kazakh 19(1) mathematical 2019 journal · kazakh mathematical journal issn 2413{6468 19:1 (2019)...

116
19(1) 2019 KAZAKH MATHEMATICAL JOURNAL ISSN 2413-6468 The Kazakh Mathematical Journal is Official Journal of Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan EDITOR IN CHIEF: Makhmud Sadybekov, Institute of Mathematics and Mathematical Modeling HEAD OFFICE: 125 Pushkin Str., 050010, Almaty, Kazakhstan AIMS & SCOPE: Kazakh Mathematical Journal is an international journal dedicated to the latest advancement in mathematics. The goal of this journal is to provide a forum for researchers and scientists to communicate their recent developments and to present their original results in various fields of mathematics. Contributions are invited from researchers all over the world. All the manuscripts must be prepared in English, and are subject to a rigorous and fair peer-review process. Accepted papers will immediately appear online followed by printed hard copies. The journal publishes original papers including following potential topics, but are not limited to: We are also interested in short papers (letters) that clearly address a specific problem, and short survey or position papers that sketch the results or problems on a specific topic. Authors of selected short papers would be invited to write a regular paper on the same topic for future issues of this journal. Survey papers are also invited; however, authors considering submitting such a paper should consult with the editor regarding the proposed topic. Almaty, Kazakhstan PUBLICATION TYPE: Peer-reviewed open access journal Periodical Published four issues per year The Kazakh Mathematical Journal is registered by the Information Committee under Ministry of Information and Communications of the Republic of Kazakhstan № 17590-Ж certificate dated 13.03. 2019 The journal is based on the Kazakh journal "Mathematical Journal", which is published by the Institute of Mathematics and Mathematical Modeling since 2001 (ISSN 1682-0525). http://kmj.math.kz/ Algebra and group theory Approximation theory Boundary value problems for differential equations Calculus of variations and optimal control Dynamical systems Free boundary problems Ill-posed problems Integral equations and integral transforms Inverse problems Mathematical modeling of heat and wave processes Model theory and theory of algorithms Numerical analysis and applications Operator theory Ordinary differential equations Partial differential equations Spectral theory Statistics and probability theory Theory of functions and functional analysis Wavelet analysis

Upload: others

Post on 09-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

19(1)2019

KAZAKHMATHEMATICAL

JOURNAL

ISSN 2413-6468The Kazakh Mathematical Journal is Official Journal of Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

EDITOR IN CHIEF: Makhmud Sadybekov, Institute of Mathematics and Mathematical Modeling

HEAD OFFICE: 125 Pushkin Str., 050010, Almaty, Kazakhstan

AIMS & SCOPE:Kazakh Mathematical Journal is an international journal dedicated to the latest advancement in mathematics. The goal of this journal is to provide a forum for researchers and scientists to communicate their recent developments and to present their original results in various fields of mathematics. Contributions are invited from researchers all over the world.All the manuscripts must be prepared in English, and are subject to a rigorous and fair peer-review process. Accepted papers will immediately appear online followed by printed hard copies.

The journal publishes original papers including following potential topics, but are not limited to:

We are also interested in short papers (letters) that clearly address a specific problem, and short survey or position papers that sketch the results or problems on a specific topic.Authors of selected short papers would be invited to write a regular paper on the same topic for future issues of this journal.Survey papers are also invited; however, authors considering submitting such a paper should consult with the editor regarding the proposed topic.

Almaty, Kazakhstan

PU

BLI

CAT

ION

TY

PE

:P

eer-

revi

ewed

ope

n ac

cess

jour

nal

Per

iodi

cal

Pub

lishe

d fo

ur is

sues

per

yea

r

The

Kaz

akh

Mat

hem

atic

al J

ourn

al is

reg

iste

red

by th

e Info

rmati

on C

ommi

ttee u

nder

Mi

nistry

of In

forma

tion a

nd C

ommu

nicati

ons o

f the R

epub

lic of

Kaz

akhs

tan

1759

0-Ж

ce

rtifica

te da

ted 13

.03. 2

019

The

jour

nal i

s ba

sed

on th

e K

azak

h jo

urna

l "M

athe

mat

ical

Jou

rnal

", w

hich

is p

ublis

hed

by

the

Inst

itute

of M

athe

mat

ics

and

Mat

hem

atic

al M

odel

ing

sinc

e 20

01 (I

SSN

1682

-052

5).

http://kmj.math.kz/

• Algebra and group theory• Approximation theory• Boundary value problems for differential equations• Calculus of variations and optimal control• Dynamical systems• Free boundary problems• Ill-posed problems• Integral equations and integral transforms• Inverse problems• Mathematical modeling of heat and wave processes• Model theory and theory of algorithms• Numerical analysis and applications• Operator theory• Ordinary differential equations• Partial differential equations• Spectral theory• Statistics and probability theory• Theory of functions and functional analysis• Wavelet analysis

Page 2: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Vol. 19

No. 1

ISSN 2413-6468

http://kmj.math.kz/

Kazakh Mathematical Journal (founded in 2001 as "Mathematical Journal")

Official Journal of

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

EDITOR IN CHIEF Makhmud Sadybekov, Institute of Mathematics and Mathematical Modeling

HEAD OFFICE Institute of Mathematics and Mathematical Modeling, 125 Pushkin Str., 050010, Almaty, Kazakhstan

CORRESPONDENCE ADDRESS

Institute of Mathematics and Mathematical Modeling, 125 Pushkin Str., 050010, Almaty, Kazakhstan Phone/Fax: +7 727 272-70-93

WEB ADDRESS http://kmj.math.kz/

PUBLICATION TYPE Peer-reviewed open access journal Periodical Published four issues per year ISSN: 2413-6468

The Kazakh Mathematical Journal is registered by the Information Committee under Ministry of Information and Communications of the Republic of Kazakhstan 17590-Ж certificate dated 13.03. 2019.

The journal is based on the Kazakh journal "Mathematical Journal", which is publishing by the Institute of Mathematics and Mathematical Modeling since 2001 (ISSN 1682-0525).

Institute of Mathematics

and Mathematical

Modeling

Page 3: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

AIMS & SCOPE Kazakh Mathematical Journal is an international journal dedicated to the latest advancement in mathematics. The goal of this journal is to provide a forum for researchers and scientists to communicate their recent developments and to present their original results in various fields of mathematics. Contributions are invited from researchers all over the world. All the manuscripts must be prepared in English, and are subject to a rigorous and fair peer-review process. Accepted papers will immediately appear online followed by printed hard copies. The journal publishes original papers including following potential topics, but are not limited to:

· Algebra and group theory

· Approximation theory

· Boundary value problems for differential equations

· Calculus of variations and optimal control

· Dynamical systems

· Free boundary problems

· Ill-posed problems

· Integral equations and integral transforms

· Inverse problems

· Mathematical modeling of heat and wave processes

· Model theory and theory of algorithms

· Numerical analysis and applications

· Operator theory

· Ordinary differential equations

· Partial differential equations

· Spectral theory

· Statistics and probability theory

· Theory of functions and functional analysis

· Wavelet analysis

We are also interested in short papers (letters) that clearly address a specific problem, and short survey or position papers that sketch the results or problems on a specific topic. Authors of selected short papers would be invited to write a regular paper on the same topic for future issues of this journal. Survey papers are also invited; however, authors considering submitting such a paper should consult with the editor regarding the proposed topic. The journal «Kazakh Mathematical Journal» is published in four issues per volume, one volume per year.

Page 4: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

SUBSCRIPTIONS Full texts of all articles are accessible free of charge through the website http://kmj.math.kz/

Permission requests

Manuscripts, figures and tables published in the Kazakh Mathematical Journal cannot be reproduced, archived in a retrieval system, or used for advertising purposes, except personal use. Quotations may be used in scientific articles with proper referral.

Editor-in-Chief: Deputy Editor-in-Chief

Makhmud Sadybekov, Institute of Mathematics and Mathematical Modeling Anar Assanova, Institute of Mathematics and Mathematical Modeling

EDITORIAL BOARD:

Bektur Baizhanov Daurenbek Bazarkhanov Galina Bizhanova Nazarbai Bliev Nurlan Dairbekov Dulat Dzhumabaev Muvasharkhan Jenaliyev Askar Dzhumadil'daev Tynysbek Kalmenov Baltabek Kanguzhin Stanislav Kharin Kairat Mynbaev Altynshash Naimanova Mukhtarbay Otelbaev Mikhail Peretyat'kin Abdizhakhan Sarsenbi Durvudkhan Suragan Iskander Taimanov Marat Tleubergenov Batirkhan Turmetov Niyaz Tokmagambetov Berikbol Torebek Ualbai Umirbaev Vassiliy Voinov

Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Satbayev University (Almaty) Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Kazakh-British Technical University (Almaty) Institute of Mathematics and Mathematical Modeling al-Farabi Kazakh National University (Almaty) Kazakh-British Technical University (Almaty) Kazakh-British Technical University (Almaty) Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Auezov South Kazakhstan State University (Shymkent) Nazarbayev University (Astana) Sobolev Institute of Mathematics (Novosibirsk, Russia) Institute of Mathematics and Mathematical Modeling A. Yasavi International Kazakh-Turkish University (Turkestan) Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Wayne State University (Detroit, USA) KIMEP University (Almaty)

Editorial Assistants:

Zhanat Dzhobulaeva, Irina Pankratova Institute of Mathematics and Mathematical Modeling [email protected]

Page 5: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

EMERITUS EDITORS:

Shavkat Alimov Ravshan Ashurov Allaberen Ashyralyev John T. Baldwin Dmitriy Bilyk Heinrich Begehr Viktor Burenkov Vasilii Denisov Sergey Kabanikhin Sergei Kharibegashvili Viktor Korzyuk Erlan Nursultanov Ryskul Oinarov Nedyu Popivanov Nusrat Radzhabov Michael Ruzhansky Alexandr Soldatov

National University of Uzbekistan, Tashkent (Uzbekistan) Romanovsky Institute of Mathematics, Tashkent (Uzbekistan) Near East University Lefkoşa(Nicosia), Mersin 10 (Turkey) University of Illinois at Chicago (USA) University of Minnesota, Minneapolis (USA) Freie Universitet Berlin (Germany) RUDN University, Moscow (Russia) Lomonosov Moscow State University, Moscow (Russia) Inst. of Comp. Math. and Math. Geophys., Novosibirsk (Russia) Razmadze Mathematical Institute, Tbilisi (Georgia) Belarusian State University, Minsk (Belarus) Kaz. Branch of Lomonosov Moscow State University (Astana) Gumilyov Eurasian National University (Astana) Sofia University “St. Kliment Ohridski”, Sofia (Bulgaria) Tajik National University, Dushanbe (Tajikistan) Ghent University, Ghent (Belgium) Dorodnitsyn Computing Centre, Moscow (Russia)

Publication Ethics and Publication Malpractice For information on Ethics in publishing and Ethical guidelines for journal publication see

http://www.elsevier.com/publishingethics and

http://www.elsevier.com/journal-authors/ethics. Submission of an article to the Kazakh Mathematical Journal implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The Kazakh Mathematical Journal follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (https://publicationethics.org/). To verify originality, your article may be checked by the originality detection service Cross Check

http://www.elsevier.com/editors/plagdetect. The authors are obliged to participate in peer review process and be ready to provide corrections,

clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the Kazakh Mathematical Journal.

The Editorial Board of the Kazakh Mathematical Journal will monitor and safeguard publishing ethics.

Page 6: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Kazakh Mathematical Journal ISSN 2413–6468

CONTENTS

19:1 (2019)

Assanova A.T., Ubaida Zh.M. An algorithm of solving linear boundary value problem

for the Fredholm integro-differential equation with impulse effects . . . . . . . . . . . . . . . . . 6

Dzhumabaev D.S., Mursaliyev D.E., Sergazina A.S., Kenjeyeva A.A. An algorithm of

solving nonlinear boundary value problem for the Van der Pol differential equation 20

Kal’menov T.Sh., Kakharman N., Sadybekov M.A. About root functions of periodic

Sturm-Liouville problem with symmetric potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Karachik V.V., Turmetov B.Kh. On solvability of some nonlocal boundary value prob-

lems for polyharmonic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Kassymov A., Suragan D. Reversed Hardy-Littlewood-Sobolev inequality on homoge-

neous Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Kharin S.N., Nauryz T., Jabbarkhanov K. Solving two-phase spherical Stefan problem

using heat polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Mynbayeva S.T. The existence of a solution to the special Cauchy problem for the

system of nonlinear Fredholm integro-differential equations . . . . . . . . . . . . . . . . . . . . . . 69

Tokmagambetov N., Torebek B.T. Self-adjoint operators generated by integro-

differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Wisniewski G., Kharin S.N., Miedzinski B. An attempt to predict the arc to glow tran-

sition based on the experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Page 7: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Kazakh Mathematical Journal ISSN 2413–6468

19:1 (2019) 6–19

An algorithm of solving linear boundary valueproblem for the Fredholm integro-differential equation

with impulse effects

Anar T. Assanova1,a, Zhanbolat M. Ubaida1,2,b

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan2al-Farabi Kazakh National University, Almaty, Kazakhstana e-mail: [email protected], be-mail: [email protected]

Communicated by: Dulat Dzhumabaev

Received: 22.04.2019 ? Accepted/Published Online: 31.05.2019 ? Final Version: 31.05.2019

Abstract. Based on parameterization method an algorithm of solving boundary value problem for the

Fredholm integro-differential equation with impulse effects is proposed. Numerical implementation of

the algorithm is offered.

Keywords. Fredholm integro-differential equation with impulse effects, parameterization method, fourth

order Runge-Kutta method, Simpson method.

1 Introduction

In this paper, we study a linear two-point boundary value problem for the Fredholmintegro-differential equation with impulse effects at fixed times:

dx

dt= A(t)x+ ϕ(t)

T∫0

ψ(τ)x(τ)dτ + f(t), t 6= θj , j = 1, 2, t ∈ (0, T ), x ∈ Rn, (1)

B0x(0) + C0x(T ) = d0, d0 ∈ Rn, (2)

B1x(θ1 − 0) + C1x(θ1 + 0) = d1, d1 ∈ Rn, (3)

B2x(θ2 − 0) + C2x(θ2 + 0) = d2, d2 ∈ Rn, (4)

where 0 = θ0 < θ1 < θ2 < θ3 = T , (n × n)-matrices A(t), ϕ(t), ψ(t), and n-vector-functionf(t) are piecewise continuous on [0, T ] with possible discontinuities at the points t = θj ,j = 1, 2.

2010 Mathematics Subject Classification: 34A37, 34B37, 34K28, 34K45, 45J05.Funding: This research is supported by Ministry of Education and Science of Republic Kazakhstan Grants

No. AP05132486 and AP05131220.c© 2019 Kazakh Mathematical Journal. All right reserved.

Page 8: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving linear boundary value problem ... 7

Let PC([0, T ], θ1, θ2, Rn) be the space of vector-functions x(t), piecewise continuous

on [0, T ] with possible discontinuities on t = θ1, t = θ2, and the norm be ||x||1 =maxi=1,3

supt∈[θi−1;θi)

||x(t)||.

The solution of the problem (1)–(4) is a piecewise continuously differentiable functionx(t) ∈ PC([0, T ], θ1, θ2, R

n) satisfying integro-differential equation (1), boundary condition(2) and conditions of impulse effects (3), (4).

Integro-differential equations frequently arise in applications being the mathematical mod-els of some processes in physics, biology, chemistry, economy, etc. Their role in the study ofprocesses with aftereffects was noted in monographs [3], [4], and the overview of early worksdevoted to the initial and boundary value problems for the integro-differential equations wasprovided as well. Periodic and boundary value problems for impulsive integro-differentialequations were studied by numerous authors. For the various aspects of the qualitativetheory and approximate methods for the integro-differential equations without or with theimpulse effects, and their applications we refer to [1]–[13]. By parameterization method [14]linear boundary value problem for the Fredholm integro-differential equation with impulseeffects was studied in [10]. This method is based on the dividing an interval [0, T ] into Nparts and introducing additional parameters. While applying the method to the problemfor impulsive integro-differential equations, the necessity of solving an intermediate problemalso arises. The intermediate problem here is a special Cauchy problem for the system ofintegro-differential equations with parameters. But unlike the intermediate problems of abovementioned methods, the special Cauchy problem is always uniquely solvable for sufficientlysmall partition step. This property of the intermediate problem allows to establish in [10]the necessary and sufficient conditions for the solvability and the unique solvability of theproblem considered.

The goal of this paper is to specify numerical algorithms for finding a solution of thelinear boundary value problem for the Fredholm integro-differential equation with impulseeffects. To reach the goal we use parameterization method [14].

A partition of an interval [0, T ] into 3 parts with the points θj , j = 1, 2, we denote by∆3(θ) : [0, T ) = [0, θ1) ∪ [θ1, θ2) ∪ [θ2, T ). The restriction of the function x(t) to the r-thinterval [θr−1, θr) is denoted by xr(t), i.e. xr(t) = x(t), t ∈ [θr−1, θr), r = 1, 2, 3.

Introducing parameters λ1 = x1(0), λ2 = x2(θ1), λ3 = x3(θ2) and making the replacementof the function

u1(t) = x1(t)− λ1, t ∈ [0, θ1),

u2(t) = x2(t)− λ2, t ∈ [θ1, θ2),

u3(t) = x3(t)− λ3, t ∈ [θ2, T ),

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 9: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

8 Anar T. Assanova, Zhanbolat M. Ubaida

we obtain the system of integro-differential equations with parameters:

du1dt

= A(t)[u1 + λ1] + ϕ(t)

[ θ1∫0

ψ(τ)[u1(τ) + λ1]dτ

+

θ2∫θ1

ψ(τ)[u2(τ) + λ2]dτ +

T∫θ2

ψ(τ)[u3(τ) + λ3]dτ

]+ f(t), t ∈ [0, θ1), (5)

du2dt

= A(t)[u2 + λ2] + ϕ(t)

[ θ1∫0

ψ(τ)[u1(τ) + λ1]dτ

+

θ2∫θ1

ψ(τ)[u2(τ) + λ2]dτ +

T∫θ2

ψ(τ)[u3(τ) + λ3]dτ

]+ f(t), t ∈ [θ1, θ2), (6)

du3dt

= A(t)[u3 + λ3] + ϕ(t)

[ θ1∫0

ψ(τ)[u1(τ) + λ1]dτ

+

θ2∫θ1

ψ(τ)[u2(τ) + λ2]dτ +

T∫θ2

ψ(τ)[u3(τ) + λ3]dτ

]+ f(t), t ∈ [θ2, T ), (7)

initial conditions at the beginning points of subintervals:

u1(0) = 0, (8)

u2(θ1) = 0, (9)

u3(θ2) = 0, (10)

the boundary condition:

B0λ1 + C0λ3 + C0 limt→T−0

u3(t) = d0, (11)

and conditions of impulse effects:

B1λ1 +B1 limt→θ1−0

u1(t) + C1λ2 = d1, (12)

B2λ2 +B2 limt→θ2−0

u2(t) + C2λ3 = d2. (13)

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 10: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving linear boundary value problem ... 9

The solution to the boundary value problem (5)–(13) is a pair (λ∗, u∗[t]) with λ∗ =(λ∗1, λ

∗2, λ∗3) ∈ R3n and u∗[t] = (u∗1(t), u

∗2(t), u

∗3(t)), where the functions u∗1(t), u

∗2(t), u

∗3(t) are

continuous on [θ0, θ1), [θ1, θ2), [θ2, θ3), respectively, satisfy the system of integro-differentialequations (5)–(7), initial conditions (8)–(10) and additional conditions (11)–(13) with λ1 =λ∗1, λ2 = λ∗2, λ3 = λ∗3.

The problem (5)–(10) is called the special Cauchy problem for the system of integro-differential equations with parameters.

Using the fundamental matrix Xr(t) of the differential equation dxdt = A(t)x on [θr−1, θr],

we reduce the special Cauchy problem for the system of integro-differential equations withparameters (5)–(10) to the equivalent system of integro-differential equations:

u1(t, λ) = X(t)

t∫0

X−1(τ)

[A(τ)λ1 + ϕ(τ)

( θ1∫0

ψ(s)[u1(s) + λ1]ds

+

θ2∫θ1

ψ(s)[u2(s) + λ2]ds+

T∫θ2

ψ(s)[u3(s) + λ3]ds

)+ f(τ)

]dτ, t ∈ [0, θ1), (14)

u2(t, λ) = X(t)

t∫θ1

X−1(τ)

[A(τ)λ2 + ϕ(τ)

( θ1∫0

ψ(s)[u1(s) + λ1]ds

+

θ2∫θ1

ψ(s)[u2(s) + λ2]ds+

T∫θ2

ψ(s)[u3(s) + λ3]ds

)+ f(τ)

]dτ, t ∈ [θ1, θ2), (15)

u3(t, λ) = X(t)

t∫θ2

X−1(τ)

[A(τ)λ3 + ϕ(τ)

( θ1∫0

ψ(s)[u1(s) + λ1]ds

+

θ2∫θ1

ψ(s)[u2(s) + λ2]ds+

T∫θ2

ψ(s)[u3(s) + λ3]ds

)+ f(τ)

]dτ, t ∈ [θ2, T ). (16)

Further, we consider the auxiliary Cauchy problems for ordinary differential equations onsubintervals:

dz

dt= A(t)z + P (t), z(0) = 0, t ∈ [0, θ1), (17)

dz

dt= A(t)z + P (t), z(θ1) = 0, t ∈ [θ1, θ2), (18)

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 11: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

10 Anar T. Assanova, Zhanbolat M. Ubaida

dz

dt= A(t)z + P (t), z(θ2) = 0, t ∈ [θ2, T ), (19)

where P (t) is a square matrix or vector of the dimension n, continuous on [0, θ1], [θ1, θ2] or[θ2, T ].

Their solutions we denote by a1(P, t), a2(P, t) and a3(P, t), respectively. Now, we set

µ =

θ1∫0

ψ(s)u1(s)ds+

θ2∫θ1

ψ(s)u2(s)ds+

T∫θ2

ψ(s)u3(s)ds,

ψ1 =

θ1∫0

ψ(s)ds, ψ2 =

θ2∫θ1

ψ(s)ds, ψ3 =

T∫θ2

ψ(s)ds,

and re-write the system of integro-differential equations (14)–(16) as follows:

u1(t, λ) = a1(A, t)λ1 + a1(ϕ, t)(µ+ ψ1λ1 + ψ2λ2 + ψ3λ3) + a1(f, t), t ∈ [0, θ1), (20)

u2(t, λ) = a2(A, t)λ2 + a2(ϕ, t)(µ+ ψ1λ1 + ψ2λ2 + ψ3λ3) + a2(f, t), t ∈ [θ1, θ2), (21)

u3(t) = a3(A, t)λ3 + a3(ϕ, t)(µ+ ψ1λ1 + ψ2λ2 + ψ3λ3) + a3(f, t), t ∈ [θ2, T ). (22)

Multiplying both sides of (20)–(22) by ψ(s), integrating on subintervals [0, θ1], [θ1, θ2] and[θ1, T ], summing up both sides, we obtain the system of linear algebraic equations with respectto µ:

µ = ψ1(A)λ1 + ψ1(ϕ)[µ+ ψ1λ1 + ψ2λ2 + ψ3λ3] + ψ1(f)

+ψ2(A)λ2 + ψ2(ϕ)[µ+ ψ1λ1 + ψ2λ2 + ψ3λ3] + ψ2(f) + ψ3(A)λ3

+ψ3(ϕ)[µ+ ψ1λ1 + ψ2λ2 + ψ3λ3] + ψ3(f),

where

ψ1(P ) =

θ1∫0

ψ(s)a1(P, s)ds, ψ2(P ) =

θ2∫θ1

ψ(s)a2(P, s)ds,

ψ3(P ) =

T∫θ2

ψ(s)a3(P, s)ds.

We re-write this expression in the following form

µ = G(∆3)µ+D1(∆3)λ1 +D2(∆3)λ2 +D3(∆3)λ3 + g(f,∆3), (23)

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 12: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving linear boundary value problem ... 11

with (n× n)-matricesG(∆3) = ψ1(ϕ) + ψ2(ϕ) + ψ3(ϕ),

D1(∆3) = [ψ1(A) + ψ1(ϕ)ψ1 + ψ2(ϕ)ψ1 + ψ3(ϕ)ψ1],

D2(∆3) = [ψ2(A) + ψ1(ϕ)ψ2 + ψ2(ϕ)ψ2 + ψ3(ϕ)ψ2],

D3(∆3) = [ψ3(A) + ψ1(ϕ)ψ3 + ψ2(ϕ)ψ3 + ψ3(ϕ)ψ3],

and vectors of the dimension n:

g(f,∆3) = [ψ1(f) + ψ2(f) + ψ3(f)].

We represent the system (23) in the next form:

[I −G(∆3)]µ = D1(∆3)λ1 +D2(∆3)λ2 +D3(∆3)λ3 + g(f,∆3), (24)

where I is an identity matrix of the dimention n.Further, we assume that the matrix I −G(∆3) is invertible and

[I −G(∆3)]−1 = M(∆3).

Then, from (24) we obtain the following expression for determining µ:

µ = M(∆3)D1(∆3)λ1 +M(∆3)D2(∆3)λ2

+M(∆3)D3(∆3)λ3 +M(∆3)g(f,∆3). (25)

The special Cauchy problem (5)–(10) is equivalent to the system of integro-differentialequations (14)–(16). By virtue of the kernel degeneracy, this system is equivalent to thesystem of algebraic equations (25) with respect to µ ∈ Rn. Substituting the right-hand sideof (25) into equations (14)–(16), instead of µ, and taking into account the notation, we getthe representation of functions ur(t, λ), r = 1, 2, 3, via λj , j = 1, 3:

u1(t, λ) = a1(A, t)λ1 + a1(ϕ, t)(M(∆3)D1(∆3)λ1

+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3

+M(∆3)g(f,∆3) + ψ1λ1 + ψ2λ2 + ψ3λ3) + a1(f, t), t ∈ [0, θ1), (26)

u2(t, λ) = a2(A, t)λ2 + a2(ϕ, t)(M(∆3)D1(∆3)λ1

+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3 +M(∆3)g(f,∆3)

+ψ1λ1 + ψ2λ2 + ψ3λ3) + a2(f, t), t ∈ [θ1, θ2), (27)

u3(t, λ) = a3(A, t)λ3 + a3(ϕ, t)(M(∆3)D1(∆3)λ1

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 13: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

12 Anar T. Assanova, Zhanbolat M. Ubaida

+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3 +M(∆3)g(f,∆3)

+ψ1λ1 + ψ2λ2 + ψ3λ3) + a3(f, t), t ∈ [θ2, T ). (28)

Substituting the right-hand side of (26)–(28) into the boundary condition (11) and the con-ditions of impulse actions (12) and (13), we obtain the following system of linear algebraicequations with respect to parameters λj , j = 1, 3:

B0λ1 + C0λ3 + C0[a3(A, T )λ3 + a3(ϕ, T )(M(∆3)D1(∆3)λ1

+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3 + ψ1λ1 + ψ2λ2 + ψ3λ3)]

= d0 − C0[a3(ϕ, T )M(∆3)g(f,∆3) + a3(f, T )], (29)

B1λ1 +B1[a1(A, θ1)λ1 + a1(ϕ, θ1)(M(∆3)D1(∆3)λ1

+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3 + ψ1λ1 + ψ2λ2 + ψ3λ3)]

+C1λ2 = d1 −B1[a1(ϕ, θ1)M(∆3)g(f,∆3) + a1(f, θ1)], (30)

B2λ2 +B2[a2(A, θ2)λ2 + a2(ϕ, θ2)(M(∆3)D1(∆3)λ1

+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3 + ψ1λ1 + ψ2λ2 + ψ3λ3)]

+C2λ3 = d2 −B2[a2(ϕ, θ2)M(∆3)g(f,∆3) + a2(f, θ2)]. (31)

The system (29)–(31) can be written as

Q∗(∆3)λ = −F∗(∆3), λ ∈ R3n, (32)

where

Q∗(∆3)λ =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

λ1λ2λ3

,

withQ11 = B0 + C0[a3(ϕ, T )(M(∆3)D1(∆3) + ψ1)],

Q12 = C0[a3(ϕ, T )(M(∆3)D2(∆3) + ψ2)],

Q13 = C0 + C0[a3(A, T ) + a3(ϕ, T )(M(∆3)D3(∆3) + ψ3)],

Q21 = B1 +B1[a1(A, θ1) + a1(ϕ, θ1)(M(∆3)D1(∆3) + ψ1)],

Q22 = B1[a1(ϕ, θ1)(M(∆3)D2(∆3) + ψ2)] + C1,

Q23 = B1[a1(ϕ, θ1)(M(∆3)D3(∆3) + ψ3)],

Q31 = B2[a2(ϕ, θ2)(M(∆3)D1(∆3) + ψ1)],

Q32 = B2 +B2[a2(A, θ2) + a2(ϕ, θ2)(M(∆3)D2(∆3) + ψ2)],

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 14: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving linear boundary value problem ... 13

Q33 = B2[a2(ϕ, θ2)(M(∆3)D3(∆3) + ψ3)] + C2,

and

−F∗(∆3) =

−F1

−F2

−F3

with

−F1 = d0 − C0[a3(ϕ, T )M(∆3)g(f,∆3) + a3(f, T )],

−F2 = d1 −B1[a1(ϕ, θ1)M(∆3)g(f,∆3) + a1(f, θ1)],

−F3 = d2 −B2[a2(ϕ, θ2)M(∆3)g(f,∆3) + a2(f, θ2)].

The linear boundary value problem for the Fredholm integro-differential equation withimpulse effects (1)–(4) is solvable if the system of algebraic equation (32) is solvable [10, p.1188].

Numerical solution to the problem (1)–(4) we find by the following algorithm.

