kinematic variables for dark matter at the lhc and beyond

113
HARVARD UNIVERSITY Christopher Rogan Kinematic variables for Dark Matter at the LHC and Beyond University of Chicago HEP Seminar – March 9, 2014

Upload: csrogan

Post on 17-Jul-2015

32 views

Category:

Science


2 download

TRANSCRIPT

HARVARDUNIVERSITY

Christopher Rogan

Kinematic variables for Dark Matter at the LHC and Beyond

University of Chicago HEP Seminar – March 9, 2014

Christopher Rogan - University of Chicago HEP - March 9, 2015

▪ Weakly interacting particles at the LHC▪ Why? How?

▪ Kinematic handles for studying them▪ MET▪ singularity variables

▪ Recursive Jigsaw Reconstruction▪ ex. di-leptons (i.e. super-razor variables)▪ ex. di-leptonic tops/stops (something sexier)

2

Talk Outline

Christopher Rogan - University of Chicago HEP - March 9, 2015

▪ Why are they interesting?▪ Dark Matter▪ It exists - but what is it? Would like to know if

we’re producing these particles at the LHC▪ Electroweak bosons▪ Decays of W and Z often produce neutrinos

▪ New symmetries▪ Discrete symmetries (ex. R-parity) make

lightest new ‘charged’ particles stable

3

Weakly interacting particles @ LHC

Christopher Rogan - University of Chicago HEP - March 9, 2015

▪ How do we study them?▪ Can infer their presence through missing transverse energy▪ Hermetic design of LHC experiments allows us to infer

‘what’s missing’

4

Weakly interacting particles @ LHC

ATLAS Calorimeters ~EmissT = �

cellsX

i

~ET

▪ full azimuthal coverage, up to |Ƞ| of ~5

▪ stopping power of ~12-20 interaction lengths

▪ ECAL+HCAL components with segmentation comparable to lateral shower sizes

Christopher Rogan - University of Chicago HEP - March 9, 2015 5

CERN-LHCC-2006-021

Missing transverse energy [GeV]

Minimum bias data

∫ L dt = 11.7 nb-1

Missing transverse energy [GeV]

Figures from SUSY10 conference talk:

Missing transverse energy is a powerful observable for inferring the presence of weakly interacting particlesBut, it only tells us about their transverse momenta – often we can better resolve quantities of interest by using additional information

Missing transverse energy

Christopher Rogan - University of Chicago HEP - March 9, 2015 6

Missing transverse energy

?

Missing transverse energy only tells us about the momentum of weakly interacting particles in an event…Christopher Rogan - University of Chicago HEP - March 9, 2015

Christopher Rogan - University of Chicago HEP - March 9, 2015 7

Missing transverse energy

…not about the identity or mass of weakly interacting particles

Christopher Rogan - University of Chicago HEP - March 9, 2015

Christopher Rogan - University of Chicago HEP - March 9, 2015 8

Missing transverse energy

…not about the identity or mass of weakly interacting particles

Christopher Rogan - University of Chicago HEP - March 9, 2015

Christopher Rogan - University of Chicago HEP - March 9, 2015 9

Missing transverse energy

We can learn more by using other information in an event to contextualize the missing transverse energy

Christopher Rogan - University of Chicago HEP - March 9, 2015

Christopher Rogan - University of Chicago HEP - March 9, 2015 10

Resolving the invisible

electron

mT (`⌫) has kinematic edge at mW ⇠ 80 GeV

mT =

q2peT p

⌫T (1� cos�)

Missing transverse momentum (MET)

Can use visible particles in events to contextualize missing transverse energy and better resolve mass scales

W (e⌫)

Christopher Rogan - University of Chicago HEP - March 9, 2015 11

Missing transverse energy

We can learn more by using other information in an event to contextualize the missing transverse energy ⇒ multiple weakly interacting particles?

Christopher Rogan - University of Chicago HEP - March 9, 2015

Christopher Rogan - University of Chicago HEP - March 9, 2015

Open vs. closed final states

CLOSED

OPEN

Can calculate all masses, momenta, angles

Can use masses for discovery, can use information to measure spin, CP, etc.

Under-constrained system with multiple weakly interacting particles – can’t calculate all the kinematic information

What useful information can we calculate? What can we measure?

12

Christopher Rogan - University of Chicago HEP - March 9, 2015

Multiple weakly interacting particles?

S S

p

p

CM

visible

visible

invisible

invisible

Canonical open / topology

Can be single or multiple decays steps

Can be one or more particles

Can be one or more particles

TheorySUSY

Little HiggsUED

R-parityT-parity

KK-parity

▪ Dark Matter▪ Higgs quadratic

divergences▪ ….

13

Christopher Rogan - University of Chicago HEP - March 9, 2015

Example: slepton pair-production

p

p

CM

14

Experimental signature: di-leptons final states with missing transverse momentum

Christopher Rogan - University of Chicago HEP - March 9, 2015

Example: slepton pair-production

p

p

CM

15

Main background:

Christopher Rogan - University of Chicago HEP - March 9, 2015

Example: slepton pair-production

p

p

CM

16

What quantities, if we could calculate them, could help us distinguish between signal and background events?

Christopher Rogan - University of Chicago HEP - March 9, 2015

Example: slepton pair-production

p

p

CM

17

What information are we missing?

We don’t observe the weakly interacting particles in the event. We can’t measure their momentum or masses.

Christopher Rogan - University of Chicago HEP - March 9, 2015

Example: slepton pair-production

p

p

CM

18

What do we know?

