kevin goldstein, tifr ism06, puri, 17.12ism06/talks/kevin.pdf · 2006. 12. 19. · – entropy...

58
Rotating Attractors - one entropy function to rule them all Kevin Goldstein, TIFR ISM06, Puri, 17.12.06 talk based on: hep-th/0606244 (Astefanesei , K. G., Jena, Sen,Trivedi); hep-th/0507096 (K.G., Iizuka, Jena & Trivedi); hep-th/0506177 (Sen) and work in progress....

Upload: others

Post on 07-Dec-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Rotating Attractors - one entropy function to rule them all

Kevin Goldstein, TIFR

ISM06, Puri, 17.12.06

talk based on: hep-th/0606244 (Astefanesei , K. G., Jena, Sen,Trivedi);

hep-th/0507096 (K.G., Iizuka, Jena & Trivedi);

hep-th/0506177 (Sen)

and work in progress....

– Typeset by FoilTEX –

Page 2: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Plan

+ Study rotating attractors using Sen’s entropy function

+ Motivation

o ∃?o mininal requirements for the attractor mechanism ?o learn more about of the Entropy of non-SUSY

blackholes?o technical points:

Õ entropy function formalism still apply with lesssymmetry?

Õ only need near horizon geometry

ISM06, Puri 1

Page 3: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

What are blackhole attractors?

+ Context = Theory with gravity, gauge fields, neutralscalars

o generically appear as (part of) low energy limit ofstring theory

+ scalars (or moduli) encode geometry of compactifieddimensions

+ Attractor mechanism = scalars’ values fixed atBlackhole’s horizon

+ independent of values at infinity

+ So horizon area depends only on gauge charges ⇒Entropy depends only on charges

+ works for Extremal (T = 0) blackholes

ISM06, Puri 2

Page 4: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Hand waving

+ number of microstates of extremal blackhole determinedby quantised charges

o entropy can not vary continuously

+ but the moduli vary continuously

+ resolution: horizon area independent of moduli

o moduli take on fixed values at the horizondetermined by charges

+ No mention of SUSY

ISM06, Puri 3

Page 5: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Outline

+ Go through examples of application of entropyfunction

o without rotationo with rotationo Time permitting: blackring

+ Study Lagrangians which generically appear as (the

bosonic part of) certain low energy limits of string theory

ISM06, Puri 4

Page 6: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Outline

+ Go through examples of application of entropyfunction

o without rotation:

– Only need near horizon geometry

– Assume extremal (T = 0) ↔ AdS2 × S2 near horizonsymmetries

– Equations of motion ⇔ Extremising an Entropy function

– Value of the Entropy function at extremum = WaldEntropy of Blackhole

– need to solve algebraic equations

– Argument is independent of SUSY

ISM06, Puri 4

Page 7: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Outline

+ Go through examples of application of entropyfunction

o without rotationo with rotation:

– Only need near horizon geometry

– Assume AdS2×U(1) near horizon symmetries

– Equations of motion ⇔ Extremising an Entropy function

– need to solve differential equations

– Entropy function at extremum = Wald Entropy

– Argument is independent of SUSY

ISM06, Puri 4

Page 8: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Outline

+ Go through examples of application of entropyfunction

o without rotationo with rotationo Time permitting: a blackring in 5-d

– Only need near horizon geometry

– Assume AdS2×S1×S2 near horizon symmetries

– not the most general ansatz

– Equations of motion ⇔ Extremising an Entropy function

– Entropy function at extremum = Wald Entropy

– need to solve algebraic equations

– End up with AdS3×S2

ISM06, Puri 4

Page 9: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Step 1

+ First we look at simple 4-dimensional sphericallysymmetric black holes

+ later we will compare it with more complicated cases.