Step 1. Choose N1, N2, N3 and divide subintervals [0, θ1), [θ1, θ2) and [θ2, T ) into 2N1, 2N2

and 2N3 parts, respectively.

Solving the problem (17)–(19) by fourth order Runge-Kutta method for P (t) =A(t), P (t) = ϕ(t), P (t) = f(t), we obtain (n × n)-matrices ai(A, t), ai(ϕ, t), i = 1, 3,and n-vector-function ai(f, t), i = 1, 3, respectively.

Step 2. Multiply each (n×n)-matrices a1(P, t), a2(P, t) and a3(P, t) to (n×n)-matrix ψ(t),and using Simpson’s method, we evaluate the following integrals:

ψ1(A) =

θ1∫0

ψ(s)a1(A, s)ds, ψ2(A) =

θ2∫θ1

ψ(s)a2(A, s)ds,

ψ3(A) =

T∫θ2

ψ(s)a3(A, s)ds,

ψ1(ϕ) =

θ1∫0

ψ(s)a1(ϕ, s)ds, ψ2(ϕ) =

θ2∫θ1

ψ(s)a2(ϕ, s)ds,

ψ3(ϕ) =

T∫θ2

ψ(s)a3(ϕ, s)ds, (33)

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 15: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

14 Anar T. Assanova, Zhanbolat M. Ubaida

ψ1(f) =

θ1∫0

ψ(s)a1(f, s)ds, ψ2(f) =

θ2∫θ1

ψ(s)a2(f, s)ds,

ψ3(f) =

T∫θ2

ψ(s)a3(f, s)ds,

ψ1 =

θ1∫0

ψ(s)ds, ψ2 =

θ2∫θ1

ψ(s)ds, ψ3 =

T∫θ2

ψ(s)ds.

Summing up the definite integrals (33), we obtain (n× n)-matrices:

G(∆3) = ψ1(ϕ) + ψ2(ϕ) + ψ3(ϕ).

If the matrix I −G(∆3) is invertible, then we find its inverse matrix and represent it in theform [I −G(∆3)]

−1 = M(∆3). From the equalities (20)–(22) we define (n× n)-matrices:

D1(∆3) = ψ1(A) + [ψ1(ϕ) + ψ2(ϕ) + ψ3(ϕ)] · ψ1,

D2(∆3) = ψ2(A) + [ψ1(ϕ) + ψ2(ϕ) + ψ3(ϕ)] · ψ2,

D3(∆3) = ψ3(A) + [ψ1(ϕ) + ψ2(ϕ) + ψ3(ϕ)] · ψ3,

and vector of the dimension n:

g(f,∆3) = ψ1(f) + ψ2(f) + ψ3(f).

Step 3. Write the system of linear algebraic equations with respect to parameters:

Q∗(∆3)λ = −F∗(∆3), λ ∈ R3n. (34)

Solving the system (34), we find λ∗ = (λ∗1, λ∗2, λ∗3) ∈ R3n.

Step 4. By the equalities:

µ∗ = M(∆3)D1(∆3)λ∗1 +M(∆3)D2(∆3)λ

∗2 +M(∆3)D3(∆3)λ

∗3 +M(∆3)g(f,∆3),

we find µ∗ ∈ Rn and then solve the Cauchy problems:

dx

dt= A(t)x+ E∗(t), x(0) = λ∗1, t ∈ [0, θ1], (35)

dx

dt= A(t)x+ E∗(t), x(θ1) = λ∗2, t ∈ [θ1, θ2], (36)

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 16: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving linear boundary value problem ... 15

dx

dt= A(t)x+ E∗(t), x(θ2) = λ∗3, t ∈ [θ2, T ], (37)

where

E∗(t) = ϕ(t)(µ∗ + ψ1λ∗1 + ψ2λ

∗2 + ψ3λ

∗3) + f(t).

We find that x∗1(t), x∗2(t), x

∗3(t) are the numerical solution to the Cauchy problems (35),

(36), (37), respectively,Vector x∗(t) composed by x∗1(t), x

∗2(t) and x∗3(t) on the corresponding intervals, is a

solution to the problem (1)–(4).

Example. Solve the linear two-point boundary value problem for the two integro-differential equations with impulse effects:

dx

dt= A(t)x+ ϕ(t)

1∫0

ψ(τ)x(τ)dτ + f(t), t ∈ (0, 1), t 6= 0.2, t 6= 0.6, (38)

Bx(0) + Cx(1) = d0, d0 ∈ R2, (39)

B1x(0.2− 0) + C1x(0.2 + 0) = d1, d1 ∈ R2, (40)

B2x(0.6− 0) + C2x(0.6 + 0) = d2, d2 ∈ R2, (41)

where T = 1, θ1 = 0.2, θ2 = 0.6,

A(t) =

(1 tt2 t3

), ϕ(t) =

(2 t− 1

3 t2 + 1

), ψ(t) =

(t+ 1 2

1 t2 − 1

),

B0 =

(1 0

0 1

), C0 =

(−1 0

0 −1

), B1 =

(1 2

2 1

), C1 =

(0 1

2 1

),

B2 =

(2 0

0 1

), C2 =

(1 3

0 2

), I =

(1 0

0 1

),

d0 =

(−4

−3

), d1 =

( −1325

9325

), d2 =

(50925

13925

),

f1(t) =

(−18029·t

187500 − t · (t+ 1)− t2 − 1530721187500

−t2(t2 − 1)− 393029·t2187500 − t

3 · (t+ 1)− 84310146875

),

f2(t) =

(−580529·t

187500 − t · (t2 − 2)− 2093221

187500

2t− t3 · (t2 − 2)− 393029·t2187500 − t

2 · (t+ 3)− 88997646875

),

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 17: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

16 Anar T. Assanova, Zhanbolat M. Ubaida

f3(t) =

(−18029·t

187500 − t · (t+ 3)− t2 − 2093221187500

−t2 · (t2 + 2)− 393029·t2187500 − t

3 · (t+ 3)− 84310146875

),

with impulse effects at the points t = 0.2 and t = 0.6 .The exact solution to the problem (38)–(41) has the form:

x(t) =

x1(t) =

(x11(t)x12(t)

)=

(t2 − 1t+ 1

), t ∈ [0, 0.2);

x2(t) =

(x21(t)x22(t)

)=

(t+ 3t2 − 2

), t ∈ [0.2, 0.6);

x3(t) =

(x31(t)x32(t)

)=

(t2 + 2t+ 3

), t ∈ [0.6, 1].

Divide subintervals [0, 0.2), [0.2, 0.6) and [0.6, 1) with step h = 0.05. Here (2 × 2)-matrixI −G(∆3) is invertible and

[I −G(∆3)]−1 =

(−1.049316025 −0.3119116102

−0.1247687963 0.7928199221

).

(6× 6)-matrix Q∗(∆3) and vector F∗(∆3) ∈ R6 have the form:

Q∗(∆3)=

1.40550 0.45770 1.13054 1.01511 −0.02679 0.886440.39900 1.71426 1.19129 1.50651 1.32230 0.459650.71926 1.38386 −1.43662 −0.39688 −1.95500 −1.762721.92849 0.54091 0.58176 −0.13811 −1.87638 −1.53179−0.79901 −0.69781 0.82982 −1.22241 −1.83742 0.77322−0.34735 −0.55520 −0.92495 −0.14342 −1.42744 0.58381

and F∗(∆3) =

(−3.80829, −6.95006, 14.11433, 9.19795, −3.59985, 4.15359

)′.

The solution to the system of linear algebraic equations is λ = −(Q−1 · F ),λ = (−1, 0.99999, 3.20000,−1.95999, 2.35999, 3.59999)′ .

Using the values λ, we find µ: µ =

(0.6468002443

0.1205816063

).

There is a numerical solution to the problem (38)–(41) with the proximity 5.7 · 10−7, i.e.max sup

t∈[0,1]||x(t) − x∗(t)|| ≤ 5.7 · 10−7, where x∗(t) is the numerical solution to the problem

(38)–(41).As we can see, the numerical algorithm proposed is effective and allows us to obtain the

numerical solution to the linear boundary value problem for the Fredholm integro-differentialequation with impulse effects of higher order accuracy.

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 18: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving linear boundary value problem ... 17

Below in Figures 1–3, we give the results obtained by Mathcad 15:

Figure 1 – Graphs of the exact and numerical solutions to the problem (38)-(41) on the interval

[0, 0.2]. The blue solid and purple dotted lines correspond to the

exact and numerical solutions, respectively

Figure 2 – Graphs of the exact and numerical solutions to the problem (38)-(41) on the interval [0.2, 0.6]

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 19: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

18 Anar T. Assanova, Zhanbolat M. Ubaida

Figure 3 – Graphs of the exact and numerical solutions to the problem (38)-(41)

on the interval [0.6, 1]

References

[1] Bykov Ya.A. On some problems in the theory of integro-differential equations, Kirgiz. Gos.Univ., Frunze, (1957). (in Russian).

[2] Krall A.M. The development of general differential and general differential-boundary systems,Rocky Mt. J. Math., 5 (1975), 493-542.

[3] Pruss J. Evolutionary integral equations and applications, Basel etc. Birkhauser Verlag, (1993).https://doi.org/10.1007/978-3-0348-0499-8.

[4] Boichuk A.A., Samoilenko A.M. Generalized Inverse Operators and Fredholm Boundary-ValueProblems, VSP. Utrecht. Boston, (2004). https://dx.doi.org/10.1515/9783110944679.

[5] Parts I., Pedas A., Tamme E. Piecewise polynomial collocation for Fredholm integro-differential equations with weakly singular kernels, SIAM J. Numer. Anal., 43 (2005), 1897-1911.https://doi.org/10.1137/040612452.

[6] Wazwaz A.M. Linear and nonlinear integral equations: Methods and applications, Higher Edu-cation Press, Beijing, Springer-Verlag, Berlin, Heidelberg, (2011). https://doi.org/10.1007/978-3-642-21449-3.

[7] Lakshmikantham V., Bainov D.D., Simeonov P.S. Theory of impulsive differential equations,Singapore, (1989). https://doi.org/10.1142/0906.

[8] Zavalishchin S.T., Sesekin A.N. Dynamic Impulse Systems, Theory and Applications, Dor-drecht, (1997). https://doi.org/10.1007/978-94-015-8893-5.

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 20: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving linear boundary value problem ... 19

[9] He Z., He X. Monotone iterative technique for impulsive integro-differential equations withperiodic boundary conditions, Comput. Math. Appl., 48 (2004), 73-84.https://doi.org/10.1016/j.camwa.2004.01.005.

[10] Dzhumabaev D.S. Solvability of a linear boundary value problem for a Fredholm integro-differential equation with impulsive inputs, Differential Equations, 51:9 (2015), 1180-1197.https://doi.org/10.1134/S0012266115090086.

[11] Dzhumabaev D.S. A method for solving the linear boundary value problem an integro-differentialequation, Comput. Math. Math. Phys., 50 (2010), 1150-1161.https://doi.org/10.1134/S0965542510070043.

[12] Dzhumabaev D.S. New general solutions to linear Fredholm integro-differential equations andtheir applications on solving the boundary value problems, J. Comput. Appl. Math., 327 (2018),79-108. https://dx.doi.org/10.1016/j.cam.2017.06.010

[13] Dzhumabaev D.S. Computational methods for solving the boundary value problems for the loadeddifferential and Fredholm integro-differential equations, Math. Meth. Appl. Sci., 41:4 (2018), 1439-1462. https://doi.org/10.1002/mma.4674

[14] Dzhumabayev D.S. Criteria for the unique solvability of a linear boundary-value problem for anordinary differential equation, USSR Comput. Maths. Math. Phys., 29 (1989), 34-46.

Асанова А.Т., Убайда Ж.М. ИМПУЛЬС ӘСЕРЛI ФРЕДГОЛЬМ ИНТЕГРАЛДЫҚ-ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУI ҮШIН СЫЗЫҚТЫ ШЕТТIК ЕСЕПТI ШЕШУАЛГОРИТМI

Импульс әсерлi Фредгольм интегралдық-дифференциалдық теңдеуi үшiн сызықтышеттiк есептi шешудiң параметрлеу әдiсiне негiзделген алгоритмi ұсынылған. Алго-ритмнiң сандық жүзеге асырылуы келтiрiлген.

Кiлттiк сөздер. Импульс әсерлi Фредгольм интегралдық-дифференциальдық теңдеуi,параметрлеу әдiсi, төртiншi реттi Рунге-Кутта әдiсi, Симпсон әдiсi.

Асанова А.Т., Убайда Ж.М. АЛГОРИТМ РЕШЕНИЯ ЛИНЕЙНОЙ КРАЕВОЙ ЗА-ДАЧИ ДЛЯ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ФРЕДГОЛЬМА СИМПУЛЬСНЫМИ ВОЗДЕЙСТВИЯМИ

На основе метода параметризации предложен алгоритм решения линейной краевойзадачи для интегро-дифференциального уравнения Фредгольма с импульсными воздей-ствиями. Представлена численная реализация алгоритма.

Ключевые слова. Интегро-дифференциальное уравнение Фредгольма с импульснымивоздействиями, метод параметризации, метод Рунге-Кутта четвертого порядка, методСимпсона.

Kazakh Mathematical Journal, 19:1 (2019) 6–19

Page 21: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Kazakh Mathematical Journal ISSN 2413–6468

19:1 (2019) 20–30

An algorithm of solving nonlinear boundary valueproblem for the Van der Pol differential equation

D.S. Dzhumabaev1,2,a,b, D.E. Mursaliyev2,c, A.S. Sergazina2,d, A.A. Kenjeyeva2,e

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan2International Information Technology University, Almaty, Kazakhstan

a,b e-mail: [email protected], [email protected], ce-mail: [email protected] e-mail: [email protected], ee-mail: [email protected]

Communicated by: Anar Assanova

Received: 16.03.2019 ? Accepted/Published Online: 31.05.2019 ? Final Version: 31.05.2019

Abstract. Periodical boundary value problem for the Van der Pol differential equation is solved by

parametrization’s method. Interval is divided into 2 parts, the values of the solution at the left-end

points of the subintervals are considered as additional parameters and original problem is reduced to the

boundary value problem with parameters. Using solutions to the Cauchy problems for the differential

equations with parameters, boundary condition, and the continuity condition at the dividing point, a

system of nonlinear algebraic equations with respect to introduced parameters is composed. Explicit form

of this system exists in exceptional cases. However, for the given parameters, the values of functions,

which present left-hand sides of the system, and their derivatives by parameters, we can find by solving

the Cauchy problems for ordinary differential equations on the subintervals. We find solutions to the

Cauchy problems by forth order Runge-Kutta method. The solution of the composed system is found

by Newton’s method.

Keywords. Boundary value problem, Van der Pol equation, parametrization’s method, fourth order

Runge-Kutta method, Newton’s method.

We consider a periodical boundary value problem for the Van der Pol differential equation:

d2y

dt2= ε(1− y2)dy

dt+ y − εp cos(ωt+ α) + g(t), t ∈ (0, T ), y ∈ R, (1)

y(0) = y(T ),

y′(0) = y′(T ),

2010 Mathematics Subject Classification: 34G20, 44B05, 45J05, 47G20.Funding: The work is supported by the grant project AP05132486 (2018-2020) from the Ministry of

Science and Education of the Republic of Kazakhstan.c© 2019 Kazakh Mathematical Journal. All right reserved.

Page 22: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving nonlinear boundary value problem ... 21

where y is a position coordinate, which is a function of the time t, ω is an angular frequency,ε is a scalar parameter indicating the non-linearity and the strength of damping, g(t) is afunction continuous on [0, T ].

Differential equation (1) was introduced in 1920 to describe the oscillation of triode inthe electrical circuit [1]. The Van der Pol equation has a long history of being used in boththe physical [2] and biological [3] sciences.

Boundary value problems for ordinary differential equations have been studied by numer-ous authors (see [5]– [16] and references cited therein).

By introducing an unknown vector function x(t) =

(x1(t)x2(t)

), where x1(t) = y(t) and

x2(t) = y′(t), we obtain the system of nonlinear ordinary differential equations:

dx1dt

= x2, t ∈ (0, T ), (2)

dx2dt

= −x1 + ε(1− x21)x2 − εp cos(ωt+ α) + g(t), t ∈ (0, T ), (3)

with boundary conditions:

x1(0) = x1(T ), (4)

x2(0) = x2(T ). (5)

Assume that f1(t, x1, x2) = x2, f2(t, x1, x2) = −x1 + ε(1− x21)x2 − εp cos(ωt+ α) + g(t) andwrite down the system of nonlinear ordinary differential equations (2), (3) in the form:

dx

dt= f(t, x), t ∈ (0, T ), x ∈ R2, ||x|| = max

i=1,2|xi|.

In this paper the periodical boundary value problem for the Van der Pol equation is solvedby the method proposed in [4].

Let C([0, T ], R2) be a space of continuous functions x : [0, T ] → R2 with the norm||x||1 = max

t∈(0,T )||x(t)||. A solution to the problem (2)–(5) is a continuously differentiable on

(0, T ) function x(t) ∈ C([0, T ], R2) satisfying the nonlinear differential equations (2), (3) andthe periodical boundary conditions (4), (5).

Let ∆2 be the partition of the interval [0, T ] into two parts with the points: 0 = θ0 <θ1 < θ2 = T .

Denote by C([0, T ],∆2, R4) the space of function systems x[t] = (x(1)(t), x(2)(t)), where

functions x(r) : [θr−1, θr) → R2 are continuous and have the finite left-sided limitslim

t→θr−0x(r)(t), r = 1, 2, with the norm ||x[·]||2 = max

r=1,2sup

t∈[θr−1,θr)||x(r)(t)||.

Let x(t) be a solution to the problem (2)–(5) and let x(1)(t), x(2)(t) be its restric-tions to subintervals [θ0; θ1), [θ1; θ2), respectively. Then the system of two functions x[t] =

Kazakh Mathematical Journal, 19:1 (2019) 20–30

Page 23: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

22 D.S. Dzhumabaev, D.E. Mursaliyev, A.S. Sergazina, A.A. Kenjeyeva

(x(1)(t), x(2)(t)) belongs to C([0, T ],∆2, R4) and its elements x(1)(t), x(2)(t) satisfy the sys-

tem of nonlinear ordinary differential equations:

dx(1)

dt= f(t, x(1)), t ∈ [θ0, θ1), x(1) ∈ R2, (6)

dx(2)

dt= f(t, x(2)), t ∈ [θ1, θ2), x(2) ∈ R2, (7)

the boundary condition:x(1)(θ0) = lim

t→θ2−0x(2)(t), (8)

and the continuity condition:lim

t→θ1−0x(1)(t) = x(2)(θ1). (9)

Introducing parameters λ(1) = x(1)(θ0), λ(2) = x(2)(θ1) and making the substitutionsu(1)(t) = x(1)(t)−λ(1), u(2)(t) = x(2)(t)−λ(2) in (6)–(9), we obtain a new system of nonlineardifferential equations with parameters:

du(1)

dt= f(t, u(1) + λ(1)), t ∈ [θ0, θ1), (10)

du(2)

dt= f(t, u(2) + λ(2)), t ∈ [θ1, θ2), (11)

initial conditions at the left-end points of subintervals:

u(1)(θ0) = 0, (12)

u(2)(θ1) = 0, (13)

the boundary conditionλ(1) − λ(2) − lim

t→θ2−0u(2)(t) = 0, (14)

and the continuity condition

λ(1) + limt→θ1−0

u(1)(t)− λ(2) = 0. (15)

A solution to boundary value problem (10)–(15) is a pair (λ∗, u∗[t]) with elementsλ∗ = (λ∗(1), λ

∗(2)) ∈ R

4 and u∗[t] = (u∗(1)(t), u∗(2)(t)) ∈ C([0, T ],∆2, R

4), where the functions

u∗(1)(t), u∗(2)(t) satisfy the system of nonlinear differential equations (10), (11) and additional

conditions (14), (15) with λ(1) = λ∗(1), λ(2) = λ∗(2) and the initial conditions (12), (13).

We suppose that the Cauchy problems with parameters on subintervals (10), (12) and(11), (13) have the unique solutions u(1)(t, λ(1)) and u(2)(t, λ(2)), respectively. Substituting

Kazakh Mathematical Journal, 19:1 (2019) 20–30

Page 24: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving nonlinear boundary value problem ... 23

corresponding solutions of the Cauchy problems into the boundary and continuity conditionswe receive the following system of nonlinear algebraic equations with respect to introducedparameters λ(1), λ(2):

λ(1) − λ(2) − limt→θ2−0

u(2)(t, λ(2)) = 0, (16)

λ(1) + limt→θ1−0

u(1)(t, λ(1))− λ(2) = 0. (17)

We rewrite system (16), (17) as follows:

Q∗(∆2, λ) = 0, λ ∈ R4. (18)

To find λ∗, that satisfies (18), we use Newton’s method. Newton’s method is an iterativemethod and requires an initial guess λ(0) ∈ R4. We find it by solving the linear boundaryvalue problem obtained from our boundary value problem by ε = 0:

dx1dt

= x2, (19)

dx2dt

= −x1 − εp cos(ωt+ α) + g(t), (20)

x1(0) = x1(T ), (21)

x2(0) = x2(T ). (22)

If x(0)(t) =

(x(0)1 (t)

x(0)2 (t)

)is the solution to the linear boundary value problem (19)–(22), then

the vector λ(0) =

(λ(0)(1)

λ(0)(2)

)∈ R4 is defined by the equalities λ

(0)(1) =

(x(0)1 (θ0)

x(0)2 (θ0)

)and λ

(0)(2) =(

x(0)1 (θ1)

x(0)2 (θ1)

).

In Newton’s method the transfer equation has the form:

λ(n+1) = λ(n) + ∆λ(n), n = 0, 1, ... ,

where ∆λ(n), n = 0, 1, ..., is a solution to the system of linear algebraic equations:

∂Q∗(∆2, λ(n))

∂λ∆λ(n) = −Q∗(∆2, λ

(n)), (23)

with the Jacobian matrix

∂Q∗(∆2, λ(n))

∂λ=

I −I −

∂u(2)(θ2, λ(n)(2) )

∂λ(2)

I +∂u(1)(θ1, λ

(n)(1) )

∂λ(1)−I

. (24)

Kazakh Mathematical Journal, 19:1 (2019) 20–30

Page 25: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

24 D.S. Dzhumabaev, D.E. Mursaliyev, A.S. Sergazina, A.A. Kenjeyeva

To find the value of Q∗(∆2, λ) for the given λ = λ(n), we solve the Cauchy problems (10),

(12) and (11), (13) with parameters λ(1) = λ(n)(1) and λ(2) = λ

(n)(2) , respectively. If we denote

by u(1)(t, λ(n)(1) ) and u(2)(t, λ

(n)(2) ) solutions to problems (10), (12) and (11), (13), then these

functions satisfy the following relations:

du(1)(t, λ(n)(1) )

dt= f(t, u(1)(t, λ

(n)(1) ) + λ

(n)(1) ), t ∈ [θ0, θ1), (25)

u(1)(θ0, λ(n)(1) ) = 0, (26)

du(2)(t, λ(n)(2) )

dt= f(t, u(2)(t, λ

(n)(2) ) + λ

(n)(2) ), t ∈ [θ1, θ2), (27)

u(2)(θ1, λ(n)(2) ) = 0. (28)

In order to determine∂u(1)(θ1, λ

(n)(1) )

∂λ(1), we differentiate (25), (26) by λ(1):

∂λ(1)

(du(1)(t, λ(n)(1) )

dt

)= f ′x(t, u(1)(t, λ

(n)(1) ) + λ

(n)(1) ) ·

[∂u(1)(t, λ(n)(1) )

∂λ(1)+ I

],

t ∈ [θ0, θ1),

∂u(1)(θ0, λ(n)(1) )

∂λ(1)= 0.

And similarly differentiating (27), (28) by λ(2), we get:

∂λ(2)

(du(2)(t, λ(n)(2) )

dt

)= f ′x(t, u(2)(t, λ

(n)(2) ) + λ

(n)(2) ) ·

[∂u(2)(t, λ(n)(2) )

∂λ(2)+ I

],

t ∈ [θ1, θ2),

∂u(2)(θ1, λ(n)(2) )

∂λ(2)= 0.

Thus if we denote by

z(1)(t) =∂u(1)(t, λ

(n)(1) )

∂λ(1), A

(n)(1) (t) = f ′x(t, u(1)(t, λ

(n)(1) ) + λ

(n)(1) ), t ∈ [θ0, θ1),

Kazakh Mathematical Journal, 19:1 (2019) 20–30

Page 26: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving nonlinear boundary value problem ... 25

and

z(2)(t) =∂u(2)(t, λ

(n)(2) )

∂λ(2), A

(n)(2) (t) = f ′x(t, u(2)(t, λ

(n)(2) ) + λ

(n)(2) ), t ∈ [θ1, θ2),

then matrix functions z(1)(t) and z(2)(t) are the solutions to the Cauchy problems for thematrix linear ordinary differential equations on subintervals:

dz(1)

dt= A

(n)(1) (t)z(1)(t) +A

(n)(1) (t), t ∈ [θ0, θ1), (29)

z(1)(θ0) = 0, (30)

dz(2)

dt= A

(n)(2) (t)z(2)(t) +A

(n)(2) (t), t ∈ [θ1, θ2), (31)

z(2)(θ1) = 0, (32)

with the (2× 2)-matrices

A(n)(1) (t) =

(0 1

−1− 2εx(n)(1)1(t)x

(n)(1)2(t) ε(1− (x

(n)(1)1(t))

2)

), t ∈ [θ0, θ1),

A(n)(2) (t) =

(0 1

−1− 2εx(n)(2)1(t)x

(n)(2)2(t) ε(1− (x

(n)(2)1(t))

2)

), t ∈ [θ1, θ2),

where x(n)(1) (t) = λ

(n)(1) + u(1)

(t, λ

(n)(1)

)and x

(n)(2) (t) = λ

(n)(2) + u(2)

(t, λ

(n)(2)

).

Description of the algorithm.

Step 1. We solve the Cauchy problems (10), (12) and (11), (13) on the closed subintervals

[θ0, θ1] and [θ1, θ2], respectively. Using their solutions u(1)(t, λ(n)(1) ), u(2)(t, λ

(n)(2) ), n = 0, 1, ...,

we find

Q∗(∆2, λ(n)) =

(λ(n)(1) − λ

(n)(2) − u(2)(θ2, λ

(n)(2) )

λ(n)(1) + u(1)(θ1, λ

(n)(1) )− λ

(n)(2)

), n = 0, 1, ... .

Step 2. Compute (2× 2)-matrices A(n)(1) (t), A

(n)(2) (t), n = 0, 1, ..., for each closed subintervals.

Solving (29), (30) and (31), (32) on the closed subintervals [θ0, θ1] and [θ1, θ2] by forth orderRunge-Kutta method, we find z(1)(θ1), z(2)(θ2) and according to formula (24) construct theJacobian matrix

∂Q∗(∆2, λ(n))

∂λ=

I −I −

∂u(2)(θ2, λ(n)(2) )

∂λ(2)

I +∂u(1)(θ1, λ

(n)(1) )

∂λ(1)−I

, n = 0, 1, ... .

Kazakh Mathematical Journal, 19:1 (2019) 20–30

Page 27: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

26 D.S. Dzhumabaev, D.E. Mursaliyev, A.S. Sergazina, A.A. Kenjeyeva

Step 3. Solve the system of linear algebraic equations (23):

∂Q∗(∆2, λ(n))

∂λ∆λ(n) = −Q∗(∆2, λ

(n)), n = 0, 1, ... ,

and find ∆λ(n), n = 0, 1, ....

Step 4. Determine vector λ(n+1) by the equality λ(n+1) = λ(n) + ∆λ(n), n = 0, 1, ... .

Example. Consider the system of nonlinear ordinary differential equations:

dx1dt

= x2, (33)

dx2dt

= −x1 + ε(1− x21)x2 − εp cos(ωt+ α) + g(t) (34)

with the boundary conditions:x1(0) = x1(T ), (35)

x2(0) = x2(T ). (36)

Here T = 1, ω = 2π, α = 0, p = 1, ε = 0.5, g(t) = −4π2cos(2πt) + cos(2πt) + 2πε(1 −cos2(2πt))sin(2πt)− εpcos(ωt+ α).

The partition point and the initial guess: θ = 12 , λ

(0) =

0.999999999926279−0.342961455410546−0.9999999999262730.342961455410548

, the

exact solution x∗(t) =

(cos(2πt)−2πsin(2πt)

).

Iteration 1:

∂Q∗(∆2, λ(0))

∂λ=

1 0 −0.87758256 −0.479425530 1 0.47942553 −0.87758256

0.87758256 0.47942553 −1 0−0.47942553 0.87758256 0 −1

,

Q∗(∆2, λ(0)) =

−0.173522158394070−0.625737662994771−0.173522158394068−0.625737662994775

,

∆λ(0) =

0.0068725506727430.335022572146646−0.006872550672749−0.335022572146652

, λ(1) =

1.006872550599022−0.007938883263900−1.0068725505990220.007938883263896

.

Kazakh Mathematical Journal, 19:1 (2019) 20–30

Page 28: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving nonlinear boundary value problem ... 27

Iteration 2:

∂Q∗(∆2, λ(1))

∂λ=

1 0 −0.87758256 −0.479425530 1 0.47942553 −0.87758256

0.87758256 0.47942553 −1 0−0.47942553 0.87758256 0 −1

,

Q∗(∆2, λ(1)) =

0.009710178637406−0.0183365544719110.009710178637405−0.018336554471907

· 10−3,

∆λ(1) =

−0.0071961348424020.0079285694016260.007196134842409−0.007928569401622

· 10−4, λ(2) =

0.999676415756619−0.000010313862274−0.9996764157566120.000010313862274

.