We can reconstruct the 4-vectors of the two leptons and the transverse momentum in the event

Christopher Rogan - University of Chicago HEP - March 9, 2015

Example: slepton pair-production

p

p

CM

19

Can we calculate anything useful?With a number of simplifying assumptions…

…we are still 4 d.o.f. short of reconstructing any masses of interest

~EmissT =

X~p �̃0

T m�̃0 = 0

Christopher Rogan - University of Chicago HEP - March 9, 2015

▪ State-of-the-art for LHC Run I was to use singularity variables as observables in searches

▪ Derive observables that bound a mass or mass-splitting of interest by▪ Assuming knowledge of event decay topology▪ Extremizing over under-constrained kinematic

degrees of freedom associated with weakly interacting particles

20

Singularity Variables

Christopher Rogan - University of Chicago HEP - March 9, 2015

Singularity Variable Example: MT2

with:

From:

Generalization of transverse mass to two weakly interacting particle events

21

Christopher Rogan - University of Chicago HEP - March 9, 2015

Singularity Variable Example: MT2

with:

LSP ‘test mass’

From:

Generalization of transverse mass to two weakly interacting particle events

22

Christopher Rogan - University of Chicago HEP - March 9, 2015

Singularity Variable Example: MT2

with:

LSP ‘test mass’

From:

Extremization of unknown degrees of freedom

Subject to constraints

Generalization of transverse mass to two weakly interacting particle events

23

Christopher Rogan - University of Chicago HEP - March 9, 2015

Singularity Variable Example: MT2

with:

LSP ‘test mass’

Constructed to have a kinematic endpoint (with the right test mass) at:From:

Extremization of unknown degrees of freedom

Subject to constraints

Generalization of transverse mass to two weakly interacting particle events

24

Mmax

T2

(m�) = m˜` Mmax

T2

(0) = M�

⌘m2

˜`�m2

�̃

m˜`

Christopher Rogan - University of Chicago HEP - March 9, 2015

MT2 in practice

ATLAS-CONF-2013-049

Backgrounds with leptonic W decays fall steeply once MT2 exceeds the W mass

Searches based on singularity variables have sensitivity to new physics signatures with mass splittings larger than the analogous SM ones

From:

25

Christopher Rogan - University of Chicago HEP - March 9, 2015

Recursive Jigsaw Reconstruction

▪ The strategy is to transform observable momenta iteratively reference-frame to reference-frame, traveling through each of the reference frames relevant to the topology

▪ At each step, extremize only the relevant d.o.f. related to that transformation

▪ Repeat procedure recursively, using only the momenta encountered in each reference frame

▪ Rather than obtaining one observable, get a complete basis of useful observables for each event

New approach to reconstructing final states with weakly interacting particles: Recursive Jigsaw Reconstruction

26

Christopher Rogan - University of Chicago HEP - March 9, 2015

Recursive rest-frame reconstruction

M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)For two lepton case, these are the ‘super-razor variables’:

Begin with reconstructed lepton 4-vectors in lab frame

27

Christopher Rogan - University of Chicago HEP - March 9, 2015

Recursive rest-frame reconstruction

M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)

Begin with reconstructed lepton 4-vectors in lab frame

Remove dependence on unknown longitudinal boost by moving from ‘lab’ to ‘lab z’ frames

28

Lab frame

~�lab! lab z

Lab z frame

For two lepton case, these are the ‘super-razor variables’:

Christopher Rogan - University of Chicago HEP - March 9, 2015

Recursive rest-frame reconstruction

M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)

Determine boost from ‘lab z’ to ‘CM ( )’ frame by specifying Lorentz-invariant choice for invisible system mass

29

Lab z frame

di-slepton CM frame

For two lepton case, these are the ‘super-razor variables’:

Christopher Rogan - University of Chicago HEP - March 9, 2015

Recursive rest-frame reconstruction

M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)

Determine asymmetric boost from CM to slepton rest frames by minimizing lepton energies in those frames

30

di-slepton CM frame

slepton frameslepton frame

For two lepton case, these are the ‘super-razor variables’:

Christopher Rogan - University of Chicago HEP - March 9, 2015

Recursive rest-frame reconstruction

M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)

Begin with reconstructed lepton 4-vectors in lab frame

Remove dependence on unknown longitudinal boost by moving from ‘lab’ to ‘lab z’ frames

Determine boost from ‘lab z’ to ‘CM ( )’ frame by specifying Lorentz-invariant choice for invisible system mass

Determine asymmetric boost from CM to slepton rest frames by minimizing lepton energies in those frames

31

For two lepton case, these are the ‘super-razor variables’:

Christopher Rogan - University of Chicago HEP - March 9, 2015

Lab frame

di-slepton CM frame

1st transformation: extract variable sensitive to invariant mass of total event:

Resulting variable is ~invariant under pT of di-slepton system

Recursive rest-frame reconstruction

32∆Mdecayγ / 2Rs

0 0.5 1 1.5 2 2.5

a.u.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 = 0 GeV0

1χ∼

m = 70 GeV0

1χ∼

m = 100 GeV0

1χ∼

m = 120 GeV0

1χ∼

m)νl)W(νlW(

=8 TeVsMadGraph+PGS = 150 GeV

l~; m0

1χ∼ l → l~; l~ l~ →pp

s / Rs0 0.5 1 1.5 2 2.5

[GeV

]CM Tp

0

100

200

300

400

500

600

a.u.

-510

-410

-310

-210

=8 TeVsMadGraph+PGS

01χ∼ l → l~; l~ l~ →pp

= 0 GeV1

0χ∼

m = 150 GeVl~m

Christopher Rogan - University of Chicago HEP - March 9, 2015 33

Resonant Higgs production

CMS Collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex]

From:

Using information from the two leptons, and the missing transverse momentum, the observable is directly sensitive to the Higgs mass

Christopher Rogan - University of Chicago HEP - March 9, 2015

di-slepton CM frame

slepton frameslepton frame

2nd transformation(s): extract variable sensitive to invariant mass of squark:

Resulting variable has kinematic endpoint at:

Recursive rest-frame reconstruction

34

[GeV]R∆M

0 50 100 150 200 250

[GeV

]CM Tp

0

50

100

150200

250

300

350400

450

a.u.

-510

-410

-310

=8 TeVsMadGraph+PGS ν±l → ±; W-W+ W→pp

Christopher Rogan - University of Chicago HEP - March 9, 2015

Variable comparison

35

More details about variable comparisons in PRD 89, 055020 (arXiv:1310.4827) and backup slides

∆ / MT2M0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

a.u.

-510

-410

-310

-210

-110 = 0 GeV0

1χ∼

m = 70 GeV0

1χ∼

m = 100 GeV0

1χ∼

m = 120 GeV0

1χ∼

m

=8 TeVsMadGraph+PGS = 150 GeV

l~; m0

1χ∼ l → l~; l~ l~ →pp

∆ / MCTM0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

a.u.

-510

-410

-310

-210

-110

1 = 0 GeV0

1χ∼

m = 70 GeV0

1χ∼

m = 100 GeV0

1χ∼

m = 120 GeV0

1χ∼

m

=8 TeVsMadGraph+PGS = 150 GeV

l~; m0

1χ∼ l → l~; l~ l~ →pp

∆ / MR∆M

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

a.u.