ISM06, Puri 5

Page 10: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Entropy Function (Sen)

Set up:

+ Gravity, p-form gauge fields, massless neutral scalars

+ L gauge and coordinate invariant - in particular theremay be higher derivative terms

+ Extremal = AdS2×S2 Near horizon geometry

+ Entropy function:

o First we consider, f , the Lagrangian densityevaluated at the horizon:

f [ei,pi,RAdS2,RS2,ϕs] =

ZH

p−gL

qi =∂f

∂ei

ISM06, Puri 6

Page 11: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Entropy Function (Sen)

Set up:

+ Gravity, p-form gauge fields, neutral scalars

+ L gauge and coordinate invariant - in particular theremay be higher derivative terms

+ Extremal = AdS2×S2 Near horizon geometry

+ Entropy function:

o First we consider, f , the Lagrangian densityevaluated at the horizon.

o Now take the Legendre transform of f w.r.t theelectric charges:

E = 2π

„qie

i−ZH

p−gL

«E = E[qi,p

i,RAdS2,RS2,ϕs]

ISM06, Puri 7

Page 12: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Entropy Function (Sen)

E = 2π

„qie

i−ZH

p−gL

«Results:

+ equations of motion ⇔Extremising E

+ Wald Entropy = Extremum of E

+ Fixing qi and pi fixes everything else completely

ISM06, Puri 8

Page 13: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Caveats

Entropy function, E, might have flat directions

⇒ The near horizon geometry is not completelydetermined by extremisation of E⇒ There may be a dependence of the near horizongeometry on the moduli

But since these are flat directions

4 the entropy is still independent of the moduli

+ Generalised attractor mechanism

Also note that we have assumed that a blackholesolution exists which may not always be the case.

ISM06, Puri 9

Page 14: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Summary of rotating attractors

+ Scalars constant on horizon (non-dyonic)

o SBH = 2πp

(Veff)2 +J2 ∂ΦVeff = 0

+ Scalars vary over horizon (Φ = Φ(θ)) (dyonic)

o E has no flat directions

2 4 6 8r

-0.4

-0.2

0.2

0.4

F Θ=0

2 4 6 8r

-0.4

-0.2

0.2

0.4

F Θ=Π2

2 4 6 8r

-0.4

-0.2

0.2

0.4

F Θ=Π

o E has flat directions

2 4 6 8r

-2

-1

1

2

F Θ=0

2 4 6 8r

-2

-1

1

2

F Θ=Π2

2 4 6 8r

-2

-1

1

2

F Θ=Π

ISM06, Puri 10

Page 15: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Simple example: spherically symmetric case

L = R−hrs(~Φ)gµν∂µΦs∂νΦr−fij(~Φ)gµρgνσF(i)µνF

(j)ρσ

−12fij(~Φ)εµρνσF

(i)µνF

(j)ρσ

ISM06, Puri 11

Page 16: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Simple example: spherically symmetric case

L = R−hrs(~Φ)gµν∂µΦs∂νΦr−fij(~Φ)gµρgνσF(i)µνF

(j)ρσ

−12fij(~Φ)εµρνσF

(i)µνF

(j)ρσ

The effect of the fij term is basically

qi→ qi−4fijpj

and for simplicity we will neglect it

ISM06, Puri 11

Page 17: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Simple example: spherically symmetric case

L = R−hrs(~Φ)gµν∂µΦs∂νΦr−fij(~Φ)gµρgνσF(i)µνF

(j)ρσ

Ansatz: AdS2×S2 near horizon geometry

ds2 = v1

`−r2dt2 +dr2/r2

´+v2dΩ

22

F irt = ei F i

θφ =pi

4πsinθ

Φr = ur (const.)