In iteration 7, we have:

∂Q∗(∆2, λ(2))

∂λ=

1 0 −0.87758256 −0.479425530 1 0.47942553 −0.87758256

0.87758256 0.47942553 −1 0−0.47942553 0.87758256 0 −1

,

Q∗(∆2, λ(2)) =

−0.1243801106554090.031595249310507−0.1243801039940710.031595266241408

· 10−7,

∆λ(2) =

0.6622386881537180.000820966056705−0.662238323313117−0.000821011841771

· 10−8, λ(3) =

0.999999999265294−0.000000002419266−0.9999999992652770.000000002419262

.

In Table 1, we give the numerical solution to the problem (33)–(36) which is obtained by

solving ordinary differential equations (6) and (7) with the initial conditions x(θ0) = λ(7)(1) and

x(θ1) = λ(7)(2), respectively using forth order Runge-Kutta method.

Kazakh Mathematical Journal, 19:1 (2019) 20–30

Page 29: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

28 D.S. Dzhumabaev, D.E. Mursaliyev, A.S. Sergazina, A.A. Kenjeyeva

Table 1 – Numerical solution and true error

t x(1)(t) |x∗(1)(t)− x(1)(t)| x(2)(t) |x∗(2)(t)− x(2)(t)|0 0.9999999992 0.73470585·10−9 -0.0000000024 2.41926569·10−9

0.1 0.8090169936 0.70465189·10−9 -3.6931636619 0.99506358·10−9

0.2 0.3090169942 0.15180812·10−9 -5.9756643300 0.54867754·10−9

0.3 -0.3090169938 0.54566057·10−9 -5.9756643332 3.72425201·10−9

0.4 -0.8090169932 1.15572973·10−9 -3.6931636628 1.83278814·10−9

0.5 -0.9999999992 0.73472261·10−9 0.0000000024 2.41926303·10−9

0.6 -0.8090169936 0.70466854·10−9 3.6931636619 0.99506269·10−9

0.7 -0.3090169942 0.15182477·10−9 5.9756643300 0.54867754·10−9

0.8 0.3090169938 0.54564386·10−9 5.9756643332 3.72425112·10−9

0.9 0.8090169932 1.15571330·10−9 3.6931636628 1.83278325·10−9

1 0.9999999984 1.55654689·10−9 -0.0000000022 2.21050329·10−9

References

[1] B. van der Pol. On oscillation hysteresis in a triode generator with two degrees of freedomPhilos, Mag., 6:43 (1922), 700-719. https://doi.org/10.1080/14786442208633932.

[2] Van der Pol. On relaxation-oscillations, The London, Edinburgh and Dublin Phil. Mag. J. ofSci., 2:7 (1927), 978-992. https://doi.org/10.1080/14786442608564127.

[3] FitzHugh R. Mathematical models of threshold phenomena in the nerve membrane, Bull. Math.Biophysics, 17 (1955), 257-278. https://doi.org/10.1007/BF02477753.

[4] Dzhumabaev D.S. A method for solving nonlinear boundary value problems for ordinary differ-ential equations, Mathematical Journal, 3 (2018), 43-51.

[5] Aziz A. Numerical solutions for ordinary differential equations, Academic Press, New York,(1975).

[6] Ascher U.M., Mattheij R.M., Russel R.D. Numerical solution of boundary value problems forordinary differential equations, SIAM Classics in Applied Mathematics 13, SIAM, Philadelphia, (1995).https://doi.org/10.1137/1.9781611971231.

[7] Babenko K.I. Fundamentals of numerical analysis, Nauka, Moscow, 1986.[8] Bakhvalov N.S. Numerical methods: Analysis, Algebra, Ordinary Differential Equations, Mir,

Moscow, 1977.[9] Bellman R., Kalaba R. Quasilinearization and nonlinear boundary value problems, American

Elsevier, New York, 1965. https://doi.org/10.1137/1008091.[10] Bernfeld S.R., Lakshmikantham V. An introduction to nonlinear boundary value problems,

Mathematics in Science and Engineering 109, Academic Press, New York, (1974).[11] Brugnano L., Trigiante D. Solving differential problems by multistep initial and boundary value

methods, Gordon and Breach, Amsterdam, 1998.[12] Deuflhard P., Bornemann F. Scientific computing with ordinary differential equations, Springer-

Verlag, 2002. https://doi.org/10.1007/978-0-387-21582-2.

Kazakh Mathematical Journal, 19:1 (2019) 20–30

Page 30: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An algorithm of solving nonlinear boundary value problem ... 29

[13] Deuflhard P. Newton methods for nonlinear problems, Springer, 2004.https://doi.org/10.1007/978-3-642-23899-4.

[14] Lampert J.D. Computational methods in ordinary differential equations, Wiley, New York, 1973.https://doi.org/10.1002/zamm.19740540726.

[15] Ronto M., Samoilenko A.M. Numerical-analytic methods in the theory of boundary-value prob-lems, Word Scientific, River Edge, New York, 2000. https://doi.org/10.1142/3962.

[16] Shampine L.F. Numerical solution of ordinary differential equations, Chapman & Hall, NewYork, 1994. https://doi.org/10.1137/1037026.

Джумабаев Д.С., Мурсалиев Д. Е., Сергазина А.С., Кенжеева А.А. ВАН ДЕР ПОЛЬДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУI ҮШIН СЫЗЫҚТЫ ЕМЕС ШЕТТIК ЕСЕПТI ШЕ-ШУ АЛГОРИТМI

Ван-дер-Поль дифференциалдық теңдеуi үшiн периодты шеттiк есеп параметрлеуәдiсiмен шешiледi. Аралық екi бөлiкке бөлiнедi, шешiмнiң iшкi аралықтардың сол жақшеткi нүктелерiндегi мәндерi қосымша параметрлер ретiнде қарастырылады, ал берiл-ген есеп параметрлi шеттiк есепке келтiрiледi. Параметрлi Коши есептерiнiң шешiмдерiн,шекаралық шартты және бөлу нүктесiндегi үзiлiссiздiк шартын қолданып енгiзiлген па-раметрлерге қатысты сызықты емес алгебралық теңдеулер жүйесi құрылады. Бұл жүй-енi айқын түрде сирек жағдайларда ғана жазуға болады. Алайда берiлген параметрлерүшiн жүйенiң сол жақ бөлiгiндегi функциялардың мәндерiн, және олардың параметрлербойынша туындыларын жай дифференциалдық теңдеулер үшiн iшкi аралықтарда Ко-ши есептерiн шешу арқылы таба аламыз. Коши есептерiнiң шешiмдерiн төртiншi реттiРунге-Кутта әдiсiмен табамыз. Құрылған жүйенiң шешiмi Ньютон әдiсiмен табылады.

Кiлттiк сөздер. Шеттiк есеп, Ван дер Поль теңдеуi, параметрлеу әдiсi, төртiншi реттiРунге-Кутта әдi Ньютон әдiсi.

Kazakh Mathematical Journal, 19:1 (2019) 20–30

Page 31: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

30 D.S. Dzhumabaev, D.E. Mursaliyev, A.S. Sergazina, A.A. Kenjeyeva

Джумабаев Д.С., Мурсалиев Д.Е., Сергазина А.С., Кенжеева А.А. АЛГОРИТМРЕШЕНИЯ НЕЛИНЕЙНОЙ КРАЕВОЙ ЗАДАЧИ ДЛЯ ДИФФЕРЕНЦИАЛЬНОГОУРАВНЕНИЯ ВАН ДЕР ПОЛЯ

Периодическая краевая задача для дифференциального уравнения Ван-дер-Поля ре-шается методом параметризации. Интервал делится на 2 части, значения решения влевых конечных точках подинтервалов рассматриваются как дополнительные парамет-ры, а исходная задача сводится к краевой задаче с параметрами. Используя решениязадач Коши для дифференциальных уравнений с параметрами, граничное условие иусловие непрерывности в точке деления, составляется система нелинейных алгебраиче-ских уравнений по введенным параметрам. В явном виде эту систему удается записатьв исключительных случаях. Однако для заданных параметров значения функций, ко-торые представляют левые части системы, и их производные по параметрам мы можемнайти, решая задачи Коши для обыкновенных дифференциальных уравнений на подин-тервалах. Решения задач Коши мы находим методом Рунге-Кутты четвертого порядка.Решение составленной системы находится методом Ньютона.

Ключевые слова. Краевая задача, уравнение Ван дер Поля, метод параметризации,метод Рунге-Кутты четвертого порядка, метод Ньютона.

Kazakh Mathematical Journal, 19:1 (2019) 20–30

Page 32: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Kazakh Mathematical Journal ISSN 2413–6468

19:1 (2019) 31–38

About root functions of periodic Sturm-Liouvilleproblem with symmetric potential

Tynysbek Sh. Kal’menov1,a, Nurbek Kakharman1,2,b, Makhmud A. Sadybekov3,c

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan2Al-Farabi Kazakh National University, Almaty, Kazakhstan

a e-mail: [email protected], be-mail: [email protected], c e-mail: [email protected]

Communicated by: Mukhtarbai Otelbayev

Received: 06.05.2019 ? Accepted/Published Online: 31.05.2019 ? Final Version: 31.05.2019

Abstract. In this work, we consider spectral problems for the Sturm - Liouville differential operator

−u′′(x) + q(x)u(x) = λu(x) on (0, 1) with periodic and antiperiodic boundary conditions u′(0) =

±u′(1), u(0) = ±u(1). The Riesz basis property of the system of root functions of such problems is

proved in the case of a potential q(x) that is summable on an interval, when it satisfies the symmetry

condition q(x) = q(1 − x).

Keywords. Sturm-Liouville differential operator, boundary value problem, well-posedness, Green’s func-

tion, eigenfunctions, eigenvalues.

1 Introduction

We consider two spectral problems for the Sturm-Liouville operator with periodic (θ = 0)and antiperiodic (θ = 1) boundary conditions:

Lθu ≡ −u′′(x) + q(x)u(x) = λu(x), x ∈ (0, 1), (1)U1(u) ≡ u′(0)− (−1)θu′(1) = 0,

U2(u) ≡ u(0)− (−1)θu(1) = 0, θ = 0, 1.(2)

By Lθ we denote a closure in L2(0, 1) of the operator given by the differential expression(1) on a linear manifold of functions u ∈ C2[0, 1] satisfying the boundary conditions (2).

It is easy to justify that the operator Lθ is a linear operator on L2(0, 1) defined by (1)with the domain

D(Lθ) =u ∈W 2

2 (0, 1) : U1(u) = 0, U2(u) = 0.

2010 Mathematics Subject Classification: 47F05, 35P10.Funding: The first and second author were supported by the MES RK grant 05133239 and the third

author was supported by the MES RK grant AP05133271.c© 2019 Kazakh Mathematical Journal. All right reserved.

Page 33: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

32 Tynysbek Sh. Kal’menov, Nurbek Kakharman, Makhmud A. Sadybekov

For the elements u ∈ D(Lθ) we understand the action of the operator Lθu = −u′′(x) +q(x)u(x) in a sense of almost everywhere on (0, 1).

By an eigenvector of the operator Lθ corresponding to an eigenvalue λ0 ∈ C, we meanany non-zero vector u0 ∈ D(Lθ) which satisfies the equation:

Lθu0 = λ0u0. (3)

By an associated vector of the operator Lθ of order m (m = 1, 2, . . .) corresponding to thesame eigenvalue λ0 and the eigenvector u0, we mean any function um ∈ D(Lθ) which satisfiesthe equation:

Lθum = λ0um + um−1. (4)

The vectors u0, u1, . . . are called a chain of the eigenvectors and associated vectors of theoperator Lθ corresponding to the eigenvalue λ0.

The eigenvalues of the operator Lθ will be called eigenvalues of the problem (1)–(2).The eigen- and associated vectors of the operator Lθ will be called eigen- and associatedfunctions (EAF) of the problem (1)–(2). The set of all eigen- and associated functions (theyare collectively called root functions) corresponding to the same eigenvalue λ0 forms a rootlinear manifold. This manifold is called a root subspace.

It is well known that with a real-valued potential q(x), both problems under considerationare self-adjoint. The boundary conditions (2) are Birkhoff regular, but not strongly regular [1,chapter 2]. Therefore, for complex-valued q(x), the EAF system of the problem is completeand minimal in L2(0, 1). The eigenvalues of the problem are asymptotically arranged in pairs.From [2], [3] it follows that two-dimensional subspaces, composed of EAF, corresponding topairwise close eigenvalues form a Riesz basis in L2(0, 1).

The works [4], [5], [6] are devoted to the study of conditions on q(x), under which EAFof periodic problems form the usual Riesz basis.

In the work [4] for q(x) ∈ C4[0, 1], q(0) 6= q(1) the Riesz basis property of root vectors inL2(0, 1) is proved.

In the work [5] the basis property conditions in L2(0, 1) of EAF systems in terms of theorder of decreasing Fourier coefficients of a function

q(x) ∈Wm1 (0, 1), q(l)(0) = q(l)(1), l = 0, 1, ...,m− 1.

are found.

In [6] for the case q(x) ∈ W p1 (0, 1), q(l)(0) = q(l)(1) = 0, l = 0, 1, ..., s − 1, s ≤ p, it is

proved the Riesz basis criterion in L2(0, 1) of EAF system in terms of the order of decreasingFourier coefficients of the functions

q(x), Q(x) =

∫ x

0q(t)dt, S(x) = Q2(x).

Kazakh Mathematical Journal, 19:1 (2019) 31–38

Page 34: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

About root functions of periodic Sturm-Liouville problem ... 33

The main aim of this paper is to justify the Riesz basis property of the EAF system ofthe periodic and antiperiodic problems (1), (2) with the symmetric potential q(x) = q(1−x).

Note that the symmetry condition of the potential is essential for the spectral properties ofboundary value problems. In the work [7] the dependence of the spectrum on the coefficientsof the boundary conditions for an even-order differential operator with a certain symmetry ofthe coefficients of the operator was investigated. There it was first shown that under certainconditions on the coefficients of the equation, the spectrum of the operator does not dependon some coefficients of the boundary condition. In particular, as a result, it was shown thatthe spectrum of the problem for the equation (1) with boundary conditions

u(0) = bu(1), u′(0) = u′(1), (5)

with the symmetric coefficient q(x) = q(1− x), does not depend on the coefficient b 6= −1 ofthe boundary condition (5) and coincides with the spectrum of the periodic boundary valueproblem (problems (1), (2) with θ = 0).

In the work [8] it is shown that all Volterra boundary value problems for equation (1) aregiven by the conditions

u(0) = αu(1), u′(0) = −αu′(1)

with α2 6= 1. With α 6= 0 the symmetry condition q(x) = q(1 − x) is a criterion for theVolterra property of this problem.

The spectral properties of problems with non-reinforced regular boundary conditions arethe subject of research by many mathematicians. From recent papers, [9]– [14], we notethat some new results are obtained for spectral problems and their applications are given inproblems for partial differential equations.

The main result of this paper is formulated as a theorem.

Theorem 1. If q(x) ∈ L1(0, 1) and q(x) = q(1−x) for almost all x ∈ (0, 1), then the systemof eigen- and associated functions of problem (1), (2) is Riesz basis in L2(0, 1).

2 On the symmetry of the root functions of Dirichlet and Neumann problems

For the equation (1) consider the Dirichlet problem

u(0) = 0, u(1) = 0, (6)

and the Neumann problemu′(0) = 0, u′(1) = 0. (7)

Lemma 1. If q(x) ∈ L1(0, 1) and q(x) = q(1−x), then all eigen- and associated functions ofthe Dirichlet problem (1), (6) and the Neumann problem (1), (7) possess one of the propertiesof symmetry:

u(x) = u(1− x) or u(x) = −u(1− x) for all x ∈ [0, 1]. (8)

Kazakh Mathematical Journal, 19:1 (2019) 31–38

Page 35: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

34 Tynysbek Sh. Kal’menov, Nurbek Kakharman, Makhmud A. Sadybekov

Proof. We will conduct the proof only for the Dirichlet problem. The proof of the Neumannproblem is similar. Let λDk be eigenvalues of the Dirichlet problem (1), (6) of multiplicitymDk + 1, to which there correspond the normalized eigenfunctions vk0(x) and (maybe) chains

of adjoined functions vkj(x), j = 1,mDk :

LDvk0 = λDk vk0 , LDvkj = λDk vkj + vkj−1.

Denote

v±kj = vkj(x)± vkj(1− x).

It may turn out that v+kj(x) ≡ 0 or v−kj(x) ≡ 0. But not at the same time. It is obvious thatall these functions satisfy one of the symmetry conditions (8).

It is easy to see that the functions v+k0(x) and v−k0(x) are solutions of the Dirichlet problem

Lv(x) = λDk v(x), x ∈ (0, 1); v(0) = 0, v(1) = 0.

Those of them that are not identical with zero are eigenfunctions. Since the Dirichlet problemcannot have two (linearly independent) eigenfunctions corresponding to one eigenvalue, thereis only one eigenfunction v+k0(x) or v−k0(x). And it satisfies one of the symmetry conditions(8). If λDk is a multiple eigenvalue of the Dirichlet problem, then the corresponding functionsv+kj (or v−kj) form a chain of associated to v+k0 (respectively to v−k0) functions. Obviously, they

have the same symmetry property from (8), as the function v+k0 (respectively v−k0).

We show that there is no EAF, that does not possess any of the symmetry properties (8).Consider the system of functions

v+kj(x), v−ni(x), j = 0,mDk , i = 0,mD

n

k,n∈N

. (9)

Some of these functions may turn out to be zero, but we do not pay attention to this. Weprove that system (9) is complete in L2(0, 1). Indeed, suppose g(x) ∈ L2(0, 1) is orthogonalto all functions of system (9). Then

0 = (v±kj , g) =

∫ 1

0v±kj(x)g(x)dx =

∫ 1

0[vkj(x)± vkj(1− x)] g(x)dx

=

∫ 1

0vkj(x)g(x)± vkj(1− x)g(x)dx =

∫ 1

0vkj(x)g(x)dx±

∫ 1

0vkj(1− x)g(x)dx.

If we let x→ 1− x, then note that∫ 1

0vkj(1− x)g(x)dx =

∫ 0

1vkj(x)g(1− x)d(1− x) =

∫ 1

0vkj(x)g(1− x)dx

Kazakh Mathematical Journal, 19:1 (2019) 31–38

Page 36: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

About root functions of periodic Sturm-Liouville problem ... 35

then

0 =

∫ 1

0vkj(x)

[g(x)± g(1− x)

]dx, k ∈ N, j = 0,mD

k .

Since the systemvkj(x), j = 0,mD

k

k∈N

is complete in L2(0, 1), then g(x) ± g(1− x) = 0

⇒ g(x) = 0 for all x ∈ (0, 1), which proves the completeness of system (9) in L2(0, 1). Thesystem (9) remains complete when removing identically zero functions from it. All nonzerofunctions of the system (9) are EAF of the Dirichlet problems (1), (6). Since this system offunctions is complete in L2(0, 1), the problem has no other EAF. All elements of the system(9) possess one of the symmetry properties (8). Lemma 1 is proved.

3 Proof of the main theorem

Letvkj(x), j = 0,mD

k

k∈N

be a EAF system of Dirichlet problems (1), (6), possessing

symmetry property

v(x) = (−1)θv(1− x), for every x ∈ [0, 1], (10)

and let λDk be their own eigenvalues; and letwni(x), i = 0,mN

n

n∈N

be a EAF system of

Neumann problems (1), (7), possessing symmetry property

w(x) = −(−1)θw(1− x), for every x ∈ [0, 1], (11)

and let λNn be eigenvalues of the Neumann problem corresponding to them.

By direct calculation it is easy to verify that the functions vkj(x) and wni(x) are the EAFof the original problem (1), (2), corresponding to the eigenvalues λDk and λNn , respectively.If we show that the system

vkj(x), wni(x), j = 0,mDk , i = 0,mN

n

k,n∈N

(12)

is complete in L2(0, 1), then problem (1), (2) has no other EAF.

The space L2(0, 1) is divided into a direct sum of two subspaces: a spaces L+2 (0, 1) of

functions, possessing symmetry property (10), and a space L−2 (0, 1) of functions, possessingsymmetry property (11). By virtue of the proven Lemma 1 the system vkj(x)k∈N is com-

plete in L+2 (0, 1), and the system wni(x)n∈N is complete in L−2 (0, 1). Therefore, system

(12) is complete in L2(0, 1). Therefore, the problem does not have an EAF of other kind.

Thus, the EAF system (12) of the periodic problem (1), (2) consists only of EAF of theDirichlet problem, possessing symmetry property (10), and of EAF of the Neumann problemwith the symmetry property (11). Obviously, the system vkj(x)k∈N forms the Riesz basis

in L+2 (0, 1), and the system wni(x)n∈N forms the Riesz basis in L−2 (0, 1). Therefore, the

Kazakh Mathematical Journal, 19:1 (2019) 31–38

Page 37: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

36 Tynysbek Sh. Kal’menov, Nurbek Kakharman, Makhmud A. Sadybekov

EAF system of the periodic problem (1), (2) forms the Riesz basis in L2(0, 1). The theoremis proved.

Since the Dirichlet and Neumann problems are strongly regular, they can have only afinite number of associated functions. Therefore, from the course of the proof of the theoremwe obtain

Corollary 1. If q(x) ∈ L1(0, 1) and q(x) = q(1 − x), then the periodic boundary valueproblems (1), (2) may have no more than a finite number of associated functions.

It is interesting that Lemma 1 has a converse.

Lemma 2. If q(x) ∈ L1(0, 1) and all EAF of the periodic problem (1), (2) or of the Dirichletproblem (1), (6) or of the Neumann problem (1), (7) have one of the properties of symmetry(8), then q(x) = q(1− x).

Proof. Take only the odd EAF ukj(x), that is, having the property of symmetry ukj(x) +ukj(1− x) = 0. They satisfy the equation

−u′′kj(x) + q(x)ukj(x) = λkukj(x) + ukj−1(x), 0 < x < 1.

Integrating it over the interval 0 < x < 1, we find∫ 1

0q(x)ukj(x)dx = 0.

Since the odd EAF ukj(x) are complete in the subspace of odd functions from L2(0, 1),then q(x) is an even function. Lemma 2 is proved.

References

[1] Naimark M.A. Linear Differential Operators, New York: Ungar, 1967.[2] Shkalikov A.A. Bases formed by eigenfunctions of ordinary differential-operators with integral

boundary-conditions, Russian Mathematical Surveys, 34:5 (1979), 249-250.[3] Shkalikov A.A. Bases formed by eigenfunctions of ordinary differential-operators with integral

boundary-conditions, Vestnik Moskovskogo Universiteta Seriya 1 Matematika Mekhanika, 6 (1982),12-21.

[4] Kerimov N.B., Mamedov K.R. On the Riesz basis property of the root functionsin certain regular boundary value problems, Mathematical Notes, 64:4 (1998), 483-487.https://doi.org/10.1007/BF02314629.

[5] Makin A.S. Convergence of expansions in the root functions of periodic boundary value problems,Doklady Mathematics, 73:1 (2006), 71-76. https://doi.org/10.1134/S1064562406010194.

[6] Shkalikov A.A., Veliev O.A. On the Riesz basis property of the eigen-and associated functionsof periodic and antiperiodic Sturm-Liouville problems, Mathematical Notes, 85:5-6 (2009), 647-660.https://doi.org/10.1134/S0001434609050058.

Kazakh Mathematical Journal, 19:1 (2019) 31–38

Page 38: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

About root functions of periodic Sturm-Liouville problem ... 37

[7] Sadovnichij V.A., Kanguzhin B.E. A connection between the spectrum of a differential operatorwith symmetric coefficients and the boundary conditions, Sov. Math. Dokl., 26 (1982), 614-618.

[8] Biyarov B.N., Dzhumabaev S.A. A criterion for the Volterra property of boundary value prob-lems for Sturm-Liouville equation, Math. Notes, 56:1 (1994), 751-753.https://doi.org/10.1007/BF02110567.

[9] Sadybekov M.A., Oralsyn G. Nonlocal initial boundary value problem for the time-fractionaldiffusion equation, Electronic Journal of Differential Equations, 201 (2017), 1-7.

[10] Sadybekov M.A., Imanbaev N.S. Characteristic determinant of a boundary value problem, whichdoes not have the basis property, Eurasian Math. J., 8:2 (2017), 40-46.

[11] Sadybekov M.A., Dildabek G., Tengayeva A. Constructing a basis from systems of eigen-functions of one not strengthened regular boundary value problem, Filomat, 31:4 (2017), 981-987.https://doi.org/10.2298/FIL1704981S.

[12] Sadybekov M.A., Oralsyn G., Ismailov M. Determination of a Time-Dependent Heat Sourceunder not Strengthened Regular Boundary and Integral Overdetermination Conditions, Filomat. 32:3(2018), 809–814. https://doi.org/10.2298/FIL1803809S.

[13] Sadybekov M.A., Dildabek G., Ivanova M.B. Spectral Properties of a Frankl Type Problemfor Parabolic-Hyperbolic Equation, Electronic Journal of Differential Equations, 65 (2018), 1-11.https://doi.org/10.1155/2018/8301656.

[14] Sadybekov M.A., Dildabek G., Ivanova M.B. On an Inverse Problem of Reconstructing a Heat

Conduction Process from Nonlocal Data, Advances in Mathematical Physics, Art.no. 8301656 (2018),

1-8.

Кәлменов Т.Ш., Қахарман Н., Садыбеков М.А. СИММЕТРИЯЛЫ ПОТЕНЦИАЛ-ДЫ ПЕРИОДТЫ ШТУРМ-ЛИУВИЛЛЬ ЕСЕБIНIҢ ТҮБIРЛIК ФУНКЦИЯЛАРЫ ТУ-РАЛЫ

Бұл мақалада (0, 1) кесiндiсiнде u′(0) = ±u′(1), u(0) = ±u(1) периодты және анти-периодты шекаралық шартты −u′′(x) + q(x)u(x) = λu(x) Штурм–Лиувилль дифферен-циалдық операторы үшiн спектралды есептер қарастырылған. Қарастырылып отырғанесептiң аралықта қосындылатын q(x) потенциалы q(x) = q(1 − x) симметрия шартынқанағаттандыратын болса, оның түбiрлiк (меншiктi және қосалқы) функциялары Риссбазисi болатыны дәлелденген.

Кiлттiк сөздер. Лаплас операторы, шеттiк есеп, Самарский-Ионкин тектес есеп, қи-сындылық, Грин функциясы, меншiктi функциялар, меншiктi мәндер.

Kazakh Mathematical Journal, 19:1 (2019) 31–38

Page 39: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

38 Tynysbek Sh. Kal’menov, Nurbek Kakharman, Makhmud A. Sadybekov

Кальменов Т.Ш., Кахарман Н., Садыбеков М.А. О КОРНЕВЫХ ФУНКЦИЙ ПЕРИ-ОДИЧЕСКОЙ ЗАДАЧИ ШТУРМА-ЛИУВИЛЛЯ С СИММЕТРИЧНЫМ ПОТЕНЦИ-АЛОМ

В этой статье рассматривается спектральные задачи для дифференциального опера-тора Штурма-Лиувилля −u′′(x) + q(x)u(x) = λu(x) на отрезке (0, 1) с периодическими иантипериодическими краевыми условиями u′(0) = ±u′(1), u(0) = ±u(1). Доказана базис-ность Рисса системы корневых (собственных и присоединенных) функций рассматривае-мых задач в случае суммируемого на интервале потенциала q(x), когда он удовлетворяетусловию симметрии q(x) = q(1− x).

Ключевые слова. Оператор Лапласа, краевая задача, задача типа Самарского-Ионкина, Корректность, пункция Грина, собственные функции, собственные значения.

Kazakh Mathematical Journal, 19:1 (2019) 31–38

Page 40: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Kazakh Mathematical Journal ISSN 2413–6468

19:1 (2019) 39–49

On solvability of some nonlocal boundary valueproblems for polyharmonic equation

Valeriy V. Karachik1,a, Batirkhan Kh. Turmetov2,b

1South Ural State University, Chelyabinsk, Russia2A.Yasawi International Kazakh-Turkish University, Turkistan, Kazakhstan

a e-mail: [email protected], be-mail: [email protected]

Communicated by: Ravshan Ashurov

Received: 17.02.2019 ? Accepted/Published Online: 31.05.2019 ? Final Version: 31.05.2019

Abstract. This work is devoted to the solvability of some non-classical boundary value problems for

the polyharmonic equation. These problems generalize the Dirichlet and Neumann problems for the

polyharmonic equation. The considered problems are nonlocal boundary value problems of Bitsadze-

Samarskii type. The investigated problems are solved by reducing them to the Dirichlet problem and the

Neumann type problems. Theorems on the existence and the uniqueness of the problem’s solution are

proved and exact solvability conditions are received. We obtain necessary and sufficient conditions for

the solvability of the Neumann type problem for the polyharmonic equation in the unit ball. By applying

Green’s functions, as well as the statement of the existence of a solution to the Dirichlet problem, the

obtained integral representations for the solutions are constructed.

Keywords. Polyharmonic equation, nonlocal problem, involution, Dirichlet problem, Neumann type

problem, uniqueness, existence.

1 Introduction

Nonlocal boundary value problems for elliptic equations in which boundary conditions aregiven in the form of a connection between the values of the unknown function and its deriva-tives at various points of the boundary, are called the problems of the Bitsadze-Samarskiitype [1]. Numerous applications of the nonlocal boundary value problems for elliptic equa-tions in problems of physics, the engineering, and other branches of the science are describedin detail in [2], [3]. Solvability of nonlocal boundary value problems for the elliptic equationsis discussed in [4]–[8]. Boundary value problems with involution for elliptic equations of thesecond and fourth orders, as a special case of nonlocal problems, are considered in [9]–[13].