0

0.01

0.02

0.03

0.04

0.05

0.06 = 0 GeV0

1χ∼

m = 70 GeV0

1χ∼

m = 100 GeV0

1χ∼

m = 120 GeV0

1χ∼

m)νl)W(νlW(

=8 TeVsMadGraph+PGS = 150 GeV

l~; m0

1χ∼ l → l~; l~ l~ →pp

Three different singularity variables, all attempting to measure the same thing

Christopher Rogan - University of Chicago HEP - March 9, 2015

But what else can we calculate?

With recursive scheme can extract the two mass scales

and almost completely independently

36

∆Mtrueγ / 2Rs0 0.5 1 1.5 2 2.5

∆ /

MR ∆

M

00.20.40.60.8

11.21.41.61.8

2

a.u.

-510

-410

-310

=8 TeVsMadGraph+PGS

01χ∼ l → l~; l~ l~ →pp

= 50 GeV1

0χ∼

m = 150 GeVl~m

MR�

Christopher Rogan - University of Chicago HEP - March 9, 2015

Angles, angles, angles…Recursive scheme fully specifies approximate event decay chain, also yielding angular observables

Two transformations mean at least two independent angles of interest (essentially the decay angle of the

state whose rest-frame you are in)

Lab frame

di-slepton CM frame

di-slepton CM frame

slepton frameslepton frame

37

Christopher Rogan - University of Chicago HEP - March 9, 2015

Towards a kinematic basis

but

while Underestimating the real mass means over-estimating the boost magnitude:

From PRD 89, 055020 (2014)38

s / Rs0 0.5 1 1.5 2 2.5

∆ /

MR ∆

M

00.20.40.60.8

11.21.41.61.8

2

a.u.

-510

-410

-310

=8 TeVsMadGraph+PGS

01χ∼ l → l~; l~ l~ →pp

= 0 GeV1

0χ∼

m = 150 GeVl~m

s / Rs0 0.5 1 1.5 2 2.5

∆ /

MR ∆

M0

0.20.40.60.8

11.21.41.61.8

2

a.u.

-510

-410

-310

=8 TeVsMadGraph+PGS

01χ∼ l → l~; l~ l~ →pp

= 50 GeV1

0χ∼

m = 150 GeVl~m

s / Rs0 0.5 1 1.5 2 2.5

∆ /

MR ∆

M

00.20.40.60.8

11.21.41.61.8

2

a.u.

-410

-310

-210=8 TeVs

MadGraph+PGS 01χ∼ l → l~; l~ l~ →pp

= 100 GeV1

0χ∼

m = 150 GeVl~m

Christopher Rogan - University of Chicago HEP - March 9, 2015

Towards a kinematic basis

but

while Underestimating the real mass means over-estimating the boost magnitude:

39TCMβ /

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

a.u.

0

0.02

0.04

0.06

0.08

0.1 = 0 GeV0

1χ∼

m = 70 GeV0

1χ∼

m = 100 GeV0

1χ∼

m = 120 GeV0

1χ∼

m)νl)W(νlW(

=8 TeVsMadGraph+PGS = 150 GeV

l~; m0

1χ∼ l → l~; l~ l~ →pp

From PRD 89, 055020 (2014)

s / Rs0 0.5 1 1.5 2 2.5

∆ /

MR ∆

M

00.20.40.60.8

11.21.41.61.8

2

a.u.

-510

-410

-310

=8 TeVsMadGraph+PGS

01χ∼ l → l~; l~ l~ →pp

= 0 GeV1

0χ∼

m = 150 GeVl~m

s / Rs0 0.5 1 1.5 2 2.5

∆ /

MR ∆

M0

0.20.40.60.8

11.21.41.61.8

2

a.u.

-510

-410

-310

=8 TeVsMadGraph+PGS

01χ∼ l → l~; l~ l~ →pp

= 50 GeV1

0χ∼

m = 150 GeVl~m

s / Rs0 0.5 1 1.5 2 2.5

∆ /

MR ∆

M

00.20.40.60.8

11.21.41.61.8

2

a.u.

-410

-310

-210=8 TeVs

MadGraph+PGS 01χ∼ l → l~; l~ l~ →pp

= 100 GeV1

0χ∼

m = 150 GeVl~m

Christopher Rogan - University of Chicago HEP - March 9, 2015

Angular Variables

Angle between lab ➔ CM frame boost and di-leptons in CM frame is sensitive to

rather than

Incorrect boost magnitude induces correlation

40

β

Rφ∆

0 0.5 1 1.5 2 2.5 3

a.u.

0.02

0.04

0.06

0.08

0.1 = 0 GeV0

1χ∼

m = 70 GeV0

1χ∼

m = 100 GeV0

1χ∼

m = 120 GeV0

1χ∼

m)νl)W(νlW(

)+jetsllZ(

=8 TeVsMadGraph+PGS = 150 GeV

l~; m0

1χ∼ l → l~; l~ l~ →pp

~Uncorrelated with other super-razor variables

Christopher Rogan - University of Chicago HEP - March 9, 2015

Angular Variables

In the approximate di-slepton rest frame, reconstructed decay angle sensitive to particle

spin and production

41

|R

θ| cos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a.u.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

= 0 GeV0

1 χ

∼m

= 70 GeV0

1 χ

∼m

= 100 GeV0

1 χ

∼m

= 120 GeV0

1 χ

∼m

)νl)W(νlW(

=8 TeVsMadGraph+PGS = 150 GeV

l~; m

0

1 χ∼ l → l

~; l~ l~ →pp

Christopher Rogan - University of Chicago HEP - March 9, 2015

Angular Variables

In the approximate slepton rest frames, reconstructed slepton decay angle sensitive to

particle spin correlations

42

|R+1θ| cos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[G

eV]

R ∆M

0

20

40

60

80

100

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008=8 TeVs

MadGraph+PGS ν±l → ±; W-W+ W→pp

|R+1θ| cos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[G

eV]

R ∆M

0

2040

60

80100

120

140160

180

0.0005

0.001

0.0015

0.002

0.0025

=8 TeVsMadGraph+PGS

01χ∼ l → l~; l~ l~ →pp

= 50 GeV1

0χ∼

m = 150 GeVl~m

Christopher Rogan - University of Chicago HEP - March 9, 2015

Angular Variables

Also allows us to better resolve the kinematic endpoint of interest

43

|R+1θ| cos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[G

eV]

R ∆M

0

2040

60

80100

120

140160

180

0.0005

0.001

0.0015

0.002

0.0025

=8 TeVsMadGraph+PGS

01χ∼ l → l~; l~ l~ →pp

= 50 GeV1

0χ∼

m = 150 GeVl~m

Christopher Rogan - University of Chicago HEP - March 9, 2015

Super-razor variable basis

Sensitive to mass of CMGood for resonant production

of heavy parents

Mass-squared differenceresonant/non-resonant prod.