ISM06, Puri 11

Page 18: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Entropy function

Wish to calculate:

E = 2π(qiei−f) = 2π

„qie

i−Zdθdφ

p−gL

«Calculate the action:

f [~e,~p,~u,v1,v2] = (4π)(v1v2)

„2

v2

−2

v1

+fij(ur)

„2eiej

v21

−2pipj

(4π)2v22

««Calculate the conjugate variables:

qi =∂f

∂ei= (16π)(v1v2)fij(ur)

„ej

v21

«⇒

ej =

„1

16π

«„v1

v2

«f ikqk

ISM06, Puri 12

Page 19: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Entropy function

Finally

E[~q,~p,~u,v1,v2] = 2π

„8π(v2−v1)+

„v1

v2

«Veff

«Notation

Veff =1

»pifij(~u)p

j+1

16qif

ij(~u)qj

ISM06, Puri 13

Page 20: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Entropy function

Finally

E[~q,~p,~u,v1,v2] = 2π

8π(R2

S−R2AdS)+

R2AdS

R2S

!Veff

!

Notation

Veff =1

»pifij(~u)p

j+1

16qif

ij(~u)qj

ISM06, Puri 13

Page 21: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Equations of Motion

Then the equations of motion are equivalent toextremising the entropy function:

∂E∂ΦI

= 0 ⇒∂Veff

∂ΦI

= 0

∂E∂v1

= 0 ⇒ 8π−v−12 Veff(ΦI) = 0

∂E∂v2

= 0 ⇒ −8π+v1v−22 Veff(ΦI) = 0

Sov1 = v2 = 8πVeff

andSBH = 2πVeff

ISM06, Puri 14

Page 22: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Rotation

What is the generalisation of anAdS2 × S2 near horizon geometryfor rotating blackholes?

+ Take a hint from the nearhorizon geometry of extremalKerr Blackholes (Bardeen,Horowitz)

o SO(2,1)×U(1)

ISM06, Puri 15

Page 23: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Recall: SO(2,1)×S2 Ansatz

ds2 = v1

„−r2dt2 +

dr2

r2

«+v2dθ

2 +v2 sin2θdφ2

ϕs = us

1

2F

(i)µν dx

µ∧dxν = eidr∧dt+pi sinθ

4πdθ∧dφ

ISM06, Puri 16

Page 24: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

SO(2,1)×U(1) Ansatz

ds2 = v1(θ)

„−r2dt2 +

dr2

r2

«+β2dθ2+v2(θ)sin

2θ (dφ−αrdt)2

ϕs = us(θ)

Ai = eirdt+ bi(θ)(dφ−αrdt)

Horizon has spherical topology ⇒ v2(θ) at poles∼ 1

pi =

ZdθdφF

(i)θφ = 2π(bi(π)− bi(0)) .

ISM06, Puri 17

Page 25: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

SO(2,1)×U(1) Ansatz

ds2 = v1(θ)

„−r2dt2 +

dr2

r2

«+β2dθ2+v2(θ)sin

2θ (dφ−αrdt)2

ϕs = us(θ)12F

(i)µν dx

µ∧dxν = (ei−αbi(θ))dr∧dt+ bi′(θ)dθ∧ (dφ−αrdt)

Horizon has spherical topology ⇒ v2(θ) at poles∼ 1

pi =

ZdθdφF

(i)θφ = 2π(bi(π)− bi(0)) .

ISM06, Puri 17

Page 26: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

SO(2,1)×U(1) Ansatz

ds2 = Ω2e2ψ

„−r2dt2 +

dr2

r2

«+βdθ2 + e−2ψ (dφ−αrdt)2

ϕs = us(θ)12F

(i)µν dx

µ∧dxν = (ei−αbi(θ))dr∧dt+ bi′(θ)dθ∧ (dφ−αrdt)

Horizon has spherical topology ⇒ e−2ψ at poles∼ sin2θ

pi =

ZdθdφF

(i)θφ = 2π(bi(π)− bi(0)) .

ISM06, Puri 18

Page 27: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Symmetries

+ One way to see that the ansatz has SO(2,1)×U(1)symmetries is to check that it is invariant under theKilling vectors, ∂φ and

L1 = ∂t, L0 = t∂t−r∂r, L−1 =1

2

„1

r2+ t2«∂t−(tr)∂r+

α

r∂φ .