2010 Mathematics Subject Classification: 31A30, 31B30, 35J40.Funding: The research is supported by Act 211 of the Government of the Russian Federation, contract

no. 02.A03.21.0011, and by the grant from the Ministry of Science and Education of the Republic of Kazakhstan(grant no.AP05131268).

c© 2019 Kazakh Mathematical Journal. All right reserved.

Page 41: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

40 Valeriy V. Karachik, Batirkhan Kh. Turmetov

Let Ω = x ∈ Rn : |x| < 1 be the unit ball, n ≥ 2, and let ∂Ω be the unit sphere. For anypoint x = (x1, x2, · · · , xn) ∈ Ω we consider the point x∗ = Cx, where C is a real orthogonalmatrix CCT = E. Suppose also that there exists a natural l ∈ N such that C l = E.

Let m ≥ 1, αk be some real numbers, p take one of the meanings p = 0 or p = 1, Dkν =

∂k

∂νk,

k ≥ 1, ν be the unit vector of the outward normal to ∂Ω, and let D0ν = I be the unit operator.

In this paper we study the following nonlocal boundary value problem

(−∆)mu(x) = f(x), x ∈ Ω, (1)

Dk+pν u(x) + αkD

k+pν u(x∗) = gk(x), x ∈ ∂Ω, k = 0, 1, ...,m− 1. (2)

By a solution of the problem (1), (2) we mean a function u(x) ∈ C2m(Ω) ∩ Cm+p−1(Ω)satisfying conditions (1), (2) in the classical sense. In the case αk = 0 when p = 0 weobtain the well-known Dirichlet problem [14] and, when p = 1 we have the Neumann typeproblems [15], [16].

2 Auxiliary statements

First we note that if x ∈ Ω, or x ∈ ∂Ω, then x∗ = Cx ∈ Ω, or x∗ = Cx ∈ ∂Ω,respectively, since the transformation of the space Rn by the matrix C preserves the norm|x∗|2 = |Cx|2 = (Cx,Cx) = (CTCx, x) = |x|2.

The case x∗ = −x investigated in [9]–[13] is a particular case of the situation consideredhere since for C = −E we have CCT = −E(−E) = E and l = 2.

It is obvious that the transformation made by the matrix C can be also a rotation in thespace Rn, for example, if C = C1

ϕ1C2ϕ2· · ·Cn−2

ϕn−2, where

Ciϕ =

Ei 0 0 00 cosϕ − sinϕ 00 sinϕ cosϕ 00 0 0 En−i−2

,

Ei is the unit i× i matrix and i = 1, n− 2. This is so since CT = Cn−2−ϕn−2

· · ·C2−ϕ2

C1−ϕ1

and

hence CCT = C1ϕ1C2ϕ2· · ·Cn−2

ϕn−2Cn−2−ϕn−2

· · ·C2−ϕ2

C1−ϕ1

= E.Consider the operator

ICu(x) = u(Cx) = u(x∗).

In view of what has been said above, this operator is defined on functions u(x), x ∈Ω. We also consider the operator Λu =

n∑i=1

xiuxi(x) that is homogeneous, preserves the

polyharmonicity of function u(x), and has the property Dmν u|∂Ω = Λ[m]u|∂Ω, where Λ[m] =

Λ(Λ−1) . . . (Λ−m+1) [15]. Let Cicol and Cirow be the i-th column and i-th row of the matrixC, respectively.

Kazakh Mathematical Journal, 19:1 (2019) 39–49

Page 42: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

On solvability of some nonlocal boundary value problems ... 41

We prove two simple lemmas. Let u(x) be a twice continuously differentiable function inΩ.

Lemma 1. Operators Λ and IC are commutative ΛICu(x) = ICΛu(x), and also the equality∇IC = ICC

T∇ holds, and operators ∆ and IC are also commutative.

Proof. We can write the operator Λ in the form Λu = (x,∇)u. Since

∂xiICu(x) =

∂xiu(Cx) =

∂xiu((C1

row, x), . . . , (Cnrow, x))

=n∑j=1

cjiICuxj (x) = (Cicol, IC∇u(x)) = IC(Cicol,∇)u(x), (3)

then

ΛICu(x) = Λu(Cx) =n∑i=1

xi∂

∂xiu(Cx) =

n∑i=1

xi(Cicol, IC∇u(x)

)=

(n∑i=1

xiCicol, IC∇u(x)

)= (Cx, IC∇u(x)) = IC(x,∇u(x)) = ICΛu(x).

Further, due to the formula (3), we find

∂2

∂x2i

ICu(x) =∂

∂xiIC(Cicol,∇)u(x) = IC(Cicol,∇)2u(x)

and therefore

∆ICu(x) =

n∑i=1

IC(Cicol,∇)2u(x) = IC

∣∣((C1col,∇), . . . , (Cncol,∇)

)∣∣2u(x)

= IC∣∣CT∇∣∣2u(x) = IC(CT∇, CT∇)u(x) = IC(CCT∇,∇)u(x) = IC∆u(x).

At last,∇ICu(x) = IC((C1

col,∇), . . . , (Cncol,∇))u(x) = IC(CT∇)u(x).

Lemma is proved.

Corollary. If the function u(x) is polyharmonic in Ω, then the function u(x∗) = ICu(x) isalso polyharmonic in Ω.

Indeed, due to Lemma 1, ∆mu(x) = 0⇒ ∆mICu(x) = IC∆mu(x) = 0.

Lemma 2. The operator 1 + αIC , when (−α)l 6= 1 is invertible and the operator

Jα =1

1− (−α)l

l−1∑k=0

(−α)kIkC (4)

Kazakh Mathematical Journal, 19:1 (2019) 39–49

Page 43: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

42 Valeriy V. Karachik, Batirkhan Kh. Turmetov

is inverse to 1 + αIC .

Proof. It is easy to see that(l−1∑k=0

(−α)kIkC

)(1 + αIC)u(x) =

(l−1∑k=0

(−α)kIkC −l∑

k=1

(−α)kIkC

)u(x)

=(E − (−α)lI lC

)u(x) = (1− (−α)l)u(x).

Thus, if (−α)l 6= 1, then we can divide both sides of the equality by 1− (−α)l and hencethe operator Jα is inverse to 1 + αIC . Lemma is proved.

3 Dirichlet and Neumann type problems

In this section we study the following problem:

(−∆)mv(x) = ϕ(x), x ∈ Ω, (5)

Dk+pν v(x)|∂Ω = ψk(x), x ∈ ∂Ω, k = 0, 1, ...,m− 1, (6)

where p = 0 or p = 1.The following statements are true.

Theorem 1 [14]. Let p = 0, 0 < λ < 1, ϕ(x) ∈ Cλ(Ω), ψk(x) ∈ Cλ+m−1−k(∂Ω), k =0, 1, ...,m−1. Then a solution of the problem (5), (6) exists, is unique and belong to the classCλ+2m(Ω) ∩ Cλ+m−1(Ω).

Theorem 2 [16]. Let p = 1, ϕ(x) ∈ C1(Ω), ψk(x) ∈ Ck(∂Ω), k = 0, 1, ...,m − 1. Then forthe solvability of the problem (5), (6) the following condition is necessary and sufficient∫

∂Ω

m∑k=1

(−1)k+1

(2m− k − 1k − 1

)(2m− 2k − 1)!!ψk(x)dSx

+

∫Ω

(|x|2 − 1

)m−1

(2m− 2)!!ϕ(x)dx = 0. (7)

If the solution of the problem exists, then it is unique up to a constant.

4 Uniqueness

In this section we investigate the uniqueness of the solution of the problem (1), (2). Thefollowing proposition is true.

Theorem 3. Let (−αk)l 6= 1, and a solution of the problem (1), (2) exists. Then1) if p = 0, then the solution of the problem is unique;

Kazakh Mathematical Journal, 19:1 (2019) 39–49

Page 44: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

On solvability of some nonlocal boundary value problems ... 43

2) if p = 1, then the solution of the problem is unique up to a constant.

Proof. To prove the uniqueness of the solution of problem (1), (2), consider a function u(x)which is a solution of the homogeneous problem (1), (2) (all right-hand sides in the problemare zero). If the problem (1), (2) has at least two solutions, such a function exists. It is clearthat u(x) is a polyharmonic function, satisfying the following homogeneous conditions

Dk+pν u(x) + αkD

k+pν u(x∗)

∣∣∣∂Ω

= Λ[k+p](1 + αkIC)u(x)∣∣∣∂Ω

= 0, k = 0, 1, ...,m− 1. (8)

Since (−αk)l 6= 1, then applying the operators Jαkfrom (4) to the equality (8) and using

Lemma 1, we get

0 = JαkΛ[m+p](1 + αkIC)u(x) = Λ[m+p]Jαk

(1 + αkIC)u(x) = Λ[m+p]u(x)

= Dk+pν u(x), x ∈ ∂Ω,

orDk+pν u(x)

∣∣∣∂Ω

= 0.

Therefore, if u(x) is the solution of the homogenous problem (1), (2), then it is also thesolution of the homogeneous problem (5), (6). Then, due to uniqueness of the solution of theDirichlet problem (the case p = 0), we obtain the uniqueness of the solution of the problem(1), (2). Similarly, by the statements of Theorem 2, we obtain the remaining statements ofthis theorem. Theorem is proved.

5 Existence

In this section we present a statement on the existence of the solution of the problem (1),(2).

Theorem 4. Let (−αk)l 6= 1, k = 0, 1, ...,m − 1, and f(x), gk(x), k = 0, 1, ...,m − 1, besmooth enough functions. Then

1) if p = 0, then a solution of the problem (1), (2) exists and is unique;2) if p = 1, and αk 6= −1, k = 0, 1, ...,m− 1, then the necessary and sufficient condition

for the solvability of the problem (1), (2) has the form∫∂Ω

m∑k=1

(−1)k+1

(2m− k − 1k − 1

)(2m− 2k − 1)!!

1 + αkgk(x)dSx

+

∫Ω

(|x|2 − 1

)m−1

(2m− 2)!!f(x)dx = 0. (9)

Kazakh Mathematical Journal, 19:1 (2019) 39–49

Page 45: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

44 Valeriy V. Karachik, Batirkhan Kh. Turmetov

If the solution exists, then it is unique up to a constant.

Proof. Consider the auxiliary Dirichlet problem

(−∆)mv(x) = f(x), x ∈ Ω, (10)

Dk+pν v(x) = Jαk

gk(x), x ∈ ∂Ω, k = 0, 1, ...,m− 1, (11)

where the operator Jαkis defined in (4). We check that its solution v(x) is also a solution of

the considered problem (1), (2). Indeed, the function v(x) satisfies the equation (1). Applyingthe operator 1 + αkIC to the condition (11) and using Lemmas 1 and 2, we get

gk(x) = (1 + αkIC)Jαkgk(x) = (1 + αkIC)Dk+p

ν v(x)|∂Ω

= (1 + αkIC)Λ[k+p]v(x)|∂Ω = Λ[k+p](1 + αkIC)v(x)|∂Ω

= Dk+pν (1 + αkIC)v(x)|∂Ω = Dk+p

ν v(x) + αkDk+pν v(x∗)|∂Ω,

where x ∈ ∂Ω, i.e. the condition (2) holds. So, the function v(x) is the solution of theproblem (1), (2), and, if v(x) exists, then the problem (1), (2) is solvable.

The case when the solution of the problem (10), (11) does not exist but u(x) exists, isimpossible. Indeed, let u(x) be a solution of the equation (10). Applying the operator Jαk

to the condition (2) and using Lemmas 1 and 2, we have

Jαkgk(x) = Jαk

(Dk+pν u(x) + αkD

k+pν u(x∗))|∂Ω

= JαkDk+pν (1 + αkIC)u(x)|∂Ω = Jαk

Λ[k+p](1 + αkIC)u(x)|∂Ω

= Λ[k+p]Jαk(1 + αkIC)u(x)|∂Ω = Λ[k+p]u(x) = Dk+p

ν u(x)|∂Ω,

where x ∈ ∂Ω, i.e. condition (11) holds. Hence, u(x) is the solution of the problem (10),(11), which contradicts to the assumption. Problems (1), (2) and (10), (11) are solvablesimultaneously. Smoothness of the functions Jαk

gk(x) and gk(x) are the same.Using Theorems 1 and 2, we can find the solvability conditions of the problem (10), (11).

Obviously these conditions will be the solvability conditions of the problem (1), (2).1) Let p = 0. In this case, by Theorem 1, for any functions on the right-hand sides of the

problem with a given smoothness its solution exists and is unique.2) Let p = 1. In this case, by Theorem 2, the necessary and sufficient solvability condition

of the problem (10), (11) is the integral equality∫∂Ω

m∑k=1

(−1)k+1

(2m− k − 1k − 1

)(2m− 2k − 1)!!Jαk

gk(x)dSx

+

∫Ω

(|x|2 − 1

)m−1

(2m− 2)!!f(x)dx = 0. (12)

Kazakh Mathematical Journal, 19:1 (2019) 39–49

Page 46: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

On solvability of some nonlocal boundary value problems ... 45

Let us transform the integral on the right-hand side of (12).

Lemma 3. Let the function ϕ(x) be continuous on ∂Ω and C be an orthogonal matrix, then∫∂Ω

ϕ(Cx) dSx =

∫∂Ω

ϕ(x) dSx.

Proof. Let the function w(x) be a solution of the Dirichlet problem for the Laplace equationin Ω with condition w(x)|∂Ω = ϕ(x), x ∈ ∂Ω. Then the function w(Cx) is a solution ofthe Dirichlet problem for the Laplace equation in Ω with the condition w(Cx)|∂Ω = ϕ(Cx),x ∈ ∂Ω. Therefore, due to the Poisson’s formula, we have∫

∂Ω

ϕ(Cx) dSx =

∫∂Ω

w(Cx) dSx = ωnw(0) =

∫∂Ω

ϕ(x) dSx,

where ωn is the area of the unit sphere. Lemma is proved.Using Lemma 3, the condition αk 6= −1, and taking into account that the natural degree

of the orthogonal matrix is an orthogonal matrix as well, we find∫∂Ω

Jαkgk(x) dSx =

1

1− (−αk)ll−1∑q=0

(−αk)q∫∂Ω

IqCgk(x) dSx

=1

1− (−αk)ll−1∑q=0

(−αk)q∫∂Ω

gk(Cqx) dSx =

1

1− (−αk)ll−1∑q=0

(−αk)q∫∂Ω

gk(x) dSx

=(1 + αk)

(1 + αk)(1− (−α− k)l)

l−1∑q=0

(−αk)q∫∂Ω

gk(x) dSx =

∫∂Ω

gk(x)

1 + αkdSx.

This implies that the condition (12) can be transformed to the form (9). Theorem isproved.

6 Representation of the solution

In this section we give a method of constructing solutions of the problem (1), (2) withhomogeneous boundary conditions.

Theorem 5. Let gk(x) = 0, k = 0, 1, ...,m− 1. Then1) if p = 0, then the solution of the problem (1), (2) can be represented in the form

u(x) =

∫Ω

GD(x, y)f(y) dy,

Kazakh Mathematical Journal, 19:1 (2019) 39–49

Page 47: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

46 Valeriy V. Karachik, Batirkhan Kh. Turmetov

where GD(x, y) is the Green’s function of the Dirichlet problem for the polyharmonic equation(1) in Ω;

2) if p = 1 and (9) holds, then the solution of the problem (1), (2) can be represented inthe form

u(x) =

1∫0

v(sx)

sds+ C, (13)

where C is an arbitrary constant and v(x) is a solution of the following Dirichlet problem

(−∆)mv(x) = (Λ + 2m) f(x), x ∈ Ω;

Dkνv(x)

∣∣∣∂Ω

= 0, k = 0, 1, ...,m− 1, v(0) = 0.(14)

Proof. The auxiliary problem (10), (11), whose solution coincides with the solution of theproblem (1), (2) (see the proof of Theorem 3), with the help of properties of the operator Λtakes the form

(−∆)mv(x) = f(x), x ∈ Ω,

Λ[k+p]v(x)|∂Ω = 0, k = 0, 1, ...,m− 1.

1) Let p = 0, then in this case the auxiliary problem is the Dirichlet problem and itssolution coincides with the solution of the problem (1), (2) (see. [17]):

v(x) = u(x) =

∫Ω

GD(x, y)f(y) dy. (15)

2) Let p = 1. Boundary conditions for the auxiliary problem take the form

Λ[k+1]v(x)|∂Ω ≡∂kv(x)

∂νk|∂Ω = 0, k = 0, 1, ...,m− 1.

Let us apply the operator Λ + 2m to the polyharmonic equation of the problem. Dueto the equality ∆kΛu = (Λ + 2k)∆ku and denoting w = Λv, for w(x), we get the followingDirichlet problem (14):

(−∆)mw(x) = (Λ + 2m)f(x), x ∈ Ω,

w(x)|∂Ω = 0, Λ[k]w(x)|∂Ω = 0, k = 1, 2, ...,m− 1.

By the formula (15) we find

w(x) =

∫Ω

GD(x, y)(Λ + 4)f(y) dy.

Kazakh Mathematical Journal, 19:1 (2019) 39–49

Page 48: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

On solvability of some nonlocal boundary value problems ... 47

As in [16] equation w = Λv in the class of smooth functions v(x) has a solution only ifw(0) = 0, and this solution can be written in the form

u(x) =

1∫0

w(sx)

sds+ C.

Theorem is proved.

References

[1] Bitsadze A.V., Samarskii A.A. Some elementary generalizations of linear elliptic boundary valueproblems, Dokl. Akad. Nauk SSSR, 185:4 (1969), 739-740.

[2] Skubachevskii A.L. Nonclassical boundary value problems I, Journal of Mathematical Science,155 (2008), 199-334. https://doi.org/10.1007/s10958-008-9218-9.

[3] Skubachevskii A.L. Nonclassical boundary value problems II, Journal of Mathematical Science,166 (2010), 377-561. https://doi.org/10.1007/s10958-010-9873-5.

[4] Bitsadze A.V. On the theory of nonlocal boundary value problem, Soviet. Math. Dokl., 30:1(1985), 521-524.

[5] Criado F. Criado F.J. Odishelidze N. On the solution of some non-local problems, CzechoslovakMathematical Journal, 54 (2004), 487-498. https://doi.org/10.1023/B:CMAJ.0000042586.11198.79.

[6] Gushchin A.K., Mikhailov V.P. On solvability of nonlocal problems for a second-order el-liptic equation, Russian Academy of Sciences. Sbornik Mathematics, 81:1 (1995), 101-136.http://dx.doi.org/10.1070/SM1995v081n01ABEH003617.

[7] Kirane M., Torebek B.T. On a nonlocal problem for the Laplace equation in the unit ball withfractional boundary conditions, Mathematical Methods in the Applied Sciences, 39 (2016), 1121-1128.https://doi.org/10.1002/mma.3554.

[8] Kishkis K.Y. On some nonlocal problem for harmonic functions in multiply connected domain,Differential Equations, 23 (1987), 174-177.

[9] Karachik V.V., Turmetov B.Kh. On solvability of some Neumann-type boundary value problemsfor biharmonic equation, Electronic Journal of Differential Equations, 2017 (2017), 1-17.

[10] Przeworska-Rolewicz D. Some boundary value problems with transformed argument, CommentMath Helv., 17 (1974), 451-457. https://doi.org/10.14708/cm.v17i2.5790.

[11] Sadybekov M.A., Turmetov B.Kh. On analogues of periodic boundary value problems for theLaplace operator in ball, Eurasian Mathematical Journal, 3 (2012), 143-146.

[12] Sadybekov M.A., Turmetov B.Kh. On an analog of periodic boundary value problems for thePoisson equation in the disk, Differential equations, 50 (2014), 268-273.https://doi.org/10.1134/S0012266114020153.

[13] Turmetov B.K., Karachik, V.V. On solvability of some boundary value problems for a bihar-monic equation with periodic conditions, Filomat, 32:3 (2018), 947-953.https://doi.org/10.2298/FIL1803947T.

[14] Agmon S., Douglis A. Nirenberg L. Estimates near the boundary for solutions of elliptic partialdifferential equations satisfying general boundary conditions, I. Comm Pure Appl. Math., 12 (1959),623-727. https://doi.org/10.1002/cpa.3160120405.

Kazakh Mathematical Journal, 19:1 (2019) 39–49

Page 49: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

48 Valeriy V. Karachik, Batirkhan Kh. Turmetov

[15] Karachik V.V. Solvability conditions for the Neumann problem for the homogeneous polyhar-monic equation, Differential Equations, 50 (2014), 1449-1456.https://doi.org/10.1134/S0012266114110032.

[16] Karachik V.V. On solvability conditions for the Neumann problem for a polyharmonicequation in the unit ball, Journal of Applied and Industrial Mathematics, 8 (2014), 63-75.https://doi.org/10.1134/S1990478914010074.

[17] Kal’menov T.Sh., Koshanov B.D. Representation for the Green’s function of the Dirichletproblem for polyharmonic equations in a ball, Siberian Mathematical Journal, 49:3 (2008), 423-428.https://doi.org/10.1007/s11202-008-0042-8.

Карачик В.В., Турметов Б.Х. ПОЛИГАРМОНИЯЛЫҚ ТЕҢДЕУ ҮШIН КЕЙБIРБЕЙЛОКАЛ ШЕТТIК ЕСЕПТЕРДIҢ ШЕШIЛIМДIЛIГI ЖӘЙЛI

Бұл жұмыс полигармониялық теңдеу үшiн кейбiр классикалық емес шеттiк есептер-дiң шешiлiмдiгi мәселесiне арналған. Бұл есептер полигармониялық теңдеу үшiн Дирих-ле және Нейман есептерiн жалпылайды. Қарастырылатын есептер Бицадзе-Самарскийтектес бейлокал шеттiк есептер болып табылады. Зерттелетiн есептер оларды Дирих-ле есебiне және Нейман түрiндегi есепке келтiру арқылы шешiледi. Есептiң шешiмiнiңбар және жалғыз болуы туралы теоремалар дәлелденген. Бiрлiк шарда полигармония-лық теңдеу үшiн Нейман түрiндегi шеттiк есептiң шешiлiмдiлiгiнiң қәжеттi және жет-кiлiктi шарттары анықталған. Грин функцияларын қолдана отырып, сондай-ақ Дирихлеесебiнiң шешiмiнiң бар болуы туралы тұжырымды пайдалана отырып, қарастырылғанесептердiң шешiмдерi үшiн интегралдық кейiптемелер алынған.

Кiлттiк сөздер. Полигармониялық теңдеу, бейлокал есеп, инволюция, Дирихле есебi,Нейман түрiндегi есеп, жалғыздық, бар болу.

Kazakh Mathematical Journal, 19:1 (2019) 39–49

Page 50: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

On solvability of some nonlocal boundary value problems ... 49

Карачик В.В., Турметов Б.Х. О РАЗРЕШИМОСТИ НЕКОТОРЫХ НЕЛОКАЛЬ-НЫХ КРАЕВЫХ ЗАДАЧ ДЛЯ ПОЛИГАРМОНИЧЕСКОГО УРАВНЕНИЯ

Данная работа посвящена вопросам разрешимости некоторых неклассических крае-вых задач для полигармонического уравнения. Эти задачи обобщают задачи Дирихле иНеймана для полигармонического уравнения. Рассматриваемые задачи являются нело-кальными краевыми задачами типа Бицадзе-Самарского. Исследуемые задачи решают-ся путем сведения их к задаче Дирихле и задаче типа Неймана. Доказаны теоремы осуществовании и единственности решения задачи. Получены необходимые и достаточ-ные условия разрешимости задачи типа Неймана для нелокального полигармоническогоуравнения в единичном шаре. Применяя функции Грина, а также утверждение о суще-ствовании решения задачи Дирихле, получены интегральные представления для реше-ний рассматриваемых задач.

Ключевые слова. Полигармоническое уравнение, нелокальная задача, инволюция, за-дача Дирихле, задача типа Неймана, единственность, существование.

Kazakh Mathematical Journal, 19:1 (2019) 39–49

Page 51: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Kazakh Mathematical Journal ISSN 2413–6468

19:1 (2019) 50–58

Reversed Hardy-Littlewood-Sobolev inequality onhomogeneous Lie groups

Aidyn Kassymov1,2,3,a, Durvudkhan Suragan4,b

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan2Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium

3Al-Farabi Kazakh National University, Almaty, Kazakhstan4Department of Mathematics, Nazarbayev University, Nur-Sultan, Kazakhstan

a e-mail: [email protected], be-mail: [email protected]

Communicated by: Niyaz Tokmagambetov

Received: 07.05.2019 ? Accepted/Published Online: 31.05.2019 ? Final Version: 31.05.2019

Abstract. In this short note, we prove the reversed Hardy-Littlewood-Sobolev inequality on homo-

geneous Lie groups. Proof of this inequality is based on reversed Young’s inequality and reversed

Marcienkiewicz interpolation theorem.

Keywords. Hardy-Littlewood-Sobolev inequality, Reversed Hardy-Littlewood-Sobolev inequality, frac-

tional integral, homogeneous Lie group.

1 Introduction

In their pioneering paper [1], Hardy and Littlewood proved the following theorem:

Theorem 1. Let 1 < p < q <∞ and u ∈ Lp(0,∞) with 1q = 1

p + λ− 1, then

‖Tλu‖Lq(0,∞) ≤ C‖u‖Lp(0,∞), (1)

where C is a positive constant independent of u. Here Tλ is the one dimensional fractionalintegral operator on (0,∞) given by

Tλu(x) =

∫ ∞0

u(y)

|x− y|λdy, 0 < λ < 1. (2)

The multidimensional extention of (2) is

Iλu(x) =

∫RN

u(y)

|x− y|λdy, 0 < λ < N. (3)

Then, the corresponding generalisation of the Hardy-Littlewood inequality was proved bySobolev in [2]:

2010 Mathematics Subject Classification: 22E30, 43A80.Funding: The authors were supported in parts by the MESRK grant AP05130981.c© 2019 Kazakh Mathematical Journal. All right reserved.

Page 52: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Reversed HLS inequality 51

Theorem 2. Let 1 < p < q <∞, u ∈ Lp(RN ) with 1q = 1

p + λN − 1. Then

‖Iλu‖Lq(RN ) ≤ C‖u‖Lp(RN ), (4)

where C is a positive constant independent of u.

Later, in [3] Stein and Weiss obtained the following two-weight Hardy-Littlewood-Sobolevinequality, which is also known as the Stein-Weiss inequality.

Theorem 3. Let 0 < λ < N , 1 < p < ∞, α < N(p−1)p , β < N

q , α + β ≥ 0 and 1q =

1p + λ+α+β

N − 1. If 1 < p ≤ q <∞, then

‖|x|−βIλu‖Lq(RN ) ≤ C‖|x|αu‖Lp(RN ), (5)

where C is a positive constant independent of u.

So, in the papers [4], [5] and [6], authors showed reversed Hardy-Littlewood-Sobolevinequality on the Euclidean space RN .

Theorem 4. For any 1 ≤ N < λ, Nλ < p < 1 and q given by

1

q=

1

p− λ

N, (6)

there exists a constant C = C(n, λ, p) > 0, such that for all nonnegative u ∈ Lp(RN ),

‖Iλu‖Lq(RN ) ≥ C‖u‖Lp(RN ). (7)

Nowadays, there is a number of studies related to this subject on RN . We refer the aboveexcellent presentations [4], [5] and [6] as well as references therein for further discussions.

At the same time, there is another layer of intensive research over the years related to theHardy-Littlewood-Sobolev inequalities in subelliptic settings. As expected, the subellipticHardy-Littlewood-Sobolev inequality was obtained on the most important example of theHeisenberg group by Folland and Stein in [7] (see, also [8]). In this case, we also note thatthe optimal constant for the inequality is given by Frank and Lieb in [9] (in the Euclideancase this was done earlier by Lieb in [10]). Futhermore, in this direction systematic studiesof different functional inequalities on (general) homogeneous Lie groups were initiated by thepaper [11]. Also, Hardy-Littlewood-Sobolev inequality in homogeneous Lie groups is provedin [12]. We refer to the open access book [13] for further discussions in this direction.

Let us consider Riesz operator in the following form:

Iγu(x) =

∫G

u(y)

|y−1x|γdy. (8)

Kazakh Mathematical Journal, 19:1 (2019) 50–58

Page 53: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

52 Aidyn Kassymov, Durvudkhan Suragan

The main result of this paper is as follows:

• Reversed Hardy-Littlewood-Sobolev inequality: Let G be a homogeneous Liegroup with 1 ≤ Q < α, Q

α < p < 1, such that

1

q=

1

p− α

Q. (9)

Then we have‖IQ−αu‖Lq(G) ≥ C‖u‖Lp(G), (10)

where C is a positive constant independent of u.

2 Reversed Hardy-Littlewood-Sobolev inequality

In this section we prove the reversed Hardy-Littlewood-Sobolev inequality on homoge-neous Lie groups. In order to do it, first we present reversed Young inequality on homogeneousLie groups.

Let us recall that a Lie group (on RN ) G with the dilation

Dλ(x) := (λν1x1, . . . , λνNxN ), ν1, . . . , νn > 0, Dλ : RN → RN ,

which is an automorphism of the group G for each λ > 0, is called a homogeneous (Lie)group. For simplicity, throughout this paper we use the notation λx for the dilation Dλ.The homogeneous dimension of the homogeneous group G is denoted by Q := ν1 + . . .+ νN .Also, in this note we denote a homogeneous quasi-norm on G by |x|, which is a continuousnon-negative function

G 3 x 7→ |x| ∈ [0,∞), (11)

with the properties

i) |x| = |x−1| for all x ∈ G,

ii) |λx| = λ|x| for all x ∈ G and λ > 0,

iii) |x| = 0 iff x = 0.