Sensitive to ratio of invisible and visible masses

Spin correlations, better resolution of mass edge

44

| cos ✓R| Spin and production

[GeV]0χ∼ m

0 50 100 150 200 250 300

σN

0

1

2

3

4

5 + CMS selectionCTM

+ CMS selection∆RM

Rθ cos × βRφ∆ × ∆RM

0χ∼ l 0

χ∼ l → Ll~ Ll

~

= 350 GeVLl

~ m

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L. Can improve sensitivity while removing MET cuts!

Can re-imagine a di-lepton analysis in new basis of variables

Christopher Rogan - University of Chicago HEP - March 9, 2015 45

Generalizing further

Recursive Jigsaw approach can be generalized to arbitrarily complex final states with weakly interacting particles

Christopher Rogan - University of Chicago HEP - March 9, 2015

Christopher Rogan - University of Chicago HEP - March 9, 2015

Example: the di-leptonic top basis

46

In more complicated decay topologies there can be many masses/mass-splittings, spin-sensitive angles and other observables of interest that can be used to distinguish between the SM and SUSY signals

Christopher Rogan - University of Chicago HEP - March 9, 2015 47

Singularity Variables for Tops

Christopher Rogan - University of Chicago HEP - March 9, 2015

If there are multiple masses or mass splittings of interest in the event, appearing at different points in the decay chains, then singularity variables correspond to different extremizations of missing d.o.f.

What are the correlations between the different singularity variables estimating different mass splittings? Can be large/complicated when using MCT or MT2 in this case

What if the two tops/stops are decaying differently through different particles?

48

Singularity Variables for Tops

Polesello and Tovey, JHEP, 1003:030, 2010

Christopher Rogan - University of Chicago HEP - March 9, 2015 49

Recursive Jigsaw reconstructionMove through each reference frame of interest in the event, specifying only d.o.f. relevant to each transformation:

lab frame di-top frame di-top frame

top frame

top frame

top frame W frame

b`b` b`b`

b`b`

b`

b`

` `

2b2l system treated as one visible object

Each bl system treated as visible object

individual leptons resolved independently

2 X

Christopher Rogan - University of Chicago HEP - March 9, 2015 50

Recursive Jigsaw reconstruction

The scales can be extracted independently M

top

[GeV]

MW

/Mtop

Christopher Rogan - University of Chicago HEP - March 9, 2015 51

Recursive Jigsaw reconstruction

In fact the scales can be extracted independently for each top – the reconstruction chains are decoupled

Mtop

[GeV]

Mtop

[GeV]

Christopher Rogan - University of Chicago HEP - March 9, 2015 52

b-tagged jet

The di-leptonic top basis

b-tagged jet

lepton lepton

MET

2 X

a b��T1,T2

��T,W

Mtt̄, ~ptt̄, cos ✓TT

Etop�frame

b , cos ✓T

EW�frame` , cos ✓W

Christopher Rogan - University of Chicago HEP - March 9, 2015 53

The di-leptonic top basis

largely independent information about five different masses

true

b/ E

top-frame

b1E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

true

b/ E

top-

fram

e

b2E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a.u.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007=8 TeVs

MadGraph GEN νl b→; t t t →pp

true

b/ E

top-frame

bE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

true

l/ E

W-fr

ame

lE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a.u.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004=8 TeVs

MadGraph GEN νl b→; t t t →pp

true

l/ E

W-frame

1lE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6tru

e

l/ E

W-fr

ame

2lE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a.u.

0

0.0005

0.001

0.0015

0.002

0.0025

=8 TeVs

MadGraph GEN νl b→; t t t →pp

true

tt/ M

ttM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

true

b/ E

top-

fram

e

bE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a.u.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008=8 TeVs

MadGraph GEN νl b→; t t t →pp

true

tt/ M

ttM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

true

l/ E

W-fr

ame

lE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a.u.

00.00050.0010.00150.0020.00250.0030.00350.0040.0045

=8 TeVs

MadGraph GEN νl b→; t t t →pp

Christopher Rogan - University of Chicago HEP - March 9, 2015 54

Previous state-of-the-art

Mass-sensitive singularity variables are not necessarily independent

) [GeV]2

,b1

(bT2

M0 20 40 60 80 100 120 140 160

) [G

eV]

2l, 1l(T2

M

0

20

40

60

80

100

a.u.

-410

-310

-210

=8 TeVs

MadGraph GEN νl b→; t t t →pp

) [GeV]2l

2,b

1l

1(b

T2M

0 20 40 60 80 100 120 140 160 180

) [G

eV]

2,b 1

(bT2

M

0

20

40

60

80

100

120

140

160

a.u.

-410

-310

-210

=8 TeVs

MadGraph GEN νl b→; t t t →pp

) [GeV]2l

2,b

1l

1(b

T2M

0 20 40 60 80 100 120 140 160

) [G

eV]

2l, 1l(T2

M

0102030405060708090

a.u.

-410

-310

-210

=8 TeVs

MadGraph GEN νl b→; t t t →pp

Christopher Rogan - University of Chicago HEP - March 9, 2015 55

The di-leptonic top basis largely independent information about decay angles

true

TTθ-

TTθ

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

TTθ

cos

-1-0.8-0.6-0.4-0.2

00.20.40.60.8

1

a.u.0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

=8 TeVs

MadGraph GEN νl b→; t t t →pp

true

tt/ M

ttM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

TTθ

cos

-1-0.8-0.6-0.4-0.2

00.20.40.60.8

1

a.u.

00.00020.00040.00060.00080.0010.00120.00140.00160.00180.0020.0022

=8 TeVs

MadGraph GEN νl b→; t t t →pp

Here, the decay angle of the top/anti-top system

Christopher Rogan - University of Chicago HEP - March 9, 2015 56

The di-leptonic top basis

Here, the decay angle of one of the top quarks

true

b/ E

top-frame

bE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6T

θco

s -1

-0.8-0.6-0.4-0.2

00.20.40.60.8

1

a.u.