+ can also be seen by thinking of φ as a compactdimension and find that the resulting geometry hasa manifest SO(2,1) symmetry with the conventionalgenerators.

ISM06, Puri 19

Page 28: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Entropy function:

We define

f [α,β,~e,Ω(θ),ψ(θ),~u(θ),~b(θ)] :=

Zdθdφ

p−gL

+ The equations of motion are:

∂f

∂α= J

∂f

∂β= 0

∂f

∂ei= qi

δf

δbi(θ)= 0

δf

δΩ(θ)= 0

δf

δψ(θ)= 0

δf

δus(θ)= 0

ISM06, Puri 20

Page 29: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Entropy function:

Equivalently we let

E[J,~q,~b(θ),β,v1(θ),v2(θ),~u(θ)] = 2π (Jα+~q ·~e−f)

+ The equations of motion:

∂E∂α

= 0∂E∂β

= 0∂E∂ei

= 0δE

δbi(θ)= 0

δEδv1(θ)

= 0δE

δv2(θ)= 0

δEδus(θ)

= 0

ISM06, Puri 21

Page 30: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Examples

+ Kerr, Kerr-Newman, constant scalars (non-dyonic)

+ Dyonic Kaluza Klein blackhole (5-d→4-d).-(Rasheed)

+ Blackholes in toroidally compactified heterotic stringtheory-(Cvetic,Youm;Jatkar,Mukherji,Panda)

ISM06, Puri 22

Page 31: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Two derivative Lagrangians

L=R−hrs(~Φ)gµν∂µΦs∂νΦr−fij(~Φ)gµρgνσF(i)µνF

(j)ρσ

E ≡ 2π(Jα+~q ·~e−Zdθdφ

p−detgL)

= 2πJα+2π~q ·~e−4π2

Zdθ

"2Ω−1β−1Ω′2−2Ωβ−2Ωβ−1ψ′2

+1

2α2Ω−1βe−4ψ−β−1Ωhrs(~u)u

′ru′s

+2fij(~u)nβΩ−1e−2ψ(ei−αbi)(ej−αbj)−β−1Ωe2ψbi

′bj′o#

+8π2ˆΩ2e2ψ sinθ(ψ′+2Ω′/Ω)

˜θ=πθ=0

.

ISM06, Puri 23

Page 32: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Equations of motion

Notation:

χi = ei−αbi

Ω equation:

−4β−1Ω′′/Ω+2β−1(Ω′/Ω)2−2β−2β−1(ψ′)2−1

2α2Ω−2βe−4ψ

−β−1hrsu′ru′s+2fij

n−βΩ−2e−2ψχiχj−α−2β−1e2ψχi

′χj′o

=0,

ψ equation:

4β−1 (Ωψ′)′−2α2Ω−1βe−4ψ

+2fijn−2βΩ−1e−2ψχiχj−2α−2β−1Ωe2ψχi

′χj′o

= 0,

ISM06, Puri 24

Page 33: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

us equation:

2`β−1Ωhrsu

′s

´′+2∂rfij

nβΩ−1e−2ψχiχj−α−2β−1Ωe2ψχi

′χj′o

−β−1Ω(∂rhts)u′tu′s = 0,

b equation:

−αβfijΩ−1e−2ψχj−α−1β−1“fijΩe

2ψχj′”′

= 0

β equation: ZdθI(θ) = 0

where

I(θ) =−2Ω−1β−2(Ω′)2−2Ω+2Ωβ−2(ψ′)2 +1

2α2Ω−1e−4ψ

+β−2Ωhrsu′ru′s+2fij

nΩ−1e−2ψχiχj+α−2β−2Ω(θ)e2ψ(θ)χi

′χj′o

ISM06, Puri 25

Page 34: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Charges:

qi = 8π

ZdθˆfijβΩ−1e−2ψχj

˜,

J = 2πR π

0dθ˘αΩ−1βe−4ψ−4βfijΩ−1e−2ψχibj

¯

ISM06, Puri 26

Page 35: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Solutions

+ Equations can be solved for some simple cases

o Kerr, Kerr-Newmann, constant scalars

+ Check known solutions fitted into the frame work:

o KK blackholes, Toroidal compactification of Heteroticstring theory

ISM06, Puri 27

Page 36: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Kaluza-Klein Blackholes