Moreover, the following polarisation formula on the homogeneous Lie groups will be used inour proofs: there is a (unique) positive Borel measure σ on the unit quasi-sphere S := x ∈G : |x| = 1, so that for every f ∈ L1(G) we have∫

Gf(x)dx =

∫ ∞0

∫Sf(ry)rQ−1dσ(y)dr. (12)

The quasi-ball centred at x ∈ G with radius R > 0 can be defined by

B(x,R) := y ∈ G : |x−1y| < R. (13)

Kazakh Mathematical Journal, 19:1 (2019) 50–58

Page 54: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Reversed HLS inequality 53

Note that the standart Lebesque measure on RN coincides with the Haar measure on thehomogeneous Lie group G. We refer to [14] for the original appearance of such groups, andto [13] for a recent comprehensive treatment.

Let us recall that for a measurable function f on G with 0 < p < ∞, for weak Lp normwe define

‖f‖LpW := infz > 0 : m|f | < t ≤ zp

tp.

In the case p < 0 we define weak Lp norm in the following form

‖f‖LpW := supz > 0 : m|f | < t ≤ z

tp.

Definition 1. For q < 0 < p < 1, we say operator L is of the weak-type (p, q), if there existsa constant C(p, q) > 0, such that for all u ∈ Lp(G),

mx : |Lu(x)| < ζ ≤ C(p, q)

(‖u‖Lp(G)

ζ

)q, ∀ζ > 0.

Proposition 1. (Proposition 2.5, [4]) Let L be a linear operator which maps any nonnegativefunction to a nonnegative function. For a pair of numbers (p1, q1), (p2, q2) satisfying qi <0 < pi < 1, i = 1, 2, p1 < p2 and q1 < q2, if L is of weak-types (p1, q1) and (p2, q2) for allnonnegative functions, then for any ξ ∈ (0, 1), and

1

p=

1− ξp1

p2,

1

q=

1− ξq1

q2,

L is reversed strong-type (p, q) for all nonnegative functions, that is,

‖Lu‖Lq(G) ≥ C‖u‖Lp(G),

where C = C(p1, p2, q1, q2, γ) > 0.

Theorem 5. Let G be a homogeneous Lie group. Let 0 < p < 1 and q, r < 0 be such that

1 +1

q=

1

p+

1

r,

and let f, g be nonnegative functions. Then we have

‖f ∗ g‖Lq(G) ≥ ‖f‖Lp(G)‖g‖Lr(G). (14)

Proof. By the definition with 1q + 1

p′ + 1r′ = 1, pq + p

r′ = 1, rq + rp′ = 1, and by using reversed

Holder’s inequality, we calculate

f ∗ g(x) =

∫Gf(x)g(y−1x)dy =

∫Gfpr′ (y)f

pq (y)g

rq (y−1x)g

rp′ (y−1x)dy

Kazakh Mathematical Journal, 19:1 (2019) 50–58

Page 55: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

54 Aidyn Kassymov, Durvudkhan Suragan

≥(∫

Gfp(y)dy

) 1r′(∫

Ggr(y−1x)dy)

) 1p′(∫

Gfp(y)gr(y−1x)dy

) 1q

= ‖f‖pr′Lp(G)‖g‖

rp′

Lr(G)

(∫Gfp(y)gr(y−1x)dy

) 1q

. (15)

It implies ∫G

(f ∗ g(x))qdx ≤ ‖f‖pqr′Lp(G)‖g‖

qrp′

Lr(G)

(∫G

∫Gfp(y)gr(y−1x)dydx

)

= ‖f‖pqr′Lp(G)‖g‖

qrp′

Lr(G)‖f‖pLp(G)

(∫Ggr(y)dy

)= ‖f‖qLp(G)‖g‖

qLr(G). (16)

Then finally,‖f ∗ g‖Lq(G) ≥ ‖f‖Lp(G)‖g‖Lr(G). (17)

It completes the proof. Now we state the reversed Hardy-Littlewood-Sobolev inequality on G.

Theorem 6. Let G be a homogeneous Lie group with 1 ≤ Q < α, Qα < p < 1 and

1

q=

1

p− α

Q. (18)

Then,‖IQ−αu‖Lq(G) ≥ C‖u‖Lp(G), (19)

where C is a positive constant independent of u.

Proof. For the prove of this theorem we will use Marcinkiewicz interpolation theorem. Weshow first:

mx : |IQ−αu| ≤ ζ ≤ C(‖u‖Lp(G)

ζ

)q, ζ > 0. (20)

Let us rewrite the Riesz operator in the following form:

IQ−αu(x) = K ∗ u(x) = |x|α−Q ∗ u(x) = K1 ∗ u(x) +K2 ∗ u(x),

where

K1(x) :=

|x|α−Q, if |x| ≤ θ,0, if |x| > θ,

and K2(x) :=

|x|α−Q, if |x| > θ,

0, if |x| ≤ θ.(21)

Then, we have

mx : |K ∗ u(x)| < 2ζ ≤ mx : |K1 ∗ u(x)| < ζ+mx : |K2 ∗ u(x)| < ζ, (22)

Kazakh Mathematical Journal, 19:1 (2019) 50–58

Page 56: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Reversed HLS inequality 55

where m is the Haar measure on G. It is enough to prove inequality (20) with 2ζ instead of ζin the left-hand side of the inequality. Without loss of generality we can assume ‖u‖Lp(G) = 1.

By taking β1 ∈ ( QQ−α , 0), we have

Q+ (α−Q)β1 ≥ Q+ (α−Q)Q

Q− α= Q−Q = 0,

finally, Q+ (α−Q)β1 ≥ 0.By using this and Theorem 5, we get

‖K1 ∗ u‖Lr1 (G)

(∫0<|x|≤θ

1

|x|(Q−α)β1dx

) 1p′(∫

0<|x|≤θ

1

|x|(Q−α)β1dx

) 1r1

‖u‖Lp(λ)

= C

(∫ θ

0rQ−1r−β1(Q−α)dr

) 1β1

= CθQ−β1(Q−α)

β1 , (23)

where 1p + 1

β1= 1

r1+ 1, with β1 ∈ ( Q

Q−α , 0), r1 < 0. Let 0 < σ <∞, f ∈ Lσ(λ) and by usingChebychev’s inequality with τ > 0, we have

mx : |f(x)| > τ ≤

∫|f(x)|>τ |f(x)|σdx

τσ≤‖f‖σLσ(G)

τσ, (24)

then

mx : |f(x)|−1 < 1

τ ≤‖f‖σLσ(G)

τσ, (25)

and by changing f(x) = 1g(x) and ζ = 1

τ , we obtain

mx : |g(x)| < ζ ≤‖g−1‖σLσ(λ)(

)σ =

∫G g−σ(x)dx

ζ−σ. (26)

By taking −σ = r, we have

mx : |g(x)| < ζ ≤∫G g−σ(x)dx

ζ−σ=‖g‖rLr(G)

ζr. (27)

Then with r1 < 0, we have

mx : |K1 ∗ u(x)| ≤ ζ ≤ C‖K1 ∗ u‖r1Lr1 (λ)

ζr1≤ C θ

r1(Q−β1(Q−α))β1

ζr1. (28)

Kazakh Mathematical Journal, 19:1 (2019) 50–58

Page 57: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

56 Aidyn Kassymov, Durvudkhan Suragan

Similarly, by using Theorem 5, we have

‖K2 ∗ u‖Lr2 (G) ≥

(∫θ≤|x|

1

|x|β2(Q−α)dx

) 1p′ (∫

G

1

|x|β2(Q−α)dx

) 1r2

‖u‖Lp(G)

≥ CθQ−β2(Q−α), (29)

where 1p + 1

β2= 1

r2+ 1, with β2 ≤ Q

Q−α , r2 < 0. Then,

mx : K2 ∗ u(x) ≤ ζ ≤ C θr2(Q−β2(Q−α))

β2

ζr2. (30)

By choosing θ = ζp

αp−Q , 1p + 1

βi= 1 + 1

ri, i = 1, 2, and by the assumption we compute

rip

pα−Q

(Q

βi+ α−Q

)− ri =

rip

pα−Q

(Qp− riQ+ αpri

pri

)− ri

=Qp− rid+ αpri

pα−Q− ri =

Qp− riQ+ αpri − αpri +Qripα−Q

= − pQ

Q− αp= −q, (31)

for i = 1, 2. By using this fact with θ = ζp

αp−Q , we get

mx : |K ∗ u(x)| > 2ζ ≤ mx : |K1 ∗ u(x)| > ζ+mx : |K2 ∗ u(x)| > ζ

≤ C

θ r1(Q−β1(Q−α))β1

ζr1+θr2(Q−β2(Q−α))

β2

ζr2

=C

ζq. (32)

Finally, we have

mx : IQ−αu ≤ ζ ≤ C(‖u‖Lp(G)

ζ

)q, ζ > 0. (33)

By using Definition 1 and Proposition 1 we have reversed Hardy-Littlewood-Sobolev inequal-ity.

The proof of Theorem 6 is complete.

References

[1] Hardy G.H., Littlewood J.E. Some properties of fractional integrals, I. Math. Z., 27 (1928),565-606.

[2] Sobolev S.L. On a theorem of functional analysis, Mat. Sb. (N.S.), 4 (1938), 471-479, Englishtransl. in Amer. Math. Soc. Transl. Ser. 2, 34 (1963), 39-68.

Kazakh Mathematical Journal, 19:1 (2019) 50–58

Page 58: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Reversed HLS inequality 57

[3] Stein E.M., Weiss G. Fractional integrals on n-dimensional Euclidean Space, J. Math. Mech.,7:4 (1958), 503-514.

[4] Dou J., Zhu M. Reversed Hardy-Littewood-Sobolev inequality, Int. Math. Res. Not. IMRN, 19(2015), 9696-9726.

[5] Carrillo J.A., Delgadino M.G., Dolbeault J., Frank R.L., Hoffmann F. Reverse Hardy-Littlewood-Sobolev inequalities, (2018), arXiv preprint arXiv:1807.09189.

[6] Dolbeault J., Frank R., Hoffmann F. Reverse Hardy-Littlewood-Sobolev inequalities, (2018),arXiv:1803.06151.

[7] Folland G.B., Stein E.M. Estimates for the ∂b complex and analysis on the Heisenberg group,Comm. Pure Appl. Math., 27 (1974), 429-522.

[8] Han X., Lu G., Zhu J. Hardy-Littlewood-Sobolev and Stein-Weiss inequalities and integral sys-tems on the Heisenberg group, Nonlinear Analysis, 75 (2012), 4296-4314.

[9] Frank R.L., Lieb E.H Sharp constants in several inequalities on the Heisenberg group, Ann. ofMath., 176 (2012), 349-381.

[10] Lieb E.H. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. ofMath., 118 (1983), 349-374.

[11] Ruzhansky M., Suragan D. Hardy and Rellich inequalities, identities, and sharp remainders onhomogeneous groups, Adv. Math., 317 (2017), 799-822.

[12] Kassymov A., Ruzhansky M., Suragan D. Hardy-Littlewood-Sobolev and Stein-Weiss in-equalities on homogeneous Lie groups, Integral Transforms and Special Functions, (2019),https://doi.org/10.1080/10652469.2019.1597080.

[13] Ruzhansky M., Suragan D. Hardy inequalities on homogeneous groups, Progress in Math.,Birkhauser, 327 (2019).

[14] Folland G.B., Stein E.M. Hardy spaces on homogeneous groups, Mathematical Notes, PrincetonUniversity Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 28 (1982).

Kazakh Mathematical Journal, 19:1 (2019) 50–58

Page 59: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

58 Aidyn Kassymov, Durvudkhan Suragan

Касымов А., Сураган Д. БIРТЕКТI ЛИ ТОПТАРЫНДАҒЫ ХАРДИ-ЛИТТЛВУД-СОБОЛЕВ КЕРI ТЕҢСIЗДIГI

Бұл қысқа мақалада, бiз Харди-Литтлвуд-Соболев керi теңсiздiгiн бiртектi Ли топ-тарында дәлелдедiк. Бұл теңсiздiктiң дәлелдеуi Янг керi теңсiздiгi мен Марцинкевичтiңкерi интерполяциялық теоремасына негiзделген.

Кiлттiк сөздер. Харди-Литтлвуд-Соболев теңсiздiгi, Харди-Литтлвуд-Соболев керiтеңсiздiгi, бөлшектiк интеграл, бiртектi Ли тобы.

Касымов А., Сураган Д. ОБРАТНОЕ НЕРАВЕНСТВО ХАРДИ-ЛИТТЛВУД-СОБОЛЕВА НА ОДНОРОДНЫХ ГРУППАХ ЛИ

В этой короткой заметке, мы доказали обратное неравенство Харди-Литтлвуд-Соболева на однородных группах Ли. Доказательство этого неравентсва было основанона обратном неравенстве Янга и обратной интерполяционной теореме Марцинкевича.

Ключевые слова. Неравенство Харди-Литтлвуд-Соболева, обратное неравенствоХарди-Литтлвуд-Соболева, дробный интеграл, однородное группа Ли.

Kazakh Mathematical Journal, 19:1 (2019) 50–58

Page 60: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Kazakh Mathematical Journal ISSN 2413–6468

19:1 (2019) 59–68

Solving two-phase spherical Stefan problem usingheat polynomials

Stanislav Kharin1,a, Targyn Nauryz1,2,b, Khumoyun Jabbarkhanov3,c

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan2Al-Farabi Kazakh National University, Almaty, Kazakhstan

3Suleyman Demirel University, Kaskelen, Kazakstana e-mail: [email protected], be-mail: [email protected]

c e-mail: [email protected]

Communicated by: Muvasharkhan Jenaliyev

Received: 09.04.2019 ? Accepted/Published Online: 31.05.2019 ? Final Version: 31.05.2019

Abstract. The inverse two-phase spherical Stefan problem for unknown boundary heat flux is solved

by the method of the heat polynomials. Side by side with obtaining an exact solution, two methods

for obtaining an approximate solution, collocation and variational methods, convenient for engineering

applications are presented and compared. It is shown that both methods give very good approximation

even for using only several points. However, the collocation method gives better result for the initial

stage of heating, while the variational method is more preferable for the large values of the Fourier

criterion. The approximation error estimate is obtained using the principle of maximum for the heat

equation. The application of the obtained results for the calculation of the electrical arc heat flux at

the contact opening is presented.

Keywords. Stefan problem, heat polynomials, heat flux, melting zone.

1 Introduction

The method of integral error functions and heat polynomials for solving heat equationin a domain with free boundary enables one to obtain the solution in the form handy forengineering application. The solution of the spherical Stefan problem with the boundary heatflux condition using this method is considered in [1]. It was shown that a given boundaryfunction can be approximated by the linear combination of the system of the integral errorfunctions inerfc(x), n = 0, 1, 2, ..., and the first five terms of this combination are sufficientto obtain the error less than 1%. It means according to the maximum principle for the heatequation that the error of approximation of the final solution has the same error. Then this

2010 Mathematics Subject Classification: 35L05, 35L20.Funding: The authors were supported in parts by the MES RK grant AP05133340.c© 2019 Kazakh Mathematical Journal. All right reserved.

Page 61: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

60 Stanislav Kharin, Targyn Nauryz, Khumoyun Jabbarkhanov

approach was successfully applied for solving different Stefan type problems. One of the mostimportant problems in the theory of phenomena in electrical contacts is determining the archeat flux entering into electrodes. The experimental measuring the dynamics of this flux isvery difficult, and sometimes the mathematical modeling only is capable to obtain requiredinformation [2]. The mathematical model describing the process of the interaction of theelectrical arc with electrodes and the dynamics of their melting is based on the sphericalStefan problem, and if we want to define the arc heat flux, the inverse spherical Stefanproblem should be considered [3].

2 Mathematical Model

The inverse Stefan problem consists in determining the arc heat flux P (t) and the tem-perature distribution θ(r, t) in the molten contact hemisphere r0 < r < r + α(t), if α(t) isgiven from the measurement. If the arc burning period is 0 ≤ t ≤ t0 and the final radius ofthe molten zone at t = ta is ra, then the dynamics of the arc radius increasing at the meltingcan be approximated by the formula

α(t) = r0 + α0

√t α0 = (ra − r0)/

√t0. (1)

The heat equation for the melting zone can be written in the form

∂θ

∂t= a2

(∂2θ

∂r2+

2

r

∂θ

∂r

)r0 < r < α(t), 0 < t < ta. (2)

The initial and boundary conditions are

θ∣∣t=0

= 0, (3)

−λ∂θ∂r

∣∣∣∣r=r0

= P (t) (4)

and on the interface of the phase transformation

θ(α(t), t) = θm, (5)

−λ∂θ∂r

∣∣∣∣r=α(t)

= Lγdα

dt, (6)

where θm is the melting temperature, α, L, γ are coefficients of the heat conductivity, latentheat of melting and density, respectively.

To simplify the calculation we can introduce the new dimensionless time t1 = t/ta, thenthe time interval of arcing changes to 0 < t1 < 1. Thus we can take ta = 1 at once in (2).

Kazakh Mathematical Journal, 19:1 (2019) 59–68

Page 62: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

The solution of the two-phase spherical Stefan problem ... 61

This problem for the spherical heat equation can be reduced to the ordinary one-dimensional equation by the substitutions

θ =u

r, r − r0 = x, β(t) = α(t)− r0. (7)

Then the problem transforms to the form

∂u

∂t= a2

∂2u

∂x2, 0 < x < β(t), 0 < t < ta, (8)

θ∣∣t=0

= 0, (9)

−λ[r0∂u

∂x− u] ∣∣∣∣

x=0

= r20P (t), (10)

u(β(t), t) = Um, (11)

−λ[β(t)

∂u

∂x− u] ∣∣∣∣

x=β(t)

= β2(t)Lγdβ

dt. (12)

The solution of this problem can be represented in the form:

u(x, t) =

∞∑n=0

Anv2n(x, t) +

∞∑n=0

Bnv2n+1(x, t), (13)

where

v2n(x, t) =

n∑k=0

(2n)!a2kx2n−2k

k!(2n− 2k)!tk, v2n+1(x, t) =

n∑k=0

(2n+ 1)!a2kx2n−2k+1

k!(2n− 2k + 1)!tk, (14)

are heat polynomials satisfying (8) at arbitrary coefficients An, Bn, which should be chosento satisfy the boundary conditions. We represent the unknown heat flux in the form

P (t) =

l∑k=0

Pktk. (15)

From the conditions (9), (10) we have the following system of equations for An, Bn:

m∑n=0

An

n∑k=0

(2n)!a2kα2n−2k0

k!(2n− 2k)!tn +

m∑n=0

Bn

n∑k=0

(2n+ 1)!a2kα2n−2k+10

k!(2n− 2k + 1)!tn+

12 = Um, (16)

m∑n=0

An

n∑k=0

(2n)!a2kα2n−2k0

k!(2n− 2k)!tn +

m∑n=0

Bn

n∑k=0

(2n+ 1)!a2kα2n−2k+10

k!(2n− 2k + 1)!tn+

12

Kazakh Mathematical Journal, 19:1 (2019) 59–68

Page 63: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

62 Stanislav Kharin, Targyn Nauryz, Khumoyun Jabbarkhanov

= − 1

λLγα3

0

√t

2+ Um. (17)

To evaluate unknown coefficients we use two methods: variational and collocation.

3 Variational Method

Similarly, like in [4], we take m = 5, Um = 0 and the basic points t = ti = 2i10 , i =

0, 1, 2, 3, 4, 5. To satisfy approximately the condition (16) we consider the functional:

J =

∫ 1

0

(5∑

n=0

An

n∑k=0

(2n)!a2kα2n−2k0

k!(2n− 2k)!tn +

5∑n=0

Bn

n∑k=0

(2n+ 1)!a2kα2n−2k+10

k!(2n− 2k + 1)!tn+

12

)2

dt.

The minimum of this functional can be found from the equation

∂J

∂Am= 2

∫ 1

0

(5∑

n=0

Anv2n(β(t), t) +5∑

n=0

Bnv2n+1(β(t), t)

)v2m(β(t), t)dt = 0, m = 0, 5,

where

v2n(β(t), t) =n∑k=0

(2n)!a2kα2n−2k0

k!(2n− 2k)!tn, v2n+1(β(t), t) =

n∑k=0

(2n+ 1)!a2kα2n−2k+10

k!(2n− 2k + 1)!tn+

12 ,

5∑n=0

AnCnm = −Dm, m = 0, 5, (18)

Cnm =

∫ 1

0v2n(β(t), t)v2m(β(t), t)dt, Dm =

∫ 1

0

5∑n=0

Bnv2n+1(β(t), t)v2m(β(t), t)dt, m = 0, 5.

Solving the system (18) with respect to An from (18) and substituting the result into theexpression (17) we get

J =

∫ 1

0

(5∑

n=0

Bnw(n, t)− f(t)

)2

dt, (19)

where

w(k, t) =

5∑m=0

Amv2k(m,β(t), t) + v2k+1(m,β(t), t),

v2k(m,β(t), t) =

k∑n=0

(2k)!a2k(2k − 2m)α2k−2m0

m!(2k − 2m)!tk,

Kazakh Mathematical Journal, 19:1 (2019) 59–68

Page 64: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

The solution of the two-phase spherical Stefan problem ... 63

v2k+1(m,β(t), t) =

k∑n=0

(2k + 1)!a2k(2k − 2m+ 1)α2k−2m+10

m!(2k − 2m+ 1)!tk+

12 ,

f(t) =1

λLγα3

0

√t

2.

From the condition of maximum of (19) we have

∂J

∂Bm= 2

∫ 1

0

(5∑

n=0

Bnw(n, t)− f(t)

)w(m, t)dt = 0, m = 0, 5, (20)

5∑k=0

EkmBm = Fm, m = 0, 5, (21)

where

Ekm =

∫ 1

0w(k, t)w(m, t)dt, Fm =

∫ 1

0f(t)w(m, t)dt, m = 0, 1, ..., k.

From the expression (21) we get the following results:

B0 = −0.784; B1 = −0.062; B2 = 0.046 B3 = −9.712× 10−3;

B4 = 6.788× 10−4; B5 = −1.391× 10−5.

Similarly, from the expression (16) we obtain:

A0 = 0.058; A1 = 0.904; A2 = −0.389; A3 = 0.071;

A4 = −4.716× 10−3; A5 = 9.516× 10−5.

Now we should define the coefficients for the heat flux in the expression (15). The corre-sponding variational functional for the condition (10) is

J =

∫ 1

0

(5∑

m=0

Pmtn + g(t)

)2

dt, (22)

where

g(t) = − λr20

[5∑

m=0

Am(v′2m(r0, t)− v2m(r0, t)

)+

5∑m=0

Bm(v′2n+1(r0, t)− v2m+1(r0, t))

],

v′2m(r0, t) =

m∑k=0

(2m)!a2kr2m−2k0

k!(2m− 2k)!tk,

Kazakh Mathematical Journal, 19:1 (2019) 59–68

Page 65: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

64 Stanislav Kharin, Targyn Nauryz, Khumoyun Jabbarkhanov

v′2m+1(r0, t) =n∑k=0

(2m+ 1)!a2kr2m−2k+10

k!(2m− 2k + 1)!tk,

v2m(r0, t) =m∑k=0

(2m)!a2kr2m−2k0

k!(2m− 2k)!tk, v2m+1(r0, t) =

m∑k=0

(2m+ 1)!a2kr2m−2k+10

k!(2m− 2k + 1)!tk.

The minimum of (22) gives the equation

∂J

∂Pm= 2

∫ 1

0

(5∑

n=0

Pntn + g(t)

)tmdt = 0,

5∑n=0

PnGnm = −Hm, m = 0, 5, (23)

where

Gnm =

∫ 1

0tn+mdt, Hm =

∫ 1

0g(t)tmdt, m = 0, 5.

From the expression (23) we have the following results:

P0 = −0.009; P1 = 0.085; P2 = −2.38; P3 = 6.572;

P4 = −7.406; P5 = 2.872.

The results of testing for a = 1, α0 = 1, r0 = 1, L = 1, γ = 1, Um = 1 depict in Fig. 1 theapproximated function

V (t) = − λr20

[5∑

n=0

An(v′2n(r0, t)− v2n(r0, t)

)+

5∑n=0

Bn(v′2n+1(r0, t)− v2n+1(r0, t))

]

and the exact solution

P (t) =5∑

n=0

Pntn, (23)

which can be obtained by solving the direct Stefan problem [5], [6], [7], [8].One can see the ideal coincidence of the exact and approximated solutions.

4 Collocation Method

Let us take for testing m = 5 the basic points t = ti = 2i10 , i = 0, 1, 2, 3, 4, 5, a = 1, α0 =

1, r0 = 1, L = 1, γ = 1, Um = 0. Then we get the following values for An and Bn:

A1 = 0.878; A2 = −0.051; A3 = −0.069;

Kazakh Mathematical Journal, 19:1 (2019) 59–68

Page 66: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

The solution of the two-phase spherical Stefan problem ... 65

Figure 1 – Approximated and the exact heat fluxes

A4 = 9.957× 10−3; A5 = −3.073× 10−4,

B1 = −1.448; B2 = −0.514; B3 = −0.05,

B4 = −1.041× 10−3; B5 = 1.383× 10−5.

From the condition (10) we have the following results:

P1 = 1.212; P2 = −6.219; P3 = 18.288;

P4 = −21.378; P5 = 8.597.

The Fig. 2 depicts the approximate function

V (t) = − λr20

[5∑

n=1

An(v′2n(r0, t)− v2n(r0, t)

)+

5∑n=1

Bn(v′2n+1(r0, t)− v2n+1(r0, t))

]

and the original function P (t) =∑5

n=0 Pntn taking for the corresponding direct Stefan prob-

lem.The greatest error of approximation is in the neighborhood of zero and one. The error of

approximation is approximately 2%.

5 Experimental Verification

Let us compare the results of approximation with the exact solution and experimentaldata presented in [9]. The contact material is AgCdO, the initial radius of the arc spot onthe contact surface r0 = 10−4m , the current I = 1.5kA , the voltage U = 42V , the arcduration ta = 12µs. Then we have the coefficients of the original function

P1 = 1.755× 108; P2 = −6.17× 107; P3 = −8.254× 108;

Kazakh Mathematical Journal, 19:1 (2019) 59–68

Page 67: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

66 Stanislav Kharin, Targyn Nauryz, Khumoyun Jabbarkhanov

Figure 2 – Approximated V (t) and the exact P (t) heat fluxes

P4 = −1.673× 109 P5 = −9.292× 108.

Fig. 3 shows that the approximation and the original functions are identical everywherewithout errors.

Figure 3 – The domain Ωx,t in the case II

References

[1] Kharin S.N. The analytical solution of the two-face Stefan problem with boundary flux condition,Mathematical Journal, 1 (2014), 55-75.

[2] Slade P. Electrical Contacts. Principles and Applications, Second Edition, CRC Press, (2014),1-1268.

[3] Kharin S.N. The Mathematical Models of Phenomena in Electrical Contacts, The Russian

Kazakh Mathematical Journal, 19:1 (2019) 59–68

Page 68: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

The solution of the two-phase spherical Stefan problem ... 67

Academy of Sciences, Siberian Branch, A.P. Ershov Institute of Informatics System, Novosibirsk,(2017), 1-193.

[4] Kharin S.N., Sarsengeldin M.M., Nouri H. Analytical solution of two-phase spher-ical Stefan problem by heat polynomials and integral error functions, AIP ConferenceProceedings 1759, 020031(2016); https://doi.org/10.1063/1.4959645, Available on linehttp://dx.doi.org/10.1063/1.4959645.

[5] Sarsengeldin M., Kharin S.N. Method of the Integral error functions for the solution ofthe one- and two-phase Stefan problems and its application, Filomat 31:4 (2017), 1017-1029.https://doi.org/10.2298/FIL1704017S, Available at: http://www.pmf.ni.ac.rs/filomat.

[6] Kharin S.N., Jabbarkhanov K. Method of the heat polynomials for the solution of free boundaryproblems for the generalized heat equation, News of the International Kazakh-Turkish University. HA.Yasavi, sir. Mathematics, physics, computer science, 4:1 (2018), 166-170.

[7] Merey. M. Sarsengeldin, Stanislav N. Kharin, Samat Kassabek, Zamanbek MukambetkazinExact Solution of the One Phase Stefan Problem, Filomat, 32:3 (2018), 985-990, Available at:http://www.pmf.ni.ac.rs/filomat.

[8] Kavokin A.A., Nauryz T.A., Bizhigitova N.T. Exact solution of two phase spherical Stefanproblem with two free boundaries, AIP Conference Proceedings, 1759:1 (2016), 020117.

[9] Merey M. Sarsengeldin, Abdullah S. Erdogan, Targyn A. Nauryz, Hassan Nouri An approach

for solving an inverse spherical two-phase Stefan problem arising in modeling of electric contact phe-

nomena, Mathematical Methods in the Applied Sciences, 41:2 (2018), 850-859.

Харин С.Н., Наурыз Т., Джаббарханов Х. ЕКI ФАЗАЛЫҚ СФЕРАЛЫҚ СТЕФАНЕСЕБIН ЖЫЛУЛЫҚ ПОЛИНОМДАРДЫ ПАЙДАЛАНА ОТЫРЫП ШЕШУ

Белгiсiз шекаралық жылу ағыны үшiн керi екi фазалық сфералық Стефан есебi жы-лулық полиномдар әдiсiмен шешiледi. Нақты шешiммен қоса, жуықтап шешудiң инже-нерлiк есептер үшiн қолайлы болатын екi әдiсi – вариациялық әдiс пен коллокациялықәдiс, ұсынылған және салыстырылған. Екi әдiсте, бар болғаны тек бiрнеше нүктелердi ға-на пайдаланғанның өзiнде өте жақсы жақындатуды көрсетедi. Дегенмен, коллокациялықәдiс жылудың бастапқы сатысында жақсы нәтиже берсе, вариациялық әдiс Фурье кри-терийiнiң үлкен мәндерi үшiн қолайлырақ болып отыр. Жылу өткiзгiштiк теңдеуi үшiнаппроксимация қателiгiнiң бағалауы максимум қағидатын пайдалану арқылы алынған.Алынған нәтижелердiң контактiни ажырату кезiндегi электр доғасының жылу ағынынесептеуге қолданысы ұсынылды.