00.00020.00040.00060.00080.0010.00120.00140.00160.00180.002

=8 TeVs

MadGraph GEN νl b→; t t t →pp

true

Tθ-

-1 -0.5 0 0.5 1

cos

-1-0.8-0.6-0.4-0.2

00.20.40.60.8

1

a.u.

00.00020.00040.00060.00080.0010.00120.00140.00160.0018

=8 TeVs

MadGraph GEN νl b→; t t t →pp

largely independent information about decay angles

Christopher Rogan - University of Chicago HEP - March 9, 2015 57

The di-leptonic top basis vs. signals Different variables in the basis are useful for different signals

First, we consider resonant ttbar production through a graviton

v.s.tt̄ G

t(b`⌫) t(b`⌫) t(b`⌫) t(b`⌫)

Christopher Rogan - University of Chicago HEP - March 9, 2015 58

The di-leptonic top basis vs. gravitons

Distributions of top/W/neutrino mass-splitting-sensitive observables are nearly identical since graviton signal and non-resonant background both contain on-shell tops

[GeV]top-frame

bE

0 20 40 60 80 100

a.u.

0

0.2

0.4

0.6

0.8

1 )ν l)(bν l (b→tt = 1 TeV

Gm

= 2 TeVG

m = 3 TeV

Gm

=8 TeVsMadGraph GEN νl b→; t t t → G →pp

[GeV]W-frame

lE

0 20 40 60 80 100

a.u.

0

0.2

0.4

0.6

0.8

1 )ν l)(bν l (b→tt = 1 TeV

Gm

= 2 TeVG

m = 3 TeV

Gm

=8 TeVsMadGraph GEN νl b→; t t t → G →pp

Different variables in the basis are useful for different signals

Christopher Rogan - University of Chicago HEP - March 9, 2015 59

The di-leptonic top basis vs. gravitons

Instead, observables related to the production of the two tops are sensitive to the intermediate resonance

[GeV]tt

M0 1000 2000 3000 4000 5000

a.u.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

)ν l)(bν l (b→tt = 1 TeV

Gm

= 2 TeVG

m = 3 TeV

Gm

=8 TeVsMadGraph GEN νl b→; t t t → G →pp

TTθcos

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

a.u.

0.2

0.4

0.6

0.8

1

)ν l)(bν l (b→tt = 1 TeV

Gm

= 2 TeVG

m = 3 TeV

Gm

=8 TeVsMadGraph GEN νl b→; t t t → G →pp

Different variables in the basis are useful for different signals

Christopher Rogan - University of Chicago HEP - March 9, 2015 60

The di-leptonic top basis vs. stops SUSY stops decaying through charginos

v.s.tt̄ t̃t̃

t t t̃ t̃

b b b bW W �̃± �̃±

⌫ ⌫�̃0 �̃0` ` W (`⌫) W (`⌫)

Christopher Rogan - University of Chicago HEP - March 9, 2015 61

The di-leptonic top basis vs. stops

Mass-splitting-sensitive observables can be used to distinguish presence of signals

[GeV]top-frame

bE

0 50 100 150 200 250 300

a.u.

0.010.02

0.030.040.05

0.060.07

0.080.09

)ν l)(bν l (b→tt = 340 GeV

1

±

χ∼m

= 500 GeV1

±

χ∼m

= 650 GeV1

±

χ∼m

=8 TeVsMadGraph GEN

1

0 χ∼

) ν l W(→ 1

± χ∼

; 1

± χ∼

b → t~

; t~ t

~ →pp

= 300 GeV1

0χ∼m

= 700 GeVt~m

[GeV]W-frame

lE

0 20 40 60 80 100 120 140 160 180 200 220

a.u.

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08)ν l)(bν l (b→tt

= 340 GeV1

±

χ∼m

= 500 GeV1

±

χ∼m

= 650 GeV1

±

χ∼m

=8 TeVsMadGraph GEN

1

0 χ∼

) ν l W(→ 1

± χ∼

; 1

± χ∼

b → t~

; t~ t

~ →pp

= 300 GeV1

0χ∼m

= 700 GeVt~m

Christopher Rogan - University of Chicago HEP - March 9, 2015 62

The di-leptonic top basis vs. stops mt̃ = 700 GeV

m�̃0 = 300 GeV

650500340

Here, the azimuthal angle between the the top and W decay planes and the angle between the two top decay planes

��T1,W1

��T1,T2T1,T2φ∆

0 1 2 3 4 5 6

T1,W

0

1

2

3

4

5

6

a.u.

0.005

0.01

0.015

0.02

0.025

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(340); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1,T2φ∆

0 1 2 3 4 5 6

T1,W

0

1

2

3

4

5

6

a.u.

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(500); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1,T2φ∆

0 1 2 3 4 5 6

T1,W

0

1

2

3

4

5

6

a.u.

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(650); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1,T2φ∆

0 1 2 3 4 5 6

T1,W

0

1

2

3

4

5

6

a.u.

0.0005

0.001

0.0015

0.002

0.0025=8 TeVs

MadGraph GEN νl b→; t t t →pp

m�̃± = GeV

Christopher Rogan - University of Chicago HEP - March 9, 2015

Summary▪ The strategy of Recursive Jigsaw Reconstruction is to not only

develop ‘good’ mass estimator variables, but to decompose each event into a basis of kinematic variables

▪ Through the recursive procedure, each variable is (as much as possible) independent of the others

▪ The interpretation of variables is straightforward; they each correspond to an actual, well-defined, quantity in the event

▪ Can be generalized to arbitrarily complex final states with many weakly interacting particles

▪ Code package to be released imminently (RestFrames - see back-up)▪ First papers nearing completion

(Recursive Jigsaw Reconstruction, The Di-leptonic ttbar basis - with Paul Jackson)

63

Christopher Rogan - University of Chicago HEP - March 9, 2015

▪ Recursive Jigsaw Reconstruction is a systematic recipe for deriving a kinematic basis for any open final state

▪ Mixed decay cases can now be treated in a sensible way

▪ Lots of potential applications – some I’m currently thinking about:• Di-lepton searches and differential measurements• stop / top-quark partner and resonant ttbar searches• other signatures (SUSY, exotica)• spin measurements• …

64

vs.vs.vs.