L=R−2(∂ϕ)2− e2√

3ϕF 2

+ Charges = Q, P , J

+ 2 types of extremal blackholes

o Both have SO(2,1)×U(1) near horizon geometryo non-SUSY

1. Ergo branch

+ |J |> PQ+ Ergo-sphere+ S = 2π

pJ2−P 2Q2

+ E has flat directions

2. Ergo-free branch

+ |J |< PQ+ no Ergo-sphere+ S = 2π

pP 2Q2−J2

+ E has no flat directions

ISM06, Puri 28

Page 37: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Blackholes in Heterotic String Theory on T 6

+ Charges = Q1, Q2, Q3, Q4,P1, P2, P3, P4, J,

o (Actually 56 P ’s and Q’s)

+ Duality invariant quartic

D = (Q1Q3 +Q2Q4)(P1P3 +P2P4)

−1

4(Q1P1 +Q2P2 +Q3P3 +Q4P4)

2

1. Ergo branch

+ Ergo-sphere+ S = 2π

√J2 +D

+ E has flat directions

2. Ergo-free branch

+ no Ergo-sphere+ S = 2π

√−J2−D

+ E has no flat directions

ISM06, Puri 29

Page 38: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Ergo-free branch

2 4 6 8r

-0.4

-0.2

0.2

0.4

F Θ=0

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5F¥=

Φ

θππ/2

ISM06, Puri 30

Page 39: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Ergo-free branch

2 4 6 8r

-0.4

-0.2

0.2

0.4

F Θ=Π4

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5F¥=

Φ

θππ/2

ISM06, Puri 31

Page 40: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Ergo-free branch

2 4 6 8r

-0.4

-0.2

0.2

0.4

F Θ=Π2

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5F¥=

Φ

θππ/2

ISM06, Puri 32

Page 41: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Ergo-free branch

2 4 6 8r

-0.4

-0.2

0.2

0.4

F Θ=3Π4

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5F¥=

Φ

θππ/2

ISM06, Puri 33

Page 42: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Ergo-free branch

2 4 6 8r

-0.4

-0.2

0.2

0.4

F Θ=Π

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5F¥=

Φ

θππ/2

ISM06, Puri 34

Page 43: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Scalar Field at Horizon

Π2

Π 3 Π2

2 ΠΘ

-0.3

-0.2

-0.1

0.1

0.2

0.3F

ISM06, Puri 35

Page 44: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Ergo-branch

2 4 6 8 10r

-1.5

-1

-0.5

0.5

1

1.5

F Θ=0

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5F¥=

ISM06, Puri 36

Page 45: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Ergo-branch

2 4 6 8 10r

-1.5

-1

-0.5

0.5

1

1.5

F Θ=Π4

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5F¥=

ISM06, Puri 37

Page 46: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Ergo-branch

2 4 6 8 10r

-1.5

-1

-0.5

0.5

1

1.5

F Θ=Π2

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5F¥=

ISM06, Puri 38

Page 47: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Ergo-branch

2 4 6 8 10r

-1.5

-1

-0.5

0.5

1

1.5

F Θ=3Π4

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5F¥=

ISM06, Puri 39

Page 48: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Ergo-branch

2 4 6 8 10r

-1.5

-1

-0.5

0.5

1

1.5

F Θ=Π

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5F¥=

ISM06, Puri 40

Page 49: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Scalar Field at Horizon