Кiлттiк сөздер. Стефан есебi, жылулық полиномдар, жылу ағыны, балқу аймағы.

Kazakh Mathematical Journal, 19:1 (2019) 59–68

Page 69: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

68 Stanislav Kharin, Targyn Nauryz, Khumoyun Jabbarkhanov

Харин С.Н., Наурыз Т., Джаббарханов Х. РЕШЕНИЕ ДВУХФАЗНОЙ СФЕРИЧЕ-СКОЙ ЗАДАЧИ СТЕФАНА С ИСПОЛЬЗОВАНИЕМ ТЕПЛОВЫХ ПОЛИНОМОВ

Обратная двухфазная сферическая задача Стефана для неизвестного граничноготеплового потока решается методом тепловых полиномов. Наряду с точным решени-ем представлены и сопоставлены два метода приближенного решения - коллокационныйи вариационный, удобные для инженерных задач. Показано, что оба метода дают оченьхорошее приближение даже для использования только нескольких точек. Однако методколлокации дает лучший результат для начальной стадии нагрева, тогда как вариа-ционный метод более предпочтителен для больших значений критерия Фурье. Оценкапогрешности аппроксимации получена с использованием принципа максимума для урав-нения теплопроводности. Представлено применение полученных результатов для расчетатеплового потока электрической дуги при размыкании контакта.

Ключевые слова. Задача Стефана, тепловые полиномы, тепловой поток, зона плав-ление.

Kazakh Mathematical Journal, 19:1 (2019) 59–68

Page 70: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Kazakh Mathematical Journal ISSN 2413–6468

19:1 (2019) 69–81

The existence of a solution to the special Cauchyproblem for the system of nonlinear Fredholm

integro-differential equations

Sandugash T. Mynbayeva

K. Zhubanov Aktobe Regional State University, Aktobe, KazakhstanInstitute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

Communicated by: Anar Assanova

Received: 11.03.2019 ? Accepted/Published Online: 31.05.2019 ? Final Version: 31.05.2019

Abstract. Fredholm integro-differential equation with nonlinear differential part and linear integral

term with degenerate kernel is considered on a finite interval. The interval is divided into N parts

and the values of a solution to the nonlinear integro-differential equation at the left-end points of

subintervals are introduced as additional parameters. The desired function is replaced by the sums

of new unknown functions and additional parameters in the corresponding subintervals. The original

integro-differential equation is reduced to the special Cauchy problem for the system of nonlinear integro-

differential equations with parameters. The special Cauchy problem as the Cauchy problem for Fredholm

integro-differential equations is not always solvable. Therefore, the questions of the existence of a

solution to the special Cauchy problem at the fixed values of parameters are studied. To this end Arzela’s

theorem on compactness of a set of continuous functions on closed intervals is used. Conditions for the

existence of a solution to the special Cauchy problem are established.

Keywords. Nonlinear Fredholm integro-differential equation, special Cauchy problem, parametrization’s

method, iterative method, compact set.

In [1]–[4] parametrization method is applied to study and solve the linear Fredholmintegro-differential equations and boundary value problems for them. The interval is di-vided into N parts, values of desired function at the beginning points of subintervals areconsidered as additional parameters and the original integro-differential equation is reducedto a system of integro-differential equations with parameters, where unknown functions sat-isfy the initial conditions on the subintervals. At the fixed values of the parameters we get thespecial Cauchy problem for the system of linear integro-differential equations. The solutions

2010 Mathematics Subject Classification: 34G20, 45B05, 45J05, 47G20.Funding: The work is supported by the grant project AP05132486 (2018-2020) from the Ministry of

Science and Education of the Republic of Kazakhstan.c© 2019 Kazakh Mathematical Journal. All right reserved.

Page 71: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

70 Sandugash T. Mynbayeva

to the special Cauchy problem are used in solving boundary value problems for the Fredholmintegro-differential equations.

In the present paper, it is considered the nonlinear Fredholm integro-differential equation

dx

dt= f(t, x) +

m∑k=1

ϕk(t)

∫ T

0ψk(τ)x(τ)dτ, t ∈ [0, T ], x ∈ Rn, (1)

where (n× n)-matrices ϕk(t), ψk(τ), k = 1,m, are continuous on [0, T ], f : [0, T ]×Rn → Rn

is continuous; ‖x‖ = maxi=1,n

|xi|.

Denote by C([0, T ], Rn

)the space of continuous functions x : [0, T ]→ Rn with the norm

‖x‖1 = maxt∈[0,T ]

‖x(t)‖. A solution to Eq.(1) is a continuously differentiable on (0, T ) function

x(t) ∈ C([0, T ], Rn

), which satisfies the equation for any t ∈ [0, T ].

Let ∆N be a partition of the interval [0, T ) into N parts: [0, T ) =N⋃r=1

[tr−1, tr), and xr(t)

be the restriction of the function x(t) to the r-th interval, i.e. xr(t) = x(t), t ∈ [tr−1, tr),r = 1, N.

We consider the value of functions xr(t) at the beginning points of the subintervals asadditional parameters, and make the substitution ur(t) = xr(t) − λr, r = 1, N, on eachr-th interval. Then system (1) is reduced to the special Cauchy problem for the system ofnonlinear integro-differential equations with parameters

durdt

= f(t, ur + λr) +

m∑k=1

ϕk(t)

N∑j=1

∫ tj

tj−1

ψk(τ)[uj(τ) + λj ]dτ, t ∈ [tr−1, tr), (2)

ur(tr−1) = 0, r = 1, N. (3)

In [6], sufficient conditions for the existence of a unique solution to the special Cauchyproblem for nonlinear Fredholm integro-differential equations are obtained. An algorithm forfinding a solution to the special Cauchy problem for nonlinear integro-differential equationsand a numerical implementation of the proposed algorithm are developed in [7]. Note thatin these papers it is required that the lengths of subintervals be small.

The purpose of this paper is to establish conditions for the existence of a solution to thespecial Cauchy problem (2), (3) for any partition of the interval [0, T ].

Let C([0, T ],∆N , R

nN)

denote the space of function systems u[t] =(u1(t), u2(t), . . . , uN (t)

), where ur : [tr−1, tr) → Rn is continuous and has the finite

left-sided limit limt→tr−0

ur(t) for any r = 1, N, with the norm∥∥u[·]

∥∥2

= maxr=1,N

supt∈[tr−1,tr)

‖ur(t)‖.

The solution to the special Cauchy problem (2), (3) at the fixed λ = λ∗ =(λ∗1, λ

∗2, . . . , λ

∗N

)∈ RnN is a function system u[t, λ∗] =

(u1(t, λ

∗), u2(t, λ∗), . . . , uN (t, λ∗)) ∈

Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 72: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

The existence of a solution to the special Cauchy problem for the system ... 71

C([0, T ],∆N , R

nN), whose components ur(t, λ

∗), r = 1, N , are continuously differentiable ontheir domains and satisfy the system of integro-differential equations (2) with λ = λ∗ andinitial conditions (3).

We choose a vector λ(0) =(λ(0)1 , λ

(0)2 , . . . , λ

(0)N

)∈ RnN and define a piecewise constant

vector function x0(t) on [0, T ] by the equalities x0(t) = λ(0)r , t ∈ [tr−1, tr), r = 1, N, x0(T ) =

λ(0)N .

Let ρλ > 0, and

S(λ(0), ρλ

)=λ = (λ1, λ2, . . . , λN ) ∈ RnN : ‖λr − λ(0)r ‖ < ρλ, r = 1, N

,

G0(ρ) =

(t, x) : t ∈ [0, T ], ‖x− x0(t)‖ < ρ.

To solve the boundary value problem we need the values of limt→tr−0

ur(t), r = 1, N. So, we

consider the special Cauchy problem for the system of nonlinear integro-differential equationswith parameters on closed subintervals

dvrdt

= f(t, vr + λr) +m∑k=1

ϕk(t)N∑j=1

∫ tj

tj−1

ψk(τ)[vj(τ) + λj ]dτ, t ∈ [tr−1, tr], (4)

vr(tr−1) = 0, r = 1, N. (5)

Denote by C([0, T ],∆N , R

nN)

the space of function systems v[t] =(v1(t), v2(t), . . . , vN (t)

), where vr : [tr−1, tr] → Rn is continuous for all r = 1, N, with

the norm∥∥v[·]

∥∥3

= maxr=1,N

maxt∈[tr−1,tr]

‖vr(t)‖.

It is obvious that if the function systems u[t, λ] =(u1(t, λ), u2(t, λ), . . . , uN (t, λ)

), and

v[t, λ] =(v1(t, λ), v2(t, λ), . . . , vN (t, λ)

), are solutions to problems (2), (3) and (4), (5), re-

spectively, thenur(t, λ) = vr(t, λ), t ∈ [tr−1, tr),

limt→tr−0

ur(t, λ) = vr(tr, λ), r = 1, N.

For fixed parameter λ ∈ S(λ(0), ρλ

), we get

dvrdt

= f(t, vr + λr) +m∑k=1

ϕk(t)N∑j=1

∫ tj

tj−1

ψk(τ)[vj(τ) + λj

]dτ, t ∈ [tr−1, tr], (6)

vr(tr−1) = 0, r = 1, N. (7)

Let ρv > 0 and

S(0, ρv

)=v[t] = (v1(t), v2(t), . . . , vN (t)) ∈ C

([0, T ],∆N , R

nN)

: ‖v[·]‖3 < ρv.

Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 73: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

72 Sandugash T. Mynbayeva

We solve problem (6), (7) by the iterative method. We take v(0)[t] = (0, 0, . . . , 0) asan initial approximation for the solution to problem (6), (7) and successive approximationsdetermined by the solutions to the special Cauchy problems for the system of linear integro-differential equations

dvrdt

= F (t, v(ν−1)r (t), λ) +m∑k=1

ϕk(t)N∑j=1

∫ tj

tj−1

ψk(τ)vj(τ)dτ, t ∈ [tr−1, tr], (8)

vr(tr−1) = 0, r = 1, N, (9)

where

F (t, v(ν−1)r (t), λ) = f(t, v(ν−1)r (t) + λr) +

m∑k=1

ϕk(t)

N∑j=1

∫ tj

tj−1

ψk(τ)dτλj ,

t ∈ [tr−1, tr], r = 1, N, ν = 1, 2, ... . (10)

By v(ν)[t] =(v(ν)1 (t), v

(ν)2 (t), . . . , v

(ν)N (t)

)we denote the solution to the special Cauchy

problem (8), (9).Let C

([tr−1, tr], R

n)

be the space of continuous functions vr : [tr−1, tr] → Rn with thenorm ‖vr‖ = max

t∈[tr−1,tr]‖vr(t)‖, r = 1, N.

For the fixed function system v(ν−1)[t] =(v(ν−1)1 (t), v

(ν−1)2 (t), . . . , v

(ν−1)N (t)

)∈

C([0, T ],∆N , R

nN), ν = 1, 2, . . . , problem (8), (9) turns into the special Cauchy problem

for the system of linear integro-differential equations

dwrdt

= Fr(t, λ) +m∑k=1

ϕk(t)N∑j=1

∫ tj

tj−1

(τ)wj(τ)τ, t ∈ [tr−1, tr], (11)

wr(tr−1) = 0, r = 1, N, (12)

with Fr(t, λ) ∈ C([tr−1, tr], R

n).

We find the solution to the special Cauchy problem for the system of linear integro-differential equations (11), (12) by the method proposed in [3, p. 345-346].

Since the fundamental matrix of the differential part is the identity matrix of the dimen-sion n, the special Cauchy problem (11), (12) is equivalent to the system of integral equationsof the second kind

wr(t) =

∫ t

tr−1

Fr(τ, λ)dτ +

∫ t

tr−1

m∑k=1

ϕk(τ)

N∑j=1

∫ tj

tj−1

ψk(s)wj(s)dsdτ,

t ∈ [tr−1, tr], r = 1, N. (13)

Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 74: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

The existence of a solution to the special Cauchy problem for the system ... 73

Set

ξk =N∑j=1

∫ tj

tj−1

ψk(s)wj(s)ds, k = 1,m,

and rewrite system (13) in the next form

wr(t) =

∫ t

tr−1

Fr(τ, λ)dτ +

∫ t

tr−1

m∑k=1

ϕk(τ)dτξk, t ∈ [tr−1, tr], r = 1, N. (14)

Multiplying both sides of (14) by ψp(t), integrating on [tr−1, tr] and summing up over r,we get the system of linear algebraic equations with respect to ξ = (ξ1, ξ2, . . . , ξm) ∈ Rnm

ξp =

m∑k=1

Gp,k(∆N )ξk + gp(∆N ,F), p = 1,m, (15)

with (n× n)-matrices

Gp,k(∆N ) =N∑r=1

∫ tr

tr−1

ψp(τ)

∫ τ

tr−1

ϕk(s)dsdτ, p, k = 1,m,

and vectors of the dimension n

gp(∆N ,F) =

N∑r=1

∫ tr

tr−1

ψp(τ)

∫ τ

tr−1

Fr(s, λ)dsdτ, p = 1,m. (16)

Using the matrices Gp,k(∆N

)and the vectors gp

(∆N ,Fr

), we construct the (nm ×

nm)-matrix G(∆N ) =(Gp,k(∆N )

), p, k = 1,m, and the vector g

(∆N ,F

)=(

g1(∆N ,F), g2(∆N ,F), . . . , gm(∆N ,F)). We can rewrite system (15) in the form

[I −G(∆N )]ξ = g(∆N ,F), (17)

where I is the identity matrix of the dimension nm.Assume that ∆N is a regular partition [2]. Then the matrix I −G(∆N ) is invertible and

its inverse we write in the form [I − G(∆N )]−1 =(Rk,p(∆N )

), k, p = 1,m, where Rk,p(∆N )

are square matrices of the dimension n. Now, a unique solution to Eq.(17) is determined bythe equalities

ξk =m∑p=1

Rk,p(∆N )gp(∆N ,F), k = 1,m. (18)

Let us introduce the following notation:

h = maxr=1,N

(tr − tr−1), (19)

Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 75: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

74 Sandugash T. Mynbayeva

ϕk = maxr=1,N

maxt∈[tr−1,tr]

‖ϕk(t)‖, ψk = maxr=1,N

maxt∈[tr−1,tr]

‖ψk(t)‖, k = 1,m. (20)

Substituting the right-hand side of (18) for ξk in (14), we get the functions

wr(t, λ) =

∫ t

tr−1

m∑k=1

ϕk(τ)m∑p=1

Rk,p(∆N )gp(∆N ,F)dτ

+

∫ t

tr−1

Fr(τ, λ)dτ, t ∈ [tr−1, tr], r = 1, N.

The function system

w[t, λ] =(w1(t, λ), w2(t, λ), . . . , wN (t, λ)

)is a unique solution to the special Cauchy problem for the system of linear integro-differentialequations (11), (12) and the following estimate∥∥∥w[·, λ]

∥∥∥3≤ χ max

r=1,Nmax

t∈[tr−1,tr]

∥∥∥Fr(t, λ)∥∥∥ (21)

holds, where

χ =

[1 +

Nh2

2maxp=1,m

ψp

m∑k=1

m∑p=1

maxt∈[tr−1,tr]

∥∥∥ϕk(t)∥∥∥∥∥∥Rk,p(∆N )∥∥∥]h.

Theorem 1. Let the matrix I−G(∆N ) be invertible and the following conditions be fulfilled:

1) ‖f(t, x)‖ ≤M0, (t, x) ∈ G0(ρ), M0 is const;

2)

N∑j=1

m∑k=1

∥∥∥ϕk(t)∥∥∥∥∥∥∥∥∫ tj

tj−1

ψk(s)ds

∥∥∥∥∥ ≤M1, t ∈ [0, T ], M1 is const;

3) χ ·(M0 +M1 ·

(ρλ +

∥∥λ(0)∥∥)) < ρv;

4) ρλ + ρv ≤ ρ.

Then, for any λ ∈ S(λ(0), ρλ), the special Cauchy problem for the system of nonlin-ear integro-differential equations (6), (7) has a solution v

[t, λ]

=(v∗1(t), v∗2(t), . . . , v∗N (t)

)∈

S(0, ρv).

Proof. By using the iterative method proposed above, we find the sequence of functionsystems

v(ν)[t]

, where

v(ν)[t] =(v(ν)1 (t), v

(ν)2 (t), . . . , v

(ν)N (t)

).

Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 76: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

The existence of a solution to the special Cauchy problem for the system ... 75

It is easily seen that the functions v(ν)r (t) belong to C

([tr−1, tr], R

n), ν = 1, 2, ... .

Using the elements of the function system v(ν)[t] at the fixed value of r we compose thefunctional sequences

v(ν)r (t), t ∈ [tr−1, tr], r = 1, N, ν = 1, 2, ... .

Consider the set Vr of the functions v(ν)r (t).

Formula (16) implies the following estimates

‖gp(∆N , F )‖ =

∥∥∥∥∥N∑r=1

∫ tr

tr−1

ψp(τ)

∫ τ

tr−1

F (s, v(ν−1)r (s), λ)dsdτ

∥∥∥∥∥≤

N∑r=1

∥∥∥∥∥∫ tr

tr−1

ψp(τ)

∫ τ

tr−1

F (s, v(ν−1)r (s), λ)dsdτ

∥∥∥∥∥≤

N∑r=1

∫ tr

tr−1

∥∥∥∥∥ψp(τ)

∫ τ

tr−1

F (s, v(ν−1)r (s), λ)ds

∥∥∥∥∥dτ≤

N∑r=1

maxτ∈[tr−1,tr]

∥∥∥F (τ, v(ν−1)r (τ), λ)∥∥∥∫ tr

tr−1

∥∥ψp(τ)∥∥(τ − tr−1)dτ

≤ ψp maxr=1,N

maxτ∈[tr−1,tr]

∥∥∥F (τ, v(ν−1)r (τ), λ)∥∥∥ N∑r=1

(tr − tr−1)2

2, p = 1,m. (22)

From (10), taking into account (20), we get

∥∥∥F (t, v(ν−1)r (t), λ)∥∥∥ =

∥∥∥∥∥f(t, v(ν−1)r (t) + λr) +m∑k=1

ϕk(t)N∑j=1

∫ tj

tj−1

ψk(τ)dτλj

∥∥∥∥∥≤∥∥∥f(t, v(ν−1)r (t) + λr)

∥∥∥+

∥∥∥∥∥m∑k=1

ϕk(t)N∑j=1

∫ tj

tj−1

ψk(τ)dτλj

∥∥∥∥∥≤∥∥∥f(t, v(ν−1)r (t) + λr)

∥∥∥+

∥∥∥∥∥m∑k=1

N∑j=1

ϕk(t)

∫ tj

tj−1

ψk(τ)dτλj

∥∥∥∥∥≤∥∥∥f(t, v(ν−1)r (t) + λr)

∥∥∥+

N∑j=1

m∑k=1

∥∥∥ϕk(t)∥∥∥∥∥∥∥∥∫ tj

tj−1

ψk(τ)dτ

∥∥∥∥∥∥∥∥λj∥∥∥Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 77: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

76 Sandugash T. Mynbayeva

≤∥∥∥f(t, v(ν−1)r (t) + λr)

∥∥∥+N∑j=1

m∑k=1

∥∥∥ϕk(t)∥∥∥∥∥∥∥∥∫ tj

tj−1

ψk(τ)dτ

∥∥∥∥∥∥∥λ∥∥,maxr=1,N

maxτ∈[tr−1,tr]

∥∥∥F (τ, v(ν−1)r (τ), λ)∥∥∥ ≤ max

r=1,Nmax

τ∈[tr−1,tr]

∥∥∥f(t, v(ν−1)r (t) + λr)∥∥∥

+

N∑j=1

m∑k=1

∥∥∥ϕk(t)∥∥∥∥∥∥∥∥∫ tj

tj−1

ψk(τ)dτ

∥∥∥∥∥(∥∥λ− λ(0)∥∥+∥∥λ(0)∥∥)

≤ maxr=1,N

maxτ∈[tr−1,tr]

∥∥∥f(t, v(ν−1)r (t) + λr)∥∥∥

+N∑j=1

m∑k=1

∥∥∥ϕk(t)∥∥∥∥∥∥∥∥∫ tj

tj−1

ψk(τ)dτ

∥∥∥∥∥(ρλ +∥∥λ(0)∥∥)

≤M0 +M1 ·(ρλ +

∥∥λ(0)∥∥). (23)

By virtue of conditions of Theorem 1, estimates (22), (23) and notation (19), (20) wehave∥∥∥v(ν)r (t, λ)

∥∥∥ =

∥∥∥∥∥∫ t

tr−1

m∑k=1

ϕk(τ)

m∑p=1

Rk,p(∆N )gp(∆N , F )dτ +

∫ t

tr−1

F (τ, v(ν−1)r (τ), λ)dτ

∥∥∥∥∥≤

∥∥∥∥∥∫ t

tr−1

m∑k=1

ϕk(τ)

m∑p=1

Rk,p(∆N )gp(∆N , F )dτ

∥∥∥∥∥+

∥∥∥∥∥∫ t

tr−1

F (τ, v(ν−1)r (τ), λ)dτ

∥∥∥∥∥≤∫ t

tr−1

∥∥∥∥∥m∑k=1

ϕk(τ)

m∑p=1

Rk,p(∆N )gp(∆N , F )

∥∥∥∥∥dτ +

∫ t

tr−1

∥∥∥F (τ, v(ν−1)r (τ), λ)∥∥∥dτ

≤∫ t

tr−1

m∑p=1

m∑k=1

∥∥∥ϕk(τ)Rk,p(∆N )∥∥∥∥∥∥gp(∆N , F )

∥∥∥dτ +

∫ t

tr−1

∥∥∥F (τ, v(ν−1)r (τ), λ)∥∥∥dτ

≤∫ t

tr−1

m∑p=1

m∑k=1

∥∥∥ϕk(τ)Rk,p(∆N )∥∥∥dτ · max

p=1,m

∥∥gp(∆N , F )∥∥

+

∫ t

tr−1

∥∥∥F (τ, v(ν−1)r (τ), λ)∥∥∥dτ ≤ ∫ t

tr−1

m∑p=1

m∑k=1

∥∥∥ϕk(τ)∥∥∥∥∥∥Rk,p(∆N )

∥∥∥dτ× maxp=1,m

ψp

N∑r=1

(tr − tr−1)2

2maxr=1,N

maxτ∈[tr−1,tr]

∥∥∥F (τ, v(ν−1)r (τ), λ)∥∥∥

Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 78: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

The existence of a solution to the special Cauchy problem for the system ... 77

+

∫ t

tr−1

∥∥∥F (τ, v(ν−1)r (τ), λ)∥∥∥dτ ≤ cr, t ∈ [tr−1, tr], r = 1, N, (24)

where

cr =

[1 +

Nh2

2maxp=1,m

ψp

m∑p=1

m∑k=1

maxt∈[tr−1,tr]

∥∥∥ϕk(t)∥∥∥∥∥∥Rk,p(∆N )∥∥∥]

×h[M0 +M1 ·

(ρλ +

∥∥λ(0)∥∥)].Since the inequality

∥∥∥v(ν)r (t)∥∥∥ ≤ cr holds for all t ∈ [tr−1, tr], the functions from the set

Vr are uniformly bounded on [tr−1, tr], r = 1, N.Now we take the points t′r, t

′′r ∈ [tr−1, tr], r = 1, N. If |t′r − t′′r | < δr, r = 1, N, then by

virtue of (21) and inequality (24) we have the inequality∥∥∥v(ν)r (t′′r)− v(ν)r (t′r)∥∥∥ =

∥∥∥∥∥∫ t′′r

t′r

F (τ, v(ν−1)r (τ), λ)dτ

+

∫ t′′r

t′r

m∑k=1

ϕk(τ)m∑p=1

Rk,p(∆N )gp(∆N , F )dτ

∥∥∥∥∥ ≤ εr,for all v

(ν)r (t) on [tr−1, tr], where

εr = maxt∈[tr−1,tr]

[1 +

Nh2

2maxp=1,m

ψp

m∑k=1

m∑p=1

maxt∈[tr−1,tr]

∥∥∥ϕk(t)∥∥∥∥∥∥Rk,p(∆N )∥∥∥]

×[M0 +M1 ·

(ρλ +

∥∥λ(0)∥∥)]|t′′r − t′r|, r = 1, N, ν = 1, 2, ... .

It follows that the functions from the set Vr, r = 1, N, are equicontinuous. By Arzela’stheorem [5, p. 207], each set Vr, r = 1, N, is compact.

Since the set Vr is compact for each r = 1, N, we can select the subsequence v(νl)r (t),

which is uniformly convergent to v∗r (t) as l→∞ on [tr−1, tr] for all r = 1, N.We construct the function system

v∗[t]

=(v∗1(t), v∗2(t), . . . , v∗N (t)

).

Now let us show that the function system v∗[t]

is a solution to the special Cauchy problem(6), (7).

Since the functions v(νl)r (t) are defined by using proposed iterative method, the following

equality

v(νl)r (t) =

∫ t

tr−1

F (τ, v(νl−1)r (τ), λ)dτ +

∫ t

tr−1

m∑k=1

ϕk(τ)

N∑j=1

∫ tj

tj−1

ψk(s)v(νl)j (s)dsdτ,

Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 79: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

78 Sandugash T. Mynbayeva

t ∈ [tr−1, tr], r = 1, N, (25)

is true.In (25), passing to the limit as l→∞, we get

v∗r (t) =

∫ t

tr−1

F (τ, v∗r (τ), λ)dτ +

∫ t

tr−1

m∑k=1

ϕk(τ)

N∑j=1

∫ tj

tj−1

ψk(s)v∗)j (s)dsdτ,

t ∈ [tr−1, tr], r = 1, N. (26)

It is easily seen that v∗r (tr−1) = 0, r = 1, N. Differentiating both sides of (26), we obtain

dv∗r (t)

dt= F (t, v∗r (t), λ) +

m∑k=1

ϕk(t)

N∑j=1

∫ tj

tj−1

ψk(s)v∗)j (s)ds,

t ∈ [tr−1, tr], r = 1, N.

Thus, the function system v[t, λ] = (v∗1(t), v∗2(t), . . . , v∗N (t)) is a solution to the specialCauchy problem (6), (7). Theorem is proved.

Example. Consider the nonlinear Fredholm integro-differential equation

dx

dt= ϕ(t)

∫ T

0ψ(τ)x(τ)dτ + f(t, x), t ∈ [0, T ], x ∈ R2,

where T = 2, ϕ(t) =

( √t −t

0 t3

), ψ(τ) =

(1 τ

2

τ 0

),

f(t, x) =

( √t sinx1 + cos3x2 + 23t

12−√t sin(t2 − 2)− 15

√t

8− cos3(t + 1)

t cos3x1 + 3√t sinx2 + t

36− t cos(3t2 − 6)− 3

√t sin(t + 1) + 1

), t ∈ [0, 1],

f(t, x) =

( √t sinx1 + cos3x2 − t

12−√t sin(2− t)− 15

√t

8− cos3(t2 + 1)

t cos3x1 + 3√t sinx2 + 73t

36− t cos(6− 3t)− 3

√t sin(t2 + 1)

), t ∈ [1, 2].

Let us divide the interval [0, T ) into two equal parts and by ∆2 denote the partition withthe points t0 = 0, t1 = 1, t2 = 2. Introducing parameters λ1 = x(0), λ2 = x(1) and makingthe substitutions

v1(t) = x(t)− x(0), t ∈ [0, 1], v2(t) = x(t)− x(1), t ∈ [1, 2],

we obtain the special Cauchy problem

dvrdt

= ϕ(t)

2∑j=1

∫ tj

tj−1

ψ(τ)[vj(τ) + λj ]dτ + f(t, vr + λr), t ∈ [tr−1, tr], (27)

Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 80: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

The existence of a solution to the special Cauchy problem for the system ... 79

vr(tr−1) = 0, r = 1, 2. (28)

Assume that ρλ = 10 and λ(0) =((1, 0), (0,−1)

).

By the equalities x0(t) = λ(0)1 , t ∈ [0, 1], x0(t) = λ

(0)2 , t ∈ [1, 2], we define a piecewise

constant function x0(t) on [0, 2]. Then we set G0(ρ) = (t, x) : t ∈ [0, 2], ‖x− x0(t)‖ < ρ, ρ =583.

Since‖f(t, x)‖ ≤ 11.4, (t, x) ∈ G0(ρ),∥∥∥∥∥ϕ(t)

2∑j=1

∫ tj

tj−1

ψ(s)ds

∥∥∥∥∥(ρλ +∥∥λ(0)∥∥) ≤ 90.7,

and χ ≤ 5.7, conditions of Theorem 1 are satisfied.Therefore, the special Cauchy problem (27), (28) has a solution v[t, λ] belonging to

S(0, ρu), ρu = 572 for any λ ∈ S(λ(0), ρλ), ρλ = 10. If we take, for example, λ =((−2, 1), (1, 2)

)∈ S(λ(0), ρλ), then at the fixed value of parameters the special Cauchy

problem (27), (28) has the solution v[t, λ] = (v1(t), v2(t)) ∈ S(0, ρu) and v1(t) =

(t2

t

),

v2(t) =

(1− tt2 − 1

).

References

[1] Dzhumabaev D.S. A method for solving the linear boundary value problem an integro-differentialequation, Comput. Math. Math. Phys., 50 (2010), 1150-1161. https://doi.org/10.1134/S0965542510070043.