Outlook

Christopher Rogan - University of Chicago HEP - March 9, 2015

BACKUP SLIDES65

Christopher Rogan - University of Chicago HEP - March 9, 2015 66

RestFrames software library

RestFrames: Soon-to-be-public code that can be used to calculate kinematic variables associated with any decay chain and can implement “Recursive Jigsaw” rules

Example: Di-leptonic ttbar decays - how to use the code to initialize a decay tree, implement a jigsaw rule for determining the neutrino four-momenta, and analyze events

www.RestFrames.com

Christopher Rogan - University of Chicago HEP - March 9, 2015 67

initialize all your reference frames of interest

connect them according to the decay tree you want to impose on the event

RestFrames software library

Christopher Rogan - University of Chicago HEP - March 9, 2015 68

…and you’ll see this

draw your decay tree…

lab

tt

at

ab

aW

al

bt

bb

bW

bl

Lab State

Decay States

Visible States

Invisible States

RestFrames software library

Christopher Rogan - RestFrames - Jan 29, 2015 69

RestFrames example: di-leptonic topSet the 4-vector input and MET for an event

Get observables directly from decay tree

Christopher Rogan - RestFrames - Jan 29, 2015 70

tt

at

ab

aW

al

bt

bb

bW

bl

Decay States

Visible States

Invisible States at

ab

aW

al

Decay States

Visible States

Invisible States

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015 71

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015 72

number of elements that _have_ to go to this frame from the group each event exclusive (true) or

inclusive (false) counting

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015 73

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015 74

tt

at

ab

aW

al

bt

bb

bW

bl

tt

at

ab

aW

al

bt

bb

bW

bl

Decay States

Visible States

Invisible States

Invisible Jigsaw

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015 75

event-by-event will choose b-tag jet combinatoric assignment that minimizes the masses of these two collections

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015 76

tt

at

ab

aW

al

bt

bb

bW

bl

tt

at

ab

aW

al

bt

bb

bW

bl

Decay States

Visible States

Invisible States

Invisible Jigsaw

Combinatoric Jigsaw

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015 77

Invisible system mass Jigsaw

Invisible system rapidity Jigsaw

Contraboost invariant JigsawContraboost invariant Jigsaw

bν+

bν+

bν+

Invisible Frame Jigsaws

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015 78

's Jigsawlb

Minimize m 's Jigsawlb

Minimize m

b+ b

ab

ab

bb

B-tagged jet Jigsaws

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015 79

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015 80

some toy input

analyze the event

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015 81

tracking of combinatoric elements

RestFrames example: di-leptonic top

Christopher Rogan - RestFrames - Jan 29, 2015

▪ To make shared library ‘lib/libRestFrames.so’

▪ To set environmental variables (ex. for running ROOT macros):

82

RestFrames setup

<$ make

<$ source setup.sh

Christopher Rogan - RestFrames - Jan 29, 2015

▪ To run ‘macros/TestDiLeptonicTop.C’ macro:

83

<$ root

root [0] .x macros/TestDiLeptonicTop.C

RestFrames example: di-leptonic top

Christopher Rogan - University of Chicago HEP - March 9, 2015

Singularity variables

From:

84

Christopher Rogan - University of Chicago HEP - March 9, 2015

Singularity variables

From:

85

Christopher Rogan - University of Chicago HEP - March 9, 2015

Example: MCT

Constructed to have a kinematic endpoint at:

From:

assuming ~mass-less leptons

86

Christopher Rogan - University of Chicago HEP - March 9, 2015

MCT in practiceSingularity variables (like MCT) can be sensitive to quantities that

can vary dramatically event-by-event

Kinematic endpoint ‘moves’ with nonzero CM system pT

87

Christopher Rogan - University of Chicago HEP - March 9, 2015

The mass challengeThe invariant mass is invariant under coherent Lorentz transformations of two particles

The Euclidean mass (or contra-variant mass) is invariant under anti-symmetric Lorentz transformations of two particles

Even the simplest case requires variables with both properties!Lab

framedi-slepton CM frame

di-slepton CM frame

slepton frameslepton frame

88

Christopher Rogan - University of Chicago HEP - March 9, 2015

Correcting for CM pT

▪ Want to boost from lab-frame to CM-frame▪ We know the transverse momentum of the CM-

frame:

▪ But we don’t know the energy, or mass, of the CM-frame:

89

Christopher Rogan - University of Chicago HEP - March 9, 2015

pT corrections for MCT

with:

Attempts have been made to mitigate this problem:(i) ‘Guess’ the lab ➔ CM frame boost:

(ii) Only look at event along axis perpendicular to boost:

x – parallel to boosty – perp. to boost

90

Christopher Rogan - University of Chicago HEP - March 9, 2015

MCTperp in practice

CMS-SUS-PAS-13-006

‘peak position’ of signal and backgrounds due to other cuts (pT, MET) and only weakly sensitive to sparticle masses

From:

91

50 100 150 200 250 30010�2

10�1

100

101

102

103

entri

es/1

0G

eV

DataTopWWWZZZRare SMZ/g⇤

Non-promptm

± = 500 GeV

mc̃

± = 300 GeV

50 100 150 200 250 300MCT? (GeV)

0.60.81.01.21.4

ratio

CMS Preliminaryp

s = 8 TeV, Lint = 19.5 fb�1

Christopher Rogan - University of Chicago HEP - March 9, 2015

is a singularity variable – in fact it is essentially identical to MCT but evaluated in a different reference frame. Boost procedure ensures that new variable is invariant under the previous transformations

Recursive rest-frame reconstruction

92

[GeV]R∆M

0 50 100 150 200 250

[GeV

]CM Tp

0

50

100

150200

250

300

350400

450

a.u.

-510

-410

-310

=8 TeVsMadGraph+PGS ν±l → ±; W-W+ W→pp

[GeV]CTM0 50 100 150 200 250

[GeV

]CM Tp

0

50100150

200250300

350400

450

a.u.

-510

-410

-310

=8 TeVsMadGraph+PGS ν±l → ±; W-W+ W→pp

Christopher Rogan - University of Chicago HEP - March 9, 2015 93

Resonant Higgs production

CMS Collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex]

From:

The between the leptons is evaluated in the R-frame, removing dependence on the pT of the Higgs and correlation with

CMS uses 2D fit of variables to measure Higgs mass in this channel

Christopher Rogan - University of Chicago HEP - March 9, 2015 94

Resonant Higgs production

CMS Collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex]

From:

The shape of the distribution, for the Higgs signal and backgrounds, is used to extract both the Higgs mass and signal strength – even while information is lost with the two escaping neutrinos

Christopher Rogan - University of Chicago HEP - March 9, 2015

What other info can we extract?

