M.Y., 1950 — Cytotaxonomic observations in some genera of the Solanaceae: Margaranthus, Saracha and Quincula. American Journal of Bot-any, 37: 25-30.

MOSCONE E.A., 1989 — Karyotype analyses in three Patagonian and S. Andean endemic genera of Nico-tianeae (Solanaceae). Plant Systematics and Evo-lution, 166:31-39.

MOSCONE E.A., 1992 — Estudios sobre cromosomas meióticos en Solanaceae de Argentina. Darwini-ana, 31: 261-297.

MOSCONE E.A., SCALDAFERRO M.A., GRABIELE M., CECCHINI N.M., SÁNCHEZ GARCÍA Y., JARRET R., DAVIÑA J.R., DUCASSE D.A., BARBOZA G.E. and EHRENDORFER F., 2007 — The evolution of chili peppers (Capsicum-Solanaceae): A cytogenetic per-spective. Acta Horticulturae, 745:137-170.

MUKHERJEE S., 1981 — Cytomorphological studies on Datura metel Linn. on different ecological habitats. Proceedings of the Indian Science Congress As-sociation, 68 (6): 88.

NORES M., 1995 — Insular biogeography of birds on mountain-tops in northwestern Argentina. Journal of Biogeography, 22: 61-70.

OLMSTEAD R.G. and BOHS L., 2007 — A summary of molecular systematic research in Solanaceae: 1982-2006. Acta Horticulturae, 745: 255-268.

OLMSTEAD R.G., BOHS L., HALA ABDEL M., SANTIA-GO-VALENTIN E., GARCIA V.F. and COLLIER S.M., 2008 — A molecular phylogeny of the Solanaceae. Taxon, 57:1159-1181.

OLMSTEAD R.G. and PALMER J.D., 1992 — A chloro-plast DNA phylogeny of the Solanaceae: subfamil-ial relationships and character evolution. Annals of the Missouri Botanical Garden, 79: 346-360.

OLMSTEAD R.G., SWEERE J.A., SPANGLER R.E., BOHS L. and PALMER D.D., 1999 — Phylogeny and pro-visional classifi cation of the Solanaceae based on chloroplast DNA. In Nee M., Symon D.E., Lester R.N. and Jessop J.P. (Eds), Solanaceae IV. Ad-

vances in Biology and Utilization, pp. 257-274. Royal Botanic Gardens, Kew.

ORTEGA A.T., 1974 — Estudio biosistemático de cinco especies de Datura existentes en el Ecuador. Cien-cia y Naturaleza (Quito), 15: 12-54.

PLOWMAN T., GYLLENHAAL L.O. and LINDGREN J.E., 1971 — Latua pubifl ora magic plant from Southern Chile. Botanical Museum Leafl ets, Harvard Uni-versity, 23: 61-92.

PRINGLE G.J. and MURRAY B.G., 1991 — Karyotype diversity and nuclear DNA variation in Cypho-mandra. In Hawkes J.G., Lester R.N., Nee M. and Estrada N. (Eds), Solanaceae III: Taxonomy, Chemistry, Evolution, pp. 247-252. Royal Botanic Gardens and Linnean Society of London, Kew, Richmond, Surrey.

RAMSEY J. and SCHEMSKE D.W., 1998 — Pathways, mechanisms and rates of polyploid formation in fl owering plants. Annual Review of Ecology and Systematics, 29: 467-501.

ROMERO ZARCO C., 1986 — A new method for estimat-ing karyotype asymmetry. Taxon, 35: 526-530.

SHEIDAI M., MOSALLANEJAD M. and KHATAMSAZ M., 1999 — Karyological studies in Hyoscyamus spe-cies of Iran. Nordic Journal of Botany, 19: 369-373.

SIMPSON B.B. and TODZIA C.C., 1990 — Patterns and processes in the development of the High Andean fl ora. American Journal of Botany, 77: 1419-1432.

SMITH S.D. and BAUM D.A., 2006 — Phylogenetics of the fl orally diverse Andean clade Iochrominae (Solanaceae). American Journal of Botany, 93: 1140-1153.

SNOW R., 1963 — Alcoholic hydrochloric acid carmine as a stain for chromosomes in squash preparations. Stain Technology, 38: 9-13.

SOLTIS D.E. and SOLTIS, P.S., 1993 — Molecular data and the dynamic nature of polyploidy. Critical Re-views in Plant Sciences, 12: 243-273.

SOLTIS D.E. and SOLTIS P.S., 1999 — Polyploidy: re-current formation and genome evolution. Trends in Ecology and Evolution, 14: 348-352.

STEBBINS G.L., 1971 — Chromosomal evolution in higher plants. E. Arnold, London.

STIEFKENS L. and BERNARDELLO G., 1996 — Karyotyp-ic studies in South American Lycium (Solanaceae). Cytologia, 61: 395-402.

STIEFKENS L. and BERNARDELLO G., 2006 — Karyo-type studies in Lycium sections Schistocalyx and Sclerocarpellum (Solanaceae). Edinburgh Journal of Botany, 62: 53-67.

TATE J.A., ACOSTA M.C., MCDILL J., MOSCONE E.A., SIMPSON B.B. and COCUCCI A.A., 2008 — Phy-logeny and character evolution in Nierembergia (Solanaceae): Molecular, morphological, and cytoge-netic evidence. Systematic Botany, 34: 198-206.

TRIVEDI R.N. and SINHA A.K., 1986 — Karyomorpho-logical studies in three populations of Solanum su-rattense, a weed. Cytologia, 51: 157-161.

TU T., DILLON M.O., SUN H. and WEN J., 2008 — Phylogeny of Nolana (Solanaceae) of the Atacama and Peruvian deserts inferred from sequences of

Page 14: Karyotype characterization of Andean Solanoideae … characterization of Andean Solanoideae (Solanaceae) Chiarini* Franco E., Natalia C. Moreno, Gloria E. Barboza and Gabriel Bernardello

KARYOTYPE CHARACTERIZATION OF ANDEAN SOLANOIDEAE (SOLANACEAE) 291

four plastid markers and the nuclear LEAFY sec-ond intron. Molecular Phylogenetics and Evolu-tion, 49: 561-573.

TU T.Y., SUN H., GU Z.J. and YUE J.P., 2005 — Cy-tological studies on the Sino-Himalayan endemic Anisodus and four related genera from the tribe Hyoscyameae (Solanaceae) and their systematic and evolutionary implications. Botanical Journal of the Linnean Society, 147: 457-468.

VILLA A., 1984 — The chromosome idiogram of Nico-tiana plumbaginifolia. Genetica, 64: 145-148.

VON HAGEN K.B. and KADEREIT J.W., 2003 — The diversifi cation of Halenia (Gentianaceae): ecologi-cal opportunity versus key innovation. Evolution,

57: 2507-2518.WEESE T. and BOHS L., 2007 — A three-gene phylog-

eny of the genus Solanum (Solanaceae). Systematic Botany, 32: 445-463.

WHALEN M.D., 1978 — Reproductive character dis-placement and fl oral diversity in Solanum sect. An-droceras. Systematic Botany, 3: 77-86.

WHITSON M. and MANOS P.S., 2005 — Untangling Physalis (Solanaceae) from the Physaloids: A Two-Gene Phylogeny of the Physalinae. Systematic Botany, 30: 216-230.

Received February 9th 2010; accepted October 8th 2010