Π2

Π 3 Π2

2 ΠΘ

-1.5

-1

-0.5

0.5

1

1.5

F

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5F¥=

ISM06, Puri 41

Page 50: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Black ring attractors (5-d)

Consider 5-d Lagrangian with massless uncharged scalarscoupled to U(1) gauge fields with Chern-Simons terms:

L=R−hab(~Φ)∂µΦa∂µΦb−fij(~Φ)F i

µνFj µν−cijkεµναβγF i

µνFjαβA

Action is not gauge invariant → Entropy functionformalism does not apply

+ similar to BTZ black hole with gravitational Chern-Simons and/or gauge Chern-Simons term

+ compactify ψ (Sen, Sahoo)

4 can apply formalism to dimensionally reduced action

+ Related work: (Kraus, Larsen), (Dabholkar, Iizuka,Iqubal, Sen, Shigemori)

ISM06, Puri 42

Page 51: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Black ring attractors (5-d)

Ansatz: AdS2×S1×S2

ds2 = v1

„−r2dt2 +

dr2

r2

«+w2 (dψ+ erdt)2 +v2

`dθ2 +sin2θdφ2

´,

Φs = us(θ)

Ai = eirdt+Aiψ (dψ+ erdt)−picosθdφ,

+ dimensionally reduce

+ calculate entropy function for our ansatz

ISM06, Puri 43

Page 52: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Black ring attractors (5-d)

Ansatz: AdS2×S1×S2

ds2 = v1

„−r2dt2 +

dr2

r2

«+w2 (dψ+ erdt)2 +v2

`dθ2 +sin2θdφ2

´,

Φs = us(θ)12F

(i)µν dx

µ∧dxν = (ei+ eAiψ)dr∧dt+pi sinθdθ∧dφ

+ dimensionally reduce

+ calculate entropy function for our ansatz

ISM06, Puri 43

Page 53: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Calculation

+ First we consider, f , the (dimensionally reduced)action evaluated at the horizon

f [v1,v2,w,e, ~Aψ, ~p,~e,~u] =

ZH

p−gL

+ The equations of motion are

∂f

∂v1

= 0∂f

∂v2

= 0∂f

∂w= 0

∂f

∂Aiψ

= 0∂f

∂ua= 0

∂f

∂ei= qi

∂f

∂e= q

ISM06, Puri 44

Page 54: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Entropy function

+ To calculate the entropy function,

E = 2π(qe+~q ·~e−f),

it is convenient to eliminate Aiψ, e and ~e using their

equations of motion

+ Except in special cases, we find, from the Aiψ equation

of motion, F itr = 0

ISM06, Puri 45

Page 55: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Entropy function

After some algebra, we obtain the entropy function

E = 32π3w

v2−v1 +

v1

v2

Veff +

34q2

w4

!!,

whereVeff = fij(~u)p

ipj

q ∼`q− 1

4dijqiqj

´+ and dij is proportional to inverse of cijkpk.

ISM06, Puri 46

Page 56: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Solution

Extremising the entropy function we find

E = 128π3

sq(Veff)

32

6

˛˛∂V=0

= 32π3wv2 =A

4GN

withv1 = v2 = 4

3Veff

˛∂V=0

w4 =94q2

Veff

˛˛∂V=0

ande2w2 = v1 ⇒AdS3×S2

ISM06, Puri 47

Page 57: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Puzzles

+ What is the relationship between the ergosphere andthe uniqueness of the Entropy function?

+ Under what conditions do these solutions actually exist?

+ Why are these (bosonic) symmetries sufficient for theattractor mechanism ?

o AdS2/CFT , AdS3/CFT

+ What does this really tell us about the entropy of non-SUSY blackholes?

ISM06, Puri 48

Page 58: Kevin Goldstein, TIFR ISM06, Puri, 17.12ism06/talks/Kevin.pdf · 2006. 12. 19. · – Entropy function at extremum = Wald Entropy – need to solve algebraic equations – End up

Thank you

ISM06, Puri 49