Mass and Spin Measurement with M(T2) and MAOS Momentum - Cho, Won Sang et al. Nucl.Phys.Proc.Suppl. 200-202 (2010) 103-112 arXiv:0909.4853 [hep-ph]

From:

Ex. MT2 extremization assigns values to missing degrees of freedom – if one takes

these assignments literally, can we calculate other useful variables?

When we assign unconstrained d.o.f. by extremizing one quantity, what are the general properties of other variables we calculate? What are the correlations among them?

95

Christopher Rogan - University of Chicago HEP - March 9, 2015

Example: the di-leptonic top basis

96

[GeV]top-frame

bE

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

a.u.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

)ν l)(bν l (b→tt = 340 GeV

1

±

χ∼m

= 500 GeV1

±

χ∼m

= 650 GeV1

±

χ∼m

=8 TeVsMadGraph GEN

1

0χ∼

) νl W(→ 1

±

χ∼

; 1

±

χ∼

b → t~

; t~ t

~ →pp

= 300 GeV1

0χ∼m

= 700 GeVt~m

[GeV]tt

M0 1000 2000 3000 4000 5000

a.u.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

)ν l)(bν l (b→tt = 1 TeV

Gm

= 2 TeVG

m = 3 TeV

Gm

=8 TeVsMadGraph GEN νl b→; t t t → G →pp

true

tt/ M

ttM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

TTθ

cos

-1-0.8-0.6-0.4-0.2

00.20.40.60.8

1

a.u.

00.00020.00040.00060.00080.0010.00120.00140.00160.00180.0020.0022

=8 TeVs

MadGraph GEN νl b→; t t t →pp

A rich basis of useful Recursive Jigsaw observables can be calculated, each with largely independent information

true

b/ E

top-frame

bE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

true

l/ E

W-fr

ame

lE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a.u.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004=8 TeVs

MadGraph GEN νl b→; t t t →pp

true

b/ E

top-frame

b1E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

true

b/ E

top-

fram

e

b2E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a.u.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007=8 TeVs

MadGraph GEN νl b→; t t t →pp

true

tt/ M

ttM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

true

b/ E

top-

fram

e

bE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a.u.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008=8 TeVs

MadGraph GEN νl b→; t t t →pp

true

tt/ M

ttM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

true

l/ E

W-fr

ame

lE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a.u.

00.00050.0010.00150.0020.00250.0030.00350.0040.0045

=8 TeVs

MadGraph GEN νl b→; t t t →pp

true

l/ E

W-frame

1lE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

true

l/ E

W-fr

ame

2lE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a.u.

0

0.0005

0.001

0.0015

0.002

0.0025

=8 TeVs

MadGraph GEN νl b→; t t t →pp

Christopher Rogan - University of Chicago HEP - March 9, 2015 97

The di-leptonic top basis vs. stops

Observables sensitive to intermediate resonances cannot distinguish between non-resonant signals and background

1 2 3 4 5 6 7 8

a.u.

-410

-310

-210

)ν l)(bν l (b→tt = 1 TeV

Gm

= 2 TeVG

m = 3 TeV

Gm

=8 TeVsMadGraph GEN νl b→; t t t → G →pp

1 2 3 4 5 6

a.u.

-310

-210

-110 )ν l)(bν l (b→tt

= 340 GeV1

±

χ∼m

= 500 GeV1

±

χ∼m

= 650 GeV1

±

χ∼m

=8 TeVsMadGraph GEN

1

0χ∼

) νl W(→ 1

±

χ∼

; 1

±

χ∼

b → t~

; t~ t

~ →pp

= 300 GeV1

0χ∼m

= 700 GeVt~m

Mtt = 2�TMt

Christopher Rogan - University of Chicago HEP - March 9, 2015

vs.

Mul

ti-di

men

siona

l bum

p-hu

ntin

g

98

MW

/Mtop

MW

/Mtop

Mtop

[GeV]

Mtop

[GeV] Mtop

[GeV]

Mtop

[GeV]M

W

/Mtop

MW

/Mtop

Christopher Rogan - University of Chicago HEP - March 9, 2015 99

The di-leptonic top basis vs. stops

Decay angles are also sensitive to differences between stop signals and ttbar background

[GeV]top-frame

bE

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

a.u.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

)ν l)(bν l (b→tt = 340 GeV

1

±

χ∼m

= 500 GeV1

±

χ∼m

= 650 GeV1

±

χ∼m

=8 TeVsMadGraph GEN

1

0χ∼

) νl W(→ 1

±

χ∼

; 1

±

χ∼

b → t~

; t~ t

~ →pp

= 300 GeV1

0χ∼m

= 700 GeVt~m

TTθcos

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

a.u.

0.2

0.4

0.6

0.8

1

)ν l)(bν l (b→tt = 1 TeV

Gm

= 2 TeVG

m = 3 TeV

Gm

=8 TeVsMadGraph GEN νl b→; t t t → G →pp

Christopher Rogan - University of Chicago HEP - March 9, 2015 100

The di-leptonic top basis vs. stops mt̃ = 700 GeV

m�̃0 = 300 GeV

650500340

Decay angles are also sensitive to differences between stop signals and ttbar background

T1θcos

-1 -0.5 0 0.5 1

T2θ

cos

-1

-0.5

0

0.5

1

a.u.

00.0010.0020.0030.0040.0050.0060.0070.0080.009

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(340); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1θcos

-1 -0.5 0 0.5 1

T2θ

cos

-1

-0.5

0

0.5

1

a.u.

0.0005

0.001

0.0015

0.002

0.0025

0.003=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(500); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1θcos

-1 -0.5 0 0.5 1

T2θ

cos

-1

-0.5

0

0.5

1

a.u.

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(650); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1θcos

-1 -0.5 0 0.5 1

T2θ

cos

-1

-0.5

0

0.5

1

a.u.

0.0005

0.001

0.0015

0.002

0.0025=8 TeVs

MadGraph GEN νl b→; t t t →pp

m�̃± = GeV

Christopher Rogan - University of Chicago HEP - March 9, 2015 101

The di-leptonic top basis vs. stops mt̃ = 700 GeV

m�̃0 = 300 GeV

650500340

Decay angles are also sensitive to differences between stop signals and ttbar background

W1θcos

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

W2

θco

s

-1-0.8-0.6-0.4-0.2

00.20.40.60.8

1

a.u.