[2] Dzhumabaev D.S. Necessary and Sufficient Conditions for the Solvability of Linear Boundary-Value Problems for the Fredholm Integro-differential Equations, Ukrainian Math. J., 66:8 (2015),1200-1219. https://doi.org/10.1007/s11253-015-1003-6.

[3] Dzhumabaev D.S. On one approach to solve the linear boundary value problems for Fredholmintegro-differential equations, J. Comput. Appl. Math., 294 (2016), 342-357. https://doi.org/10.1016/j.cam.2015.08.023.

[4] Dzhumabaev D.S. New general solutions to linear Fredholm integro-differential equations andtheir applications on solving the boundary value problems, J. Comput. Appl. Math., 327 (2018),79-108. https://doi.org/10.1016/j.cam.2017.06.010.

[5] Trenogin B.A. Functional analysis, Izd. Nauka, Glav. Red. Fiz.- mat. Lit, Moskva, 1980. (inRussian)

[6] Bakirova E.A. Existence and uniqueness of a solution to the special Cauchy problem for thenonlinear integro-differential equations, Math. J., 11-1:39 (2011), 43-52. (in Russian)

[7] Dzhumabaev D.S., Bakirova E. A., Mynbayeva S.T. Numerical realization of one algorithm forfinding a solution of special Cauchy problem for nonlinear integro-differential equation, Math. J.,17(4) (2017), 25-36. (in Russian)

Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 81: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

80 Sandugash T. Mynbayeva

Мынбаева С.Т. СЫЗЫҚТЫ ЕМЕС ФРЕДГОЛЬМ ИНТЕГРАЛДЫҚ-ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУЛЕР ЖҮЙЕСI ҮШIН АРНАЙЫ КОШИ ЕСЕБIНIҢШЕШIМIНIҢ БАР БОЛУЫ

Ақырлы аралықта дифференциалдық бөлiгi сызықты емес және интегралдық бөлi-гi сызықты болатын ерекшеленген ядролы Фредгольм интегралдық-дифференциалдықтеңдеуi қарастырылады. Аралық N бөлiкке бөлiнедi және сызықты емес интегралдық-дифференциалдық теңдеудiң шешiмiнiң iшкi аралықтардың сол жақ шеткi нүктелерiн-дегi мәндерi қосымша параметрлер ретiнде енгiзiледi. Iзделiндi функция сәйкес аралы-қтарда белгiсiз функциялар мен қосымша параметрлердiң қосындыларымен алмасты-рылады. Берiлген интегралдық-дифференциалдық теңдеу сызықты емес интегралдық-дифференциалдық теңдеулер жүйесi үшiн параметрлi арнайы Коши есебiне келтiрiледi.Фредгольм интегралдық-дифференциалдық теңдеуi үшiн Коши есебi сияқты, арнайыКоши есебi де барлық уақытта шешiлiмдi бола бермейдi. Сондықтан параметрлердiңбелгiлi мәндерiнде арнайы Коши есебiнiң шешiмiнiң бар болуы мәселелерi зерттеледi. Олүшiн кесiндiде үзiлiссiз функциялар жиынының компактылығы туралы Арцела теоре-масы қолданылады. Арнайы Коши есебiнiң шешiмiнiң бар болуының шарттары алынған.

Кiлттiк сөздер. Сызықты емес Фредгольм интегралдық-дифференциалдық теңдеуi,арнайы Коши есебi, параметрлеу әдiсi, итерациялық әдiс, компакт жиын.

Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 82: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

The existence of a solution to the special Cauchy problem for the system ... 81

Мынбаева С.Т. СУЩЕСТВОВАНИЕ РЕШЕНИЯ СПЕЦИАЛЬНОЙ ЗАДАЧИ КО-ШИ ДЛЯ СИСТЕМЫ НЕЛИНЕЙНЫХ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВ-НЕНИЙ ФРЕДГОЛЬМА

На конечном интервале рассматривается интегро-дифференциальное уравнениеФредгольма с нелинейной дифференциальной частью и линейной интегральной частьюс вырожденным ядром. Интервал делится на N частей и значения решения нелиней-ного интегро-дифференциального уравнения в левых точках подинтервалов вводятсяв качестве дополнительных параметров. Искомая функция заменяется на суммы новыхнеизвестных функций и дополнительных параметров в соответствующих подинтервалах.Исходное интегро-дифференциальное уравнение сводится к специальной задаче Кошидля системы нелинейных интегро-дифференциальных уравнений с параметрами. Спе-циальная задача Коши, как задача Коши для интегро-дифференциальных уравненийФредгольма, не всегда разрешима. В связи с этим исследуются вопросы существованиярешения специальной задачи Коши при фиксированных значениях параметров. Для это-го используется теорема Арцела о компактности множества непрерывных функций наотрезках. Установлены условия существования решения специальной задачи Коши.

Ключевые слова. Нелинейное интегро-дифференциальное уравнение Фредгольма,специальная задача Коши, метод параметризации, итерационный метод, компактноемножество.

Kazakh Mathematical Journal, 19:1 (2019) 69–81

Page 83: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Kazakh Mathematical Journal ISSN 2413–6468

19:1 (2019) 82–97

Self-adjoint operators generated byintegro-differential operators

Niyaz Tokmagambetov1,2,3,a, Berikbol T. Torebek1,2,3,b

1Al-Farabi Kazakh National University2Institute of Mathematics and Mathematical Modeling

3Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgiuma e-mail: [email protected], [email protected]

be-mail: [email protected], [email protected]

Communicated by: Batirkhan Turmetov

Received: 21.04.2019 ? Accepted/Published Online: 31.05.2019 ? Final Version: 31.05.2019

Abstract. This paper is devoted to description of self-adjoint extensions of an integro-differential

operator. We find symmetric integro-differential operators of order 2α (with 12< α < 1). Indeed,

it is an analogue of the fractional Sturm-Liouville operator in some sense. Moreover, an analogue of

the Green’s formula for fractional order differential equations is established with further applications in

describing a class of self-adjoint operators. Finally, we discuss about global Fourier analysis and prove

some results on spectral properties of fractional order self-adjoint operators associated with Caputo-

Riemann-Liouville type derivatives.

Keywords. Integro-differential operator, Caputo derivative, Riemann-Liouville derivative, Self-adjoint

problem, Fractional order differential equation, Fractional Sturm-Liouville operator, Extension theory.

1 Introduction

In the theory of differential equations the charming role plays describing and studying self-adjoint problems. One of the methods to describe them can be done by using the sufficientlydeveloped theory of self-adjoint extension, for example, see monographs [1], [2]. The Green’sformula is one of the main moments in the theory of extensions and contractions. In thispaper the Green’s formula is established for a differential equation of the fractional order.Moreover, we introduce the notion of a fractional differentiation of generalized functions.

2010 Mathematics Subject Classification: 34K08, 47G20, 45J05.Funding: The authors were supported in parts by the FWO Odysseus Project. The first author was

supported in parts by the MESRK (Ministry of Education and Science of the Republic of Kazakhstan) GrantAP05130994. The second author was supported by the MESRK Grant AP05131756. No new data wascollected or generated during the course of research.

c© 2019 Kazakh Mathematical Journal. All right reserved.

Page 84: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Self-adjoint operators generated by integro-differential operators 83

For clearity, we give a class of self-adjoint problems for a fractional analogue of the Sturm-Liouville operator. Due to the physical applications the spectral properties of the fractionaloperators are subject to intensive studies, especially, for the papers with applications [3]–[7].

One of the first investigations of the spectral properties of fractional differential equa-tions is done by Dzhrbashyan [8]. After Dzhrbashyan’s paper mathematicians began to payattention to the properties of the special functions generated by the fractional differentialthe equations. For this, we refer the reader to the papers [9]–[14] and references therein. Ingeneral, fractional operators are not symmetric, and in all mentioned works non self–adjointproblems are considered (also, see [15]). In the weighted class of continuous functions onesymmetric fractional order differential operator is described by Klimek and Agrawal [16]. Inthis work we continue researches started in [17], and we attempt to establish an analogueof the Green’s formula for fractional order differential equations with further applications indescribing a class of self–adjoint operators.

In this paper we deal with a fractional differential operator of the Caputo and Riemann-Liouville type. Moreover, we are aiming at describing a class of self-adjoint problems associ-ated with this fractional order differential equation in the Hilbert space. Indeed, it is found asymmetric Caputo-Riemann-Liouville operator of order 2α (with 1

2 < α < 1). In appreciatesense, it can be interpreted as an analogue of the classical Sturm-Liouville operator.

2 Main results

In what follows, we assume that 12 < α < 1. Now, let us consider

Lu(x) := Dα1 [Dα0 [u]] (x) , 0 < x < 1. (1)

Here, our aim is to investigate spectral properties of operators generated by the fractionalorder differential equation (1) in L2(0, 1). To start, we define an operator in the Holderclasses. Consider the spectral problem

Lu(x) = λu(x), 0 < x < 1, (2)

in the space H2α+o0 ([0, 1]) := ϕ ∈ H2α+o([0, 1]) : ϕ(0) = 0, . . . , ϕ(m)(0) = 0, where m =

[2α+o], and H2α+o([0, 1]) is the Holder space with the parameter 2α+o. Here o is a sufficientlysmall positive number such that o < 1−α. By other words, we deal with the following spaces:

H2α+o0 ([0, 1]) := ϕ ∈ H2α+o([0, 1]) : ϕ(0) = 0, ϕ′(0) = 0,

Hα+o0 ([0, 1]) := ϕ ∈ Hα+o([0, 1]) : ϕ(0) = 0,Ho

0([0, 1]) := ϕ ∈ Ho([0, 1]) : ϕ(0) = 0.From the book of Samko, Kilbas and Marichev [18, Chapter 1, Theorem 3.2] it follows

that the integro–differential operator L is bounded from H2α+o0 ([0, 1]) to Ho

0([0, 1]). Hence,the functionals

ξ−1 (u) := I1−α0 [u] (0) , ξ−2 (u) := I1−α0 [u] (1) ,

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 85: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

84 Niyaz Tokmagambetov, Berikbol T. Torebek

ξ+1 (u) := Dα0 [u] (0) and ξ+2 (u) := Dα

0 [u] (1) ,

are well-defined for all H2α+o0 ([0, 1]). Denote by L0 an operator generated by the fractional

differential expression (1) with ”boundary” conditions

ξ−2 (u) = 0 and ξ+1 (u) = 0. (3)

Then due to the definitions and properties given by Appendix (see, [18, Chapter 1]) for

f ∈ Ho0([0, 1]) := v ∈ Ho

0([0, 1]) :

∫ 1

0v(s)s2αds = 0 and

∫ 1

0v(s)s2α−1ds = 0

an inverse operator to L0 has the form

L−10 f(x) = Iα0 Iα1 f(x) :=

∫ 1

0K(x, s)f(s)ds, 0 < x < 1,

as L−10 : Ho0 → H2α+o

0 , with the symmetric kernel K(·, ·) from L2(0, 1) ⊗ L2(0, 1). Since,

S := spanxk, k ∈ N ⊂ Ho0([0, 1]), and powers of the sets S and S := v ∈ S :

∫ 10 v(s)s2αds =

0 and∫ 10 v(s)s2α−1ds = 0 are equal, then we conclude that a closure of the space Ho

0([0, 1])

by the L2–norm is L2(0, 1). Hence, L−10 has a continuous continuation to a compact operatorin L2(0, 1). Compactness implies the fact that there exists non empty discrete spectrum withthe eigenfunctions forming an orthogonal basis in the space L2(0, 1).

Denote by λk, k ∈ N, eigenvalues of the spectral problem (2)–(3) in the ascending orderand by uk, k ∈ N, corresponding eigenfunctions, i.e.

Dα1 [Dα0 [uk]] (x) = λkuk(x), 0 < x < 1,

ξ−2 (uk) = 0, ξ+1 (uk) = 0

for all k ∈ N. Thus, the domain of the operator L0

Dom(L0) := u ∈ H2α+o0 ([0, 1]) : ξ−2 (u) = 0, ξ+1 (u) = 0

is not empty.Now, we introduce the space of test functions C∞L0

([0, 1]) (for more details, see [19,20]) asfollows:

C∞L0([0, 1]) :=

∞⋂k=1

Dom(Lk0),

where Dom(Lk0) is a domain of Lk0. Here Lk0 stands for the k times iterated L0 with thedomain

Dom(Lk0) := Lk−j−10 u ∈ Dom(L0), j = 0, 1, ..., k − 1

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 86: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Self-adjoint operators generated by integro-differential operators 85

for k ≥ 2. Since the linear combination of all eigenfunctions is in C∞L0([0, 1]), then the space of

test functions is not empty as a set. For further properties of the space C∞L0([0, 1]) we refer to

the papers [19], [20], where the properties of the test functions based on a basis are studied.The dual space to C∞L0

([0, 1]) we denote by D′L0(0, 1) (the space of continuous functionals on

C∞L0([0, 1])).

Now, we are in a way to define a fractional derivation of generalized functions. To begin,note that for all u, v ∈ C∞L0

([0, 1]) we get

(Dα1 [Dα0 u] , v) = (u,Dα1 [Dα

0 v]). (4)

Here, both sides exist in the classical sense.

Indeed, equality (4) follows by the direct computations of (Dα1 [Dα0 u] , v). By the definition,

we have

(Dα1 [Dα0 u] , v) = − 1

Γ(1− α)

∫ 1

0

∫ 1

x(t− x)−α

d

dtDα

0 u(t)dtv(x)dx,

and by changing integration order, we obtain∫ 1

0

∫ 1

x(t− x)−α

d

dtDα

0 u(t)dtv(x)dx

=

∫ 1

0

d

dtDα

0 u(t)

∫ t

0(t− x)−αv(x)dxdt. (5)

Integrating by parts in the right-hand side of equation (5), we have

− 1

Γ(1− α)

∫ 1

0

d

dtDα

0 u(t)

∫ t

0(t− x)−αv(x)dxdt

= −Dα0 u(t)I1−α0 v(t)

∣∣∣10

+ (Dα0 u,D

α0 v)

= −Dα0 u(t)I1−α0 v(t)

∣∣∣10

+ I1−α0 u(t)Dα0 v(t)

∣∣∣10−∫ 1

0I1−α0 u(t)

d

dtDα

0 v(t)dt.

By applying the property to(I1−α0 u, ddtD

α0 v), and due to the equivalent definitions of the

Caputo derivation [18, Chapter 1], we obtain(I1−α0 u,

d

dtDα

0 v

)= − (u,Dα1 [Dα

0 ] v) .

As the result, one takes the Green’s formula

(Dα1 [Dα0 u] , v) = (u,Dα1 [Dα

0 ] v)

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 87: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

86 Niyaz Tokmagambetov, Berikbol T. Torebek

+2∑i=1

[ξ−i (u)ξ+i (v)− ξ−i (v)ξ+i (u)]. (6)

Since u, v ∈ C∞L0([0, 1]) the identity (6) implies (4).

Define an action of the operator L on a generalized function u ∈ D′L0(0, 1). Put

(Lu, v) := (u,Dα1 [Dα0 v]) (7)

for all v ∈ C∞L0([0, 1]). The term (u,Dα1 [Dα

0 v]) exists due to the fact that v ∈ C∞L0([0, 1]) and

also involves Dα1 [Dα0 v] ∈ C∞L0

([0, 1]). Thus, the action of L introduced by the formula (7) iswell defined on the space of the generalized functions D′L0

(0, 1).Now, we consider the following expression

Lu(x) := Dα1 [Dα0 [u]] (x) , 0 < x < 1, (8)

in the space L2(0, 1). To define correctly L in L2(0, 1), we introduce the space W2α2 (0, 1) as

a closure of H2α+o0 ([0, 1]) by the norm

‖u‖W2α2 (0,1) := ‖u‖L2(0,1) + ‖Dα1Dα

0 u‖L2(0,1).

Indeed, the space W2α2 (0, 1) with the introduced norm is a Banach one. Moreover, it is the

Hilbert space with the scalar product

(u, v)W2α2 (0,1) := (u, v) + (Dα1Dα

0 u,Dα1Dα0 v).

We define Lm as an operator acting from L2(0, 1) to L2(0, 1) by formula (8) with thedomain

Dom(Lm) =u ∈W2α

2 (0, 1) : ξ−1 (u) = ξ−2 (u) = ξ+1 (u) = ξ+2 (u) = 0.

Also, introduce an operator LM : L2(0, 1) → L2(0, 1) generated by expression (8) with thedomain Dom(LM ) :=

u ∈W2α

2 (0, 1)

.Now, we are in a position to formulate the main result of the manuscript.In what follows, we introduce a class of (2x4)-matrices. This class will be helpful to define

boundary forms for Dα1 [Dα0 [u]].

Definition 1. We say that the matrix

θ :=

(θ11 θ12 θ13 θ14θ21 θ22 θ23 θ24

)is S–matrix, if it can be written in one of the following views:(

1 0 r c0 1 − c d

),

(d 1 0 rc 0 1 d

),

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 88: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Self-adjoint operators generated by integro-differential operators 87

(1 d r 00 c − d 1

),

(r c 1 0−c d 0 1

),

where r, c, d ∈ R. Here, the matrices(θ11 θ12 θ13 θ14θ21 θ22 θ23 θ24

),

(θ11 θ12 θ13 θ14γθ21 γθ22 γθ23 γθ24

)for (γ 6= 0),

(θ11 ± θ21 θ12 ± θ22 θ13 ± θ23 θ14 ± θ24θ21 θ22 θ23 θ24

)and (

θ21 θ22 θ23 θ24θ11 θ12 θ13 θ14

)are equivalent.

Theorem 1. Let θ be an S-matrix. Then an operator Lθ generated by

Dα1Dα0 u(x) = f(x), 0 < x < 1,

for u ∈W2α2 (0, 1) with ”boundary” conditions

θ11ξ−1 (u) + θ12ξ

−2 (u) + θ13ξ

+1 (u) + θ14ξ

+2 (u) = 0,

θ21ξ−1 (u) + θ22ξ

−2 (u) + θ23ξ

+1 (u) + θ24ξ

+2 (u) = 0,

is a self-adjoint extension of Lm in W2α2 (0, 1).

Note that when α < 1/2 the statement of Theorem 1, briefly speaking, is not true.

3 Proof of Theorem 1

3.1. Preliminaries

Below we formulate necessary results on the operators Lm and LM .

Lemma 1. Kernel of the operator LM (KerLM ) consists of any linear combination of thefunctions (x− ε)α∗ and (x− ε)α−1∗ for arbitrary ε ∈ [0, 1].

The proof of Lemma 1 follows from the statements of Properties A.2, A.3, A.4 and A.5.

Lemma 2. The equation Lmu = g has a solution u ∈ Dom(Lm) if and only if there exists afunction f ∈ L2(0, 1) such that for arbitrary v ∈ KerLM we have (f, v) = 0, or

R(Lm)⊕KerLM = L2(0, 1).

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 89: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

88 Niyaz Tokmagambetov, Berikbol T. Torebek

Proof. Let f ∈ R(Lm). Then there is a function w ∈ L2(0, 1) such that for any v ∈ KerLMwe obtain

(f, v) = (Lmw, v) = (w,LMv) = 0.

Now, fix a function f ∈ L2(0, 1) with the property (f, v) = 0 for all v ∈ KerLM . Due tothe definition of LM there is a function g ∈ Dom(LM ) such that LMg = f. It is easy to seethat for arbitrary v ∈ KerLM we have

0 = (f, v) = (LMg, v) =2∑i=1

[ξ−i (v)ξ+i (g)− ξ−i (g)ξ+i (v)]. (9)

Finally, Lemma 1 implies that the kernel of the operator LM consists of the infinite numberof the linear independent functions. Thus, due to the arbitrariness of v from identity (9) weobtain

ξ−i (g) = ξ+i (g) = 0, i = 1, 2.

Hence, f ∈ R(Lm). This completes the proof of the lemma.

Corollary 1. Dom(Lm) is dense in L2(0, 1).

Proof. Let g ∈ L2(0, 1) be orthogonal to the lineal Dom(Lm). Find a function v as anarbitrary solution of the equation LMv = g. Then for any u ∈ Dom(Lm) we get

0 = (u, g) = (u, LMv) = (Lmu, v).

Due to Lemma 2 we obtain v ∈ KerLM . Hence, g = LMv = 0. The corollary is proved.

3.2. Proof of Theorem 1

By Definition [21] the operator Lm is hermit, since for any u, v ∈ Dom(Lm) we have

(Lmu, v) = (u, Lmv).

Moreover, due to Corollary 1 the operator Lm is symmetric. Thus, to show that Lθ is aself–adjoint operator it is enough to have

Dom(Lθ) = Dom(L∗θ). (10)

The last one can be proven by the direct calculations taking into account formula (6).

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 90: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Self-adjoint operators generated by integro-differential operators 89

4 Global Fourier Analysis associated with Caputo–Riemann–Liouville typeFractional Order Operators

4.1. Spectral properties of Lθ

Theorem 2. Let θ be as (1 0 0 00 θ22 0 θ24

).

Then the following statements hold:(i) L−1θ is a compact operator in L2(0, 1).(ii) The spectrum of Lθ is real and discrete, and the system of eigenfunctions forms a

complete orthogonal basis of the space L2(0, 1).

Proof. (i) Indeed, the inverse operator can be represented in the form

L−1θ f(x) = − θ22θ22 + θ24

Γ(α)Iα+11 f(0) + Iα0 I

α1 f(x).

For θ22 = 0 we have

L−1θ f(x) = Iα0 Iα1 f(x), 0 < x < 1.

Hence, it follows compactness of the operator L−1θ in L2(0, 1).(ii) Compactness of L−1θ implies discreteness of the spectrum, and the system of eigen-

functions forms a complete orthogonal basis in L2(0, 1). From the self-adjoint property of Lθone obtains real validity of all eigenvalues [21].

Theorem 3. Let θ be in one of the following forms:(1 0 0 00 1 0 0

),

(1 0 0 00 0 0 1

), (11)

(ρ 1 0 00 0 1 ρ

),

(0 0 1 00 0 0 1

). (12)

Then for all ρ ∈ R the operator Lθ is positive in the space L2(0, 1).

Proof. To prove the theorem it is sufficient to show the inequality

(Dα1 [Dα0 u] , u) ≥ 0.

Now, we calculate

(Dα1 [Dα0 u] , u) = − 1

Γ(1− α)

∫ 1

0

∫ 1

x(t− x)−α

d

dtDα

0 u(t)dt u(x)dx.

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 91: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

90 Niyaz Tokmagambetov, Berikbol T. Torebek

By changing integration order, we get

− 1

Γ(1− α)

∫ 1

0

∫ 1

x(t− x)−α

d

dtDα

0 u(t)dt u(x)dx

= − 1

Γ(1− α)

∫ 1

0

d

dtDα

0 u(t)

∫ t

0(t− x)−αu(x)dxdt.

By integrating by parts in the right-hand side of the last integral, we obtain

− 1

Γ(1− α)

∫ 1

0

d

dtDα

0 u(t)

∫ t

0(t− x)−αu(x)dxdt

= −Dα0 u(t)I1−α0 u(t)

∣∣∣10

+ (Dα0 u,D

α0 u) .

As the result, we take the identity

Dα0 u(t)I1−α0 u(t)

∣∣∣10

= 0,

which completes the proof.

4.2. Schatten classes of L−1θ

The following assertion is proved by Delgado and Ruzhansky [26]: Let M be a closedmanifold of the dimension n. Let K ∈ Hµ(M × M) for some µ > 0. Then the integraloperator T on L2(M), defined by

(Tf)(x) =

∫M

K(x, s)f(s)ds,

is in the Schatten classes Sp(L2(M)) for p > 2n

n+2µ .Now, we try to apply this result as follows:

Theorem 4. Let θ be in one of the following forms:(1 0 0 00 1 0 0

),

(1 0 0 00 0 0 1

), (13)(

0 1 0 00 0 1 0

),

(0 0 1 00 0 0 1

). (14)

Then the inverse operator L−1θ on L2(0, 1), defined by

L−1θ f(x) =

1∫0

K(x, s)f(s)ds,

is in the Schatten classes Sp(L2(0, 1)

), for p > 2

1+4α .

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 92: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Self-adjoint operators generated by integro-differential operators 91

Proof. Here, we give a full proof only for the case θ11 6= 0, θ24 6= 0, θ12 = θ13 = θ14 = θ21 =θ22 = θ23 = 0. Other three cases can be proved similarly.

From Theorem 2 it is known, that

L−1θ f(x) = Iα0 Iα1 f(x), 0 < x < 1.

Then the operator L−1θ can be represented as

L−1θ f(x) = Iα0 Iα1 f(x) =

1∫0

K(x, s)f(s)ds, 0 < x < 1,

where K(x, s) has the form

K(x, s) =1

Γ2(α)

∫ 1

0(x− τ)α−1∗ (s− τ)α−1∗ dτ

=1

Γ2(α)

∫ maxx,s

0(x− τ)α−1(s− τ)α−1dτ.

Here

(z − ε)µ∗ =

0, z ≤ ε,(z − ε)µ, z > ε.

The fact that L−1θ is inverse to Lθ implies that K(x, s) is the Green’s function of Lθ. HenceK(x, s) belongs to the class W 2α

2 ((0, 1)× (0, 1)). Consequently, by the Delgado-Ruzhansky’stheorem 4, we obtain that the integral operator L−1θ is in the Schatten classes Sp(L

2(0, 1))for p > 2

1+4α .

4.3. Global Analysis generated by Lθ

Here, we briefly discuss about the Global Analysis associated with the fractional orderdifferential operator Lθ. Indeed, by using the Global Fourier Analysis commuted with Lθdeveloped in [19], [20], studied operators can be applied for solving problems of the sub-diffusion, super-diffusion, anomaly diffusion, etc (for instance, see, [23]–[25]). We note thatthe general case is developed in [26] with some applications given in [27] for the LandauHamiltonian. More general setting is offered in the recent papers [28], [30]. One is worth to bementioned that the theory of Pseudo-Differential Operators associated with fractional orderdifferential equations can be started. Moreover, investigations of the spectral problems forfractional differential operators are helpful and important to enrich and develop the fractionalcalculus.

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 93: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

92 Niyaz Tokmagambetov, Berikbol T. Torebek

A. Fractional differentiation and its properties

In this Appendix, we define fractional integration and differentiation operators [18], [30],[30].

Definition A.1. Let f be a function defined on the interval [0, 1]. Assume that the followingintegrals exist

Iα0 [f ] (t) =1

Γ (α)

t∫0

(t− s)α−1 f (s)ds, t ∈ (0, 1],

and

Iα1 [f ] (t) =1

Γ (α)

1∫t

(s− t)α−1 f (s)ds, t ∈ [0, 1).

Then we call them the left and right Riemann-Liouville integral operators of the fractionalorder α > 0, respectively.

Definition A.2. Define left-side and right-side Riemann-Liouville differential operators ofthe fractional order α (0 < α < 1) by

Dα0 [f ] (t) =

d

dtI1−α0 [f ] (t)

and

Dα1 [f ] (t) = − d

dtI1−α1 [f ] (t),

respectively.

Definition A.3. For 0 < α < 1 we say that the actions

Dα0 [f ] (t) = Dα0 [f (t)− f (0)]

andDα1 [f ] (t) = Dα

1 [f (t)− f (1)] ,

are left and right differential operators of the fractional order α (0 < α < 1) in the Caputosense, respectively.

Note that in monographs [18], [30], [31] there are studied different types of fractionaldifferentiations and their main properties. In what follows we formulate statements of nec-essary properties of integral and integro-differential operators of the Riemann-Liouville typeand fractional Caputo operators.

Property A.1 [30, Pages 73, 76, 96]. Let 0 < α < 1. Assume that

f ∈ L1(0, 1), I1−α1 f, I1−α0 f ∈ AC[0, 1].

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 94: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Self-adjoint operators generated by integro-differential operators 93

Then the following equalities are true:

Iα0 Iβ0 f(x) = Iα+β0 f,

Iα1 Iβ1 f(x) = Iα+β1 f,

for all 0 < β < 1;

Iα1Dα1 f(x) = f(x)− I1−α1 f(0)

(1− x)α−1

Γ(α),

Iα0Dα0 f(x) = f(x)− I1−α0 f(0)

xα−1

Γ(α),

for x ∈ (0, 1).Moreover, if f ∈ AC[0, 1], then we have

Iα0 Dα0 f(x) = f(x)− f(0),

Iα1 Dα1 f(x) = f(x)− f(1),

for all x ∈ [0, 1].For any ε ∈ (0, 1) we denote

(x− ε)∗ =

0, x ≤ ε,

x− ε, x > ε.

Property A.2 [18, Page 87]. Let α > 0, β > 0, C ≡ const and

f = CΓ(α+ β)

Γ(β)(x− ε)β−1∗ .

Then we haveIα0 f(x) = C(x− ε)α+β−1∗ ,

for 0 < x < 1.

Property A.3. Let 0 < α < 1. Then for all ε ∈ (0, 1) and any constant C the followingfunction

f(x) = C(x− ε)α−1∗ =

0, x ≤ ε,

C(x− ε)α−1 x > ε,

satisfies the equationDα

0 f(x) = 0, x ∈ (0, 1).

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 95: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

94 Niyaz Tokmagambetov, Berikbol T. Torebek

Property A.4. Let 0 < α < 1. Then for arbitrary ε ∈ (0, 1) and a constant C the function

f(x) = Cθ(x− ε) =

0, x ≤ ε;

C, x > ε,

satisfies

Dα1 f(x) = 0, 0 < x < 1,

where θ(x) is the Heaviside function.

Property A.5. Let 0 < α < 1. Then

f(x) =C

Γ(α)(x− ε)α−1∗ +

1

Γ(α+ 1)(x− ε)α∗ , C = const, 0 < x < 1,

satisfies the equation

Dα0 f(x) = θ(x− ε), 0 < x < 1.