-410

-310

-210

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(340); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

W1θcos

-1 -0.5 0 0.5 1

W2

θco

s

-1

-0.5

0

0.5

1

a.u.

-310

-210

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(500); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

W1θcos

-1 -0.5 0 0.5 1

W2

θco

s

-1

-0.5

0

0.5

1

a.u.

-310

-210

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(650); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

W1θcos

-1 -0.5 0 0.5 1

W2

θco

s

-1

-0.5

0

0.5

1

a.u.

-310

-210

=8 TeVs

MadGraph GEN νl b→; t t t →pp

m�̃± = GeV

Christopher Rogan - University of Chicago HEP - March 9, 2015 102

The di-leptonic top basis vs. stops mt̃ = 700 GeV

m�̃0 = 300 GeV

650500340

Here, the azimuthal angle between the the top and W decay planes , for each of the two decay chains

��T1,W1

T1,W1φ∆

0 1 2 3 4 5 6

T2,W

0

1

2

3

4

5

6

a.u.

0.001

0.002

0.003

0.004

0.005

0.006

0.007=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(340); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1,W1φ∆

0 1 2 3 4 5 6

T2,W

0

1

2

3

4

5

6

a.u.

0.0005

0.001

0.0015

0.002

0.0025

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(500); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1,W1φ∆

0 1 2 3 4 5 6

T2,W

0

1

2

3

4

5

6

a.u.

0.0005

0.001

0.0015

0.002

0.0025

0.003

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(650); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1,W1φ∆

0 1 2 3 4 5 6

T2,W

0

1

2

3

4

5

6

a.u.

0.0005

0.001

0.0015

0.002

0.0025

0.003

=8 TeVs

MadGraph GEN νl b→; t t t →pp

m�̃± = GeV

Christopher Rogan - University of Chicago HEP - March 9, 2015 103

The di-leptonic top basis vs. stops mt̃ = 700 GeV

m�̃0 = 300 GeV

650500340

Here, the azimuthal angle between the the top and W decay planes and the angle between the two top decay planes

��T1,W1

��T1,T2T1,T2φ∆

0 1 2 3 4 5 6

T1,W

0

1

2

3

4

5

6

a.u.

0.005

0.01

0.015

0.02

0.025

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(340); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1,T2φ∆

0 1 2 3 4 5 6

T1,W

0

1

2

3

4

5

6

a.u.

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(500); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1,T2φ∆

0 1 2 3 4 5 6

T1,W

0

1

2

3

4

5

6

a.u.

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

=8 TeVs

MadGraph GEN (300)1

0 χ∼

)νl W(→ 1

± χ∼

(650); 1

± χ∼

b→ t~

(700); t~ t

~ →pp

T1,T2φ∆

0 1 2 3 4 5 6

T1,W

0

1

2

3

4

5

6

a.u.

0.0005

0.001

0.0015

0.002

0.0025=8 TeVs

MadGraph GEN νl b→; t t t →pp

m�̃± = GeV

Christopher Rogan - University of Chicago HEP - March 9, 2015

Razor kinematic variablesmega-jet

invisible?▪ Assign every reconstructed object to one of two mega-jets▪ Analyze the event as a ‘canonical’ open final state:

• two variables: MR (mass scale) , R (scale-less event imbalance)

▪ An inclusive approach to searching for a large class of new physics possibilities with open final states

invisible?

mega-jet

PRD 85, 012004 (2012)EPJC 73, 2362 (2013)PRL 111, 081802 (2013)CMS-PAS-SUS-13-004

arXiv:1006.2727v1 [hep-ph]Razor variables

CMS+ATLASanalyses

104Christopher Rogan - University of Chicago HEP - March 9, 2015

Christopher Rogan - University of Chicago HEP - March 9, 2015

Razor kinematic variablesmega-jet

invisible?▪ Assign every reconstructed object to one of two mega-jets▪ Analyze the event as a ‘canonical’ open final state:

• two variables: MR (mass scale) , R (scale-less event imbalance)

▪ An inclusive approach to searching for a large class of new physics possibilities with open final states

invisible?

mega-jet

Two distinct mass scales in event Two pieces of complementary information

105Christopher Rogan - University of Chicago HEP - March 9, 2015

Christopher Rogan - University of Chicago HEP - March 9, 2015

▪ Baseline Selection• Exactly two opposite sign leptons with

pT > 20 GeV/c and |η| < 2.5• If same flavor, m(l l) > 15 GeV/c2• ΔR between leptons and any jet (see below) > 0.4• veto event if b-tagged jet with pT > 25 GeV/c and |η| < 2.5

▪ Kinematic Selection

ATLAS-CONF-2013-049CMS-PAS-SUS-12-022

‘CMS selection’ ‘ATLAS selection’

A Monte Carlo analysis to compareFrom PRD 89, 055020 (arXiv:1310.4827 [hep-ph])

106

Christopher Rogan - University of Chicago HEP - March 9, 2015

1D Shape Analysis

▪ Analysis Categories • Consider final 9 different final states according to lepton flavor

and jet multiplicity – simultaneous binned fit includes both high S/B and low S/B categories

Fit to kinematic distributions (in this case, MΔR, MT2 or MCTperp in 10 GeV

bins), over all categories for , and yields

Other jet multiplicity and

lepton flavor categories

+

107

[GeV] CTM20 40 60 80 100 120 140 160 180 200 220

Even

ts / 1

0 G

eV

-110

1

10

210

310

410 TOTAL BKGWW/WZ

+jetstt*+jetsγZ/

= 100 GeV0χ∼

= 350, m±Le~m

= 100 GeV0χ∼

= 250, m±Le~m

-1 = 20 fbL dt ∫ = 8 TeV s Madgraph+PGS

= 0jet NeeCMS selection

[GeV] CTM20 40 60 80 100 120 140 160 180 200

Even

ts / 1

0 G

eV

-110

1

10

210

310

410TOTAL BKGWW/WZ

+jetstt*+jetsγZ/

= 100 GeV0χ∼

= 350, m±Le~m

= 100 GeV0χ∼

= 250, m±Le~m

-1 = 20 fbL dt ∫ = 8 TeV s Madgraph+PGS

= 1jet NeeCMS selection

+

From PRD 89, 055020

Christopher Rogan - University of Chicago HEP - March 9