Property A.6 [31, Page 34]. Let u, v ∈ L2(0, 1) and 0 < α < 1. Then we have the formulaof integration by parts (

Iβ1 u, v)

=(u, Iβ0 v

).

Here, by (·, ·) we denote the inner product of the Hilbert space L2(0, 1).

Let us formulate Theorem 3.2 of the book [18]:

Theorem A.1. Assume that ϕ ∈ Hγ([0, 1]), γ ≥ 0. Then the fractional integral Iα0 ϕ, α > 0,has the form

Iα0 ϕ =

m∑k=0

ϕ(k)(0)

Γ(α+ k + 1)xα+k + ψ(x),

where m is the greatest integer such that m < γ; and ψ ∈ Hγ+α([0, 1]), if γ+α is not integer,or if γ, α ∈ Z.

References

[1] Dezin A.A. General questions of the theory of boundary value problems, Nauka, Moskow, (1980).

[2] Gorbachuk V.I., Gorbachuk M.L. Boundary value problems for differential-operator equations,Naukova Dumka, Kiev, (1984).

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 96: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Self-adjoint operators generated by integro-differential operators 95

[3] Al-Mdallal Q.M. On the numerical solution of fractional Sturm–Liouville problems, Interna-tional Journal of Computer Mathematics, 87:12 (2010), 2837-2845.https://doi.org/10.1080/00207160802562549.

[4] Blaszczyk T., Ciesielski M. Numerical solution of fractional Sturm–Liouville equation in integralform, Fractional Calculus and Applied Analysis, 17:2 (2014), 307-320.https://doi.org/10.2478/s13540-014-0170-8.

[5] Plociniczak L. Eigenvalue asymptotics for a fractional boundary-value problem, Applied Math-ematics and Computation, 241 (2014), 125-128. https://doi.org/10.1016/j.amc.2014.05.029.

[6] Khosravian-Arab H., Dehghan M., Eslahchi M.R. Fractional Sturm–Liouville boundary valueproblems in unbounded domains: Theory and applications, Journal of Computational Physics, 299(2015), 526-560. https://doi.org/10.1016/j.jcp.2015.06.030.

[7] Li J., Qi J. Eigenvalue problems for fractional differential equations with right and left fractionalderivatives, Applied Mathematics and Computation, 256 (2015), P.1-10.https://doi.org/10.1016/j.amc.2014.12.146.

[8] Dzhrbashyan M.M. A boundary value problem for a Sturm-Liouville type differential operatorof fractional order, Izv. Akad. Nauk Armyan. SSR, Ser. Mat., 5:2 (1970), 71-96.

[9] Nakhushev A.M. Sturm-Liouville problem for an ordinary differential equation of second orderwith fractional derivatives in the lower-order terms, Doklady Akademiia Nauk SSSR, 234 (1977),308-311.

[10] Aleroev T.S. The Sturm-Liouville problem for a second-order differential equation with fractionalderivatives in the lower terms Diff. Equations, 18:2 (1982), 341-342.

[11] Sedletskii A.M. On zeros of Laplace transforms of finite measure, Integral Transforms Spec.Funct., 1 (1993), 51-59. https://doi.org/10.1080/10652469308819008.

[12] Ostrovskii I.V., Peresyolkova I.N. Non-asymptotic results on distributions of zeros of the func-tion Eρ(z, µ), Anal. Math., 23 (1997), 283-296. https://doi.org/10.1007/BF02789843.

[13] Rivero M., Trujillo J.J., Velasco M.P. A fractional approach to the Sturm-Liouville problem,Central European Journal of Physics, 11:10 (2013), 1246-1254.

[14] Hajji M.A., Al-Mdallal Q.M., Allan F.M. An efficient algorithm for solving higher-order frac-tional Sturm-Liouville eigenvalue problems, J. Comput. Phys., 272 (2014), 550-558.https://doi.org/10.1016/j.jcp.2014.04.048.

[15] Klimek M., Odzijewicz T., Malinowska A.B. Variational methods for the fractional Sturm-Liouville problem, Journal of Mathematical Analysis and Applications, 416:1 (2014), 402-426.https://doi.org/10.1016/j.jmaa.2014.02.009.

[16] Klimek M., Agrawal O.P. Fractional Sturm-Liouville problem, Computers and Mathematicswith Applications, 66:5 (2013), 795-812. https://doi.org/10.1016/j.camwa.2012.12.011.

[17] Tokmagambetov N., Torebek T.B. Fractional Analogue of Sturm-Liouville Operator, Docu-menta Math., 21 (2016), 1503-1514.

[18] Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and Derivatives, Theory and Ap-plications, Gordon and Breach, Amsterdam, (1993).

[19] Ruzhansky M., Tokmagambetov N. Nonharmonic analysis of boundary value problems, Int.Math. Res. Not. IMRN, 12 (2016), 3548-3615. https://doi.org/10.1051/mmnp/201712107.

[20] Ruzhansky M., Tokmagambetov N. Nonharmonic analysis of boundary value problems withoutWZ condition, Math. Model. Nat. Phenom, 12:1 (2017), 115-140.https://doi.org/10.1051/mmnp/201712107.

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 97: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

96 Niyaz Tokmagambetov, Berikbol T. Torebek

[21] Naimark M.A. Linear Differential Operators, Ungar, New York, (1968).[22] Zayernouri M., Karniadakis G.E. Discontinuous spectral element methods for time- and space-

fractional advection equations, SIAM Journal on Scientific Computing, 36:4 (2014), B684–B707.https://doi.org/10.1137/130940967.

[23] Delgado J., Ruzhansky M., Tokmagambetov N. Schatten classes, nuclearity and nonhar-monic analysis on compact manifolds with boundary, J. Math. Pures Appl., 107:6 (2017), 758-783.https://doi.org/10.1016/j.matpur.2016.10.005.

[24] Klimek M. 2D space-time fractional diffusion on bounded domain—Application of the frac-tional Sturm-Liouville theory, Methods and Models in Automation and Robotics, (2015), 309-314.https://doi.org/10.1109/MMAR.2015.7283893.

[25] Qiu L., Deng W., Hesthaven J.S. Nodal discontinuous Galerkin methods for fractional diffusionequations on 2D domain with triangular meshes, Journal of Computational Physics, 298 (2015), 678-694. https://doi.org/10.1016/j.jcp.2015.06.022.

[26] Delgado J., Ruzhansky M. Schatten classes on compact manifolds: Kernel conditions, Journalof Functional Analysis, 267 (2014), 772-798. https://doi.org/10.1016/j.jfa.2014.04.016.

[27] Ruzhansky M., Tokmagambetov N. Very weak solutions of wave equation for Landau Hamilto-nian with irregular electromagnetic field, Lett. Math. Phys., 107:4 (2017), 591-618.https://doi.org/10.1007/s11005-016-0919-6.

[28] Kanguzhin B., Ruzhansky M., Tokmagambetov N. On convolutions in Hilbert spaces, Funct.Anal. Appl., 51:3 (2017), 221-224. https://doi.org/10.1007/s10688-017-0185-0.

[29] Ruzhansky M., Tokmagambetov N. Convolution, Fourier analysis, and distributions generatedby Riesz bases, https://arxiv.org/abs/1611.03791

[30] Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional DifferentialEquations, lsevier, North-Holland, (2006).

[31] Nakhushev A.M. Fractional calculus and its applications, Fizmatlit, Moscow, (2003).

Тоқмағамбетов Н., Төребек Б.Т. ИНТЕГРАЛДЫҚ-ДИФФЕРЕНЦИАЛДЫҚ ОПЕ-РАТОРЛАРДАН ТУЫНДАҒАН ӨЗ-ӨЗIНЕ ТҮЙIНДЕС ОПЕРАТОРЛАР

Мақала интегралдық-дифференциалдық оператордың өз-өзiне түйiндес кеңейтулерiнсипаттауға арналған. Ретi 2α (12 < α < 1) болатын симметриялы интегралдық-дифференциалдық операторлар табылды. Бұл, шындығында белгiлi мағынада бөл-шек реттi Штурм-Лиувилль операторының аналогы болып табылады. Сондай-ақ, бөл-шек реттi дифференциалдық теңдеу үшiн Грин формуласының аналогы тағайындалып,әрi қарай оның өз-өзiне түйiндес операторларды сипаттауға қолданылуы келтiрiлген.Соңында глобалды Фурье талдауы талқыланған және Капуто-Риман-Лиувилль тектестуындылармен байланысқан өз-өзiне түйiндес бөлшек реттi операторлардың спектрал-дық қасиеттерi туралы кейбiр нәтижелер дәлелденген.

Кiлттiк сөздер. Интегралдық-дифференциалдық оператор, Капуто туындысы,Риман-Лиувилль туындысы, өз-өзiне түйiндес есеп, бөлшек реттi дифференциалдық тең-деу, бөлшек реттi Штурм-Лиувилль операторы, кеңейтулер теориясы.

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 98: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Self-adjoint operators generated by integro-differential operators 97

Токмагамбетов Н., Торебек Б.Т. САМОСОПРЯЖЕННЫЕ ОПЕРАТОРЫ, ПОРОЖ-ДЕННЫЕ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫМИ ОПЕРАТОРАМИ

Данная статья посвящена описанию самосопряженных расширений интегро-дифференциального оператора. Найдены симметричные интегро-дифференциальныеоператоры порядка 2α (где 1

2 < α < 1). Действительно, в некотором смысле это ана-лог дробного оператора Штурма-Лиувилля. Кроме того, аналог формулы Грина длядифференциальных уравнений дробного порядка установлен с дальнейшими приложени-ями в описании класса самосопряженных операторов. Наконец, мы обсудим глобальныйанализ Фурье и докажем некоторые результаты о спектральных свойствах самосопря-женных операторов дробного порядка, связанных с производными типа Капуто-Римана-Лиувилля.

Ключевые слова. Интегро-дифференциальный оператор, производная Капуто, произ-водная Римана-Лиувилля, самосопряженная задача, дифференциальное уравнение дроб-ного порядка, дробный оператор Штурма-Лиувилля, теория расширений.

Kazakh Mathematical Journal, 19:1 (2019) 82–97

Page 99: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

Kazakh Mathematical Journal ISSN 2413–6468

19:1 (2019) 98–114

An attempt to predict the arc to glow transitionbased on the experimental results

G. Wisniewski1,a, S.N. Kharin2,b, B. Miedzinski3,c

1Wroclaw University of Science and Technology Departmenof Electrical Power Engineering, Wroclaw, Poland2Kazakh-British Technical University, Almaty, Kazakhstan

3Institute of Innovative Technologies EMAG, Katowice, Polanda e-mail: [email protected], be-mail: [email protected], c e-mail: [email protected]

Communicated by: Muvasharkhan Jenaliyev

Received: 30.03.2019 ? Accepted/Published Online: 31.05.2019 ? Final Version: 31.05.2019

Abstract. The paper presents an attempt to assess the transition of arc to glow discharge on the basis

of a comparison of selected theoretical indicators and these provided by the experiments. The evaluation

includes the dynamics change of the discharge volume during the opening of the contact. The tests

were carried out for a low voltage DC circuit with a discharge energy not exceeding 10J . Based on

the results obtained, appropriate practical conclusions were formulated regarding the need for further

consideration.

Keywords. Switching DC arc, low voltage and low power electric grid, arc-to-glow transition.

1 Introduction

The use of direct current in various areas shows increasing trend mainly due to theincreasing use of renewable energy sources. However, this forces manufacturers and usersto different approach to the application due to both the advantages and disadvantages ofDC compared to AC. One of the problem is to ensure effective breaking of the DC circuitespecially under inductive loads.

Tests carried out by authors in recent years have demonstrated the occurrence of thepreviously unknown effect of spontaneous transition of the DC switching arc into glow dis-charge [1]. This is a very positive effect because it significantly reduces contact erosion therebyincreasing their switching life. However, there are significant problems with explaining thereasons of this effect due to the diversity, complexity and variability of physical phenomenaand their mutual interaction each other. This applies both to the surface conditions of thecontacts as well as the area of the contact space. The authors investigated this effect to

2010 Mathematics Subject Classification: 80A22.Funding: The second author was supported by the MES RK grant AP05133919.c© 2019 Kazakh Mathematical Journal. All right reserved.

Page 100: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An attempt to predict the arc to glow transition based ... 99

the broadest limits possible, paying attention to the majority of factors affecting the dis-charge phenomena. This applies to both the type of contact material, voltage and switchingcurrent, type and pressure of protective gas inside the contact gap, contact opening speed,etc. The tests were performed using, among others, fast photo registration and optical fiberspectroscopy [2]. It allowed to draw specified conclusions, however, a small amount of datadoes not allow for the practical implementation of this process under operation conditions.No less, it can be concluded that for specified switching conditions this process is statisticallypredictable, unfortunately it is not repeatable for following switching.

At the same time, the authors made the attempt to theoretical analysis of this phe-nomenon via a mathematical description of this effect based on the experimental results.The mathematical model has been developed that describes the dynamics of the transitionof a low-temperature electric arc plasma into a glow discharge. It is based on the systemof differential equations for temperature and electromagnetic fields, the solution of which isfound using the method of upper and lower functions. Based on Lyapunov’s theory and theHurwitz criteria, a system of inequalities is obtained for the parameters of the electric arc andthe material of the electrodes, which makes it possible to obtain criteria for instability andbifurcation of voltage, current and temperature, which provide the required transition [3].According to this the arc instability criteria can (for the given electric circuit R, L, C) beformulated as follows:

R

L+

1

CRA− 1

kA< 0, (1)

(R

L+

1

CRA− 1

kA

)(1

LC+

R

LCRA+

1

kACRA− R

kAL

)− 1

kALC

(R

RA− 1

)< 0, (2)

R

RA− 1 < 0. (3)

Where arc resistance RA:

RA =UA

IA(4)

and thermal (heat) constant

kA =CA VArc TA

PA(5)

are particularly important for the relation between the arc time tA and this of glowing tg(VArc is arc volume, TA is arc temperature, PA is arc power, CA is heat capacity of the arc).Unfortunately, the modeling of the arc transition into glowing is based on a large error due tocomplex phenomena and mutually dependent parameters. Therefore, despite the extensiveexperimental research, changes in transient cannot be determined precisely, mostly due to

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 101: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

100 G. Wisniewski, S.N. Kharin, B. Miedzinski

the lack of appropriate available high resolution measuring equipment. However, it shouldbe noted that for the given switching conditions, the electrical circuit parameters R, L, Care already given. Selected physical quantities can be calculated from recorded waveforms ofcurrent and voltage drop. Therefore, it is possible to estimate the value of the resistance (RA)of the discharge (arc and glow) as well as the power PA provided to the electric discharge.Next, when using the literature data regarding the average arc TA temperature and its heatcapacity CA, the thermal time constant kA of the arc can be estimated. For analysis thevalue of the arc volume VA as well as its variation with time under contact opening has to betaken into account. (It must be noted that in [3] only average arc volume was considered).These values were estimated by the authors on the basis of the measurement of the changein the length of the contact gap in time and its correlation with the results of measurementsof photo-registration of the discharge process.

Thus, using the set of inequalities (1)–(3) one can estimate the values of both RA and kAfor given switching conditions. Basing on (5) for the experimentally estimated values of thearc volume and its temperature one can obtain the threshold power value of the arc, i.e. themaximum value of the current at which interruption of the arc-to glow transition will takeplace. Note, that if the arc resistance RA tends to infinity the kA value is close to the circuittime constant (T = L/R).

The article attempts to define the limit parameters of the presented equations with refer-ence to the measurement results obtained under testing. The test was carried out in a speciallydesigned and made for this purpose the test stand with hermetic chamber for round, plaincontacts (diameter 5mm and thickness of 1mm) made of CuCr composite material (madeby means of the electron beam technology [4], for different Cr content) in air under normalpressure at room conditions (see Fig. 1). Voltage was fixed to be 110V , current about 0.5Afor the inductive time constant of the electric circuit equal to 40ms (discharge energy lessthan 10 J) and contact gap around 4mm [2]. The average contact opening speed was around0.125m/s.

2 Selection of the test results for analysis

The tests were performed for flat contacts (1) with the use of an insulating washer (2)that prevents the arc from moving beyond the contact area (Fig. 1).

Due to the different progress of the phenomenon for the same switching conditions, threedifferent cases (waveforms) were selected for the analysis: only the arc discharge withouttransient to glowing (Fig. 2), only the glow discharge (Fig. 3) and the arc discharge withdouble transition into the glowing (Fig. 4).

Arc column radius rArc changes linearly from 1.5 · 10−5 to 2 · 10−3m.Arc volume is:

VArc = Vcilinder(l, rArc) = π(rArc)2l (6)

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 102: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An attempt to predict the arc to glow transition based ... 101

Figure 1 – Appearance of the contact sample for testing

(1 – contact member, 2 – textolite washer, dimensions in mm)

Figure 2 – Arc current waveform i, contact voltage u and contact gap l variation during

interruption of DC inductive load (110V , 0.52A, L/R = 42ms, CuCr contacts materials)

Figure 3 – Discharge current waveform i, contact voltage u and contact gap l

variation during interruption of DC inductive load

(110V , 0.52A, L/R = 42ms, CuCr contacts materials), for only the glow appearance

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 103: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

102 G. Wisniewski, S.N. Kharin, B. Miedzinski

Figure 4 – Discharge current i, contact voltage waveform u and contact gap l

variation during interruption of DC inductive load (110V , 0.52A, L/R = 42ms,

CuCr contacts materials), for double transition of the switching arc into glowing

3 Estimation based on experiment

The assessment of the arc’s transition into glow discharge was carried out for three pre-sented above cases based on measured and estimated waveforms of the discharge columnvolume (arc) VArc, discharge resistance RA, and discharge power PA for two different radiusvalues rArcmin and rArcmax of the arc column (discharge). All data for estimation are includedin Table I.

Table 1 – Measured and theoretically estimated parameters for analysis

Parameters for analysis

supplied voltage U 110Vload current I 0.52A

load resistance R 211.538Ohmsload inductance L 8.931Hcircuit capacity C 5.86855 · 10−8 Farc temperature TA 6500K

arc volume VArc 5.0 · 10−19; 1.5 · 10−7m3

arc heat capacity CA 237.6 J/m3K

For the case of the existence of only arcing (see Fig. 2), the trends of variation of thevolume of the arc column, the resistance of the arc and the arc power with time under thedischarge are shown in Fig. 5–9, respectively. The possibility of meeting the transitionconditions (according to the equations (1)–(3)) for the arcing only as in Fig. 2 is illustratedby Fig. 10 and 11.

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 104: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An attempt to predict the arc to glow transition based ... 103

Figure 5 – Variation of the arc column VArc with time for different

arc radius (discharge as in Fig. 2)

Figure 6 – Variation of the arc resistance RA with time

(discharge as in Fig. 2, dotted for rArcmin = 1.5 · 10−5 m)

From the obtained waveforms it follows that for only arc appearance, both the resistanceof the arc and the power supplied to the arc are quite stable and show change at the end ofthe discharge. However, the probability of meeting the logical conditions for the transitionis quite possible, especially for a small radius of the arc column rArcmin = 1.5 · 10−5m asindicated by dots in Fig. 6 and Fig. 8. It can be seen that with the increase in the radiusvalue (rArcmax = 2 · 10−3m) the transition is theoretically possible only at the beginning ofthe course (as indicated by dots in Fig. 7 and Fig. 9). It should be also noted that theduration of the only arcing is the longest in comparison with the other runs.

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 105: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

104 G. Wisniewski, S.N. Kharin, B. Miedzinski

Figure 7 – Variation of the arc resistance RA with time

(discharge as in Fig .2, dotted for rArcmax = 2 · 10−3 m)

Figure 8 – Variation of the discharge power PA with time

(discharge as in Fig. 2, dotted for rArcmin = 1.5 · 10−5 m)

For the case of the appearance of only glowing (see Fig. 3), the variation of the volumeof the discharge column, the discharge resistance and the dissipated power with time underthe discharge are shown in Fig. 12–16, respectively. Whereas, possibility of meeting thetransition conditions (according to the equations (1)–(3)) for the glowing only as in Fig. 3 isillustrated by Fig. 17 and 18.

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 106: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An attempt to predict the arc to glow transition based ... 105

Figure 9 – Variation of the discharge power PA with time

(discharge as in Fig. 2, dotted for rArcmax = 2 · 10−3 m)

Figure 10 – Logical conditions (3/3 = 1; 2/3 = 0.67; 1/3 = 0.33; 0/3 = 0)

as a function of time and arc column radius rArc for discharge as in Fig. 2

During the tests, it was found that in the case of only glow discharge, the volume of thedischarge column is smaller than in the case of only an arc discharge. However, this valueincreases with time, which is the result of the increase in the length of the contact gap under

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 107: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

106 G. Wisniewski, S.N. Kharin, B. Miedzinski

Figure 11 – Logical conditions with time and volume

of the arc VArc for discharge as in Fig. 2.

Figure 12 – Variation of the discharge column VArc

with time for different discharge radius (discharge as in Fig. 3)

opening. The discharge resistance indicates much higher value and is exponentially increasingover time. The discharge power decreases practically linearly. The logical conditions for theoccurrence of the transition effect are met, but practically for small values of both the radiusand discharge volume. It should be emphasized here that the duration of the discharge ismuch shorter in this case. The glow discharge disappears before the contact opens.

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 108: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An attempt to predict the arc to glow transition based ... 107

Figure 13 – Variation of the discharge resistance RA

with time (discharge as in Fig. 3, dotted for rArcmin = 1.5 · 10−5 m)

Figure 14 – Variation of the discharge resistance RA

with time (discharge as in Fig.3, dotted for rArcmax = 2 · 10−3 m)

For the case of the double transition of the arc into glowing (see Fig. 4), the trendsof variation of the volume of the arc column, the resistance of the arc and the arc powerwith time under the discharge are shown in Fig. 19–23, respectively. Whereas, possibility ofmeeting the transition conditions (according to the equations (1)–(3)) for the double arc-glowtransition, as in Fig. 4 is illustrated by Fig. 24 and 25.

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 109: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

108 G. Wisniewski, S.N. Kharin, B. Miedzinski

Figure 15 – Variation of the discharge power PA

with time (discharge as inFig. 3, dotted for rArcmin = 1.5 · 10−5 m)

Figure 16 – Variation of the discharge power PA

with time (discharge as inFig. 3, dotted for rArcmax = 2 · 10−3 m)

The obtained measurements show that the volume of the discharge column is slightlysmaller compared to the arcing. The duration of the contact opening is also shorter. However,the resistance at the transition points shows a significant increase. The course of power showssimilarity and arcing and fluorescent discharge. The transition conditions are ensured for asmall arc fault value. This possibility is also marked by dots on the power and resistance

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 110: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An attempt to predict the arc to glow transition based ... 109

Figure 17 – Logical conditions (3/3 = 1; 2/3 = 0.67; 1/3 = 0.33; 0/3 = 0)

as a function of time and column radius rArc for discharge as in Fig. 3

Figure 18 – Logical conditions with time and volume

of the discharge VArc for discharge as in Fig. 3

waveforms as a function of time.

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 111: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

110 G. Wisniewski, S.N. Kharin, B. Miedzinski

Figure 19 – Variation of the discharge column VArc with time

for different discharge radius (discharge as in Fig. 4)

Figure 20 – Variation of the discharge resistance RA with time

(discharge as in Fig. 3, dotted for rArcmin = 1.5 · 10−5 m)

4 Conclusions

The tests carried out showed that under certain conditions of interrupting the low-powerinductive DC current, there is a spontaneous transition of the switching arc into glow dis-charge. Controlling this phenomenon is however, very difficult due to complexity and mutualinteraction of physical phenomena both at the contact surfaces as well as inside the inter-contact space. Mathematical stability criteria derived are practically useful provided that

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 112: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An attempt to predict the arc to glow transition based ... 111

Figure 21 – Variation of the discharge resistance RA with time

(discharge as inFig. 3, dotted for rArcmax = 2 · 10−3 m)

Figure 22 – Variation of the discharge power PA with time

(discharge as inFig. 3, dotted for rArcmin = 1.5 · 10−5 m)

the values of nonlinear parameters in them are precisely determined. The research carriedout by the authors showed that although there is no repeatability of the phenomenon underfollowing breaking but it is theoretically possible to meet requirements of these conditions

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 113: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

112 G. Wisniewski, S.N. Kharin, B. Miedzinski

Figure 23 – Variation of the discharge power PA with time

(discharge as inFig. 3, dotted for rArcmax = 2 · 10−3 m)

Figure 24 – Logical conditions (3/3 = 1; 2/3 = 0.67; 1/3 = 0, 33; 0/3 = 0)

as a function of time and column radius rArc for discharge as in Fig. 3

(by, for example, decreasing discharge volume and its radius). However, it is necessary toanalyze theoretically and to examine practically as accurately as possible the thermal processin transient states of breaking both at the surface of contacts as well as inside the contact gapvolume. Unfortunately, it requires the use of suitable high-resolution measuring equipment.

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 114: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

An attempt to predict the arc to glow transition based ... 113

Figure 25 – Logical conditions with time and volume of the discharge VArc

for discharge as in Fig. 3

References

[1] Wisniewski G., Habrych M., Miedzinski B. Approach to prediction the transition of a smallpower low voltage switching arc into glowing, 20th International Symposium on Electrical Apparatusand Technologies (SIELA): Proceedings: 3-6 June 2018, Bourgas, Bulgaria, Danvers, MA: IEEE,(2018), 1-4. https://doi.org/10.1109/SIELA.2018.8447107.

[2] Miedzinski B., Wisniewski G., Kharin S.N., Nouri H., Grechanyuk M. Arc-to-glow tran-sition approach for practical use in dc low-power, low-voltage electric grids, IEEE Trans-actions on Components Packaging and Manufacturing Technology, 8:6 (2018), 932-938.https://doi.org/10.1109/TCPMT.2018.2791480.

[3] Kharin S.N., Nouri H., Miedzinski B., Wisniewski G. Transient phenomena of arc to glowdischarge transformation at contact opening, Proc. of 21st Int. Conf. on Electric contacts, Zurich,Switzerland, (2002), 425-431.

[4] Wisniewski G., Miedzinski B., Wojtas P., Koz lowski A., Grodzinski A., Grechanyuk N.I. Switch-

ing discharge phenomena when use composite materials Cu− Cr under low voltage dc inductive load

of a small power, W: Elektriceskie kontakty i elektrody. Kiev: Institut Problem Materialovedenia im.

I. N. Francevica NAN Ukrainy, (2014), 251-256. (Trudy Instituta Problem Materialovedenia im. I.

N. Francevica NAN Ukrainy. Kompozicionnye, Sloistye i Gradientnye Materialy i Pokrytia), ISSN

2311-0627.

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 115: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

114 G. Wisniewski, S.N. Kharin, B. Miedzinski

Вишневский Г.В., Харин С.Н., Меджинский Б. ДОҒАНЫҢ СОЛҒЫН РАЗРЯДҚААУЫСУЫН ЭКСПЕРИМЕНТАЛДЫ НӘТИЖЕЛЕР НЕГIЗIНДЕ БОЛЖАУ ӘРЕКЕТI

Мақалада доғаның солғын разрядқа ауысуын таңдап алынған теориялық көрсеткiш-тер мен эксперименттер деректерiн салыстыру негiзiнде бағалауға әрекет жасалды. Баға-лау контактiнi ашқан кезде разряд көлемiнiң өзгеру динамикасын қамтиды. Сынақтарразряд қуаты 10 Дж аспайтын тұрақты тоқтың төмен вольтты тiзбегi үшiн жүргiзiл-дi. Алынған нәтижелер негiзiнде одан әрi қарай зерттеу қажеттiлiгiне қатысты сәйкеспрактикалық қорытындылар тұжырымдалды.

Кiлттiк сөздер. Тұрақты тоқтың доғасын ауыстырып қосу, төмен кернеулi және азқуатты электр желiсi, доғаның солғын разрядқа ауысуы.

Вишневский Г.В., Харин С.Н., Меджинский Б. ПОПЫТКА ПРЕДСКАЗАТЬ ПЕ-РЕХОД ДУГИ В ТЛЕЮЩИЙ РАЗРЯД НА ОСНОВЕ ЭКСПЕРИМЕНТАЛЬНЫХ РЕ-ЗУЛЬТАТОВ

В статье предпринята попытка оценить возможность перехода дуги в тлеющий раз-ряд на основе сравнения выбранных теоретических показателей и данных экспериментов.Оценка включает в себя динамику изменения объема разряда при открытии контакта.Испытания проводились для низковольтной цепи постоянного тока с энергией разрядане более 10 Дж. На основе полученных результатов были сформулированы соответству-ющие практические выводы относительно необходимости дальнейшего рассмотрения.

Ключевые слова. Переключение дуги постоянного тока, электрическая сеть низкогонапряжения и малой мощности, переход дуги в тлеющий разряд.

Kazakh Mathematical Journal, 19:1 (2019) 98–114

Page 116: KAZAKH 19(1) MATHEMATICAL 2019 JOURNAL · Kazakh Mathematical Journal ISSN 2413{6468 19:1 (2019) 6{19 An algorithm of solving linear boundary value problem for the Fredholm integro-di

KAZAKH MATHEMATICAL JOURNAL

19:1 (2019)

Собственник "Kazakh Mathematical Journal":Институт математики и математического моделирования

Журнал подписан в печатьи выставлен на сайте http://kmj.math.kz / Института математики и

математического моделирования31.05.2019 г.

Тираж 300 экз. Объем 115 стр.Формат 70×100 1/16. Бумага офсетная 1

Адрес типографии:Институт математики и математического моделирования

г. Алматы, ул. Пушкина, 125Тел./факс: 8 (727) 2 72 70 93e-mail: [email protected]: http://kmj.math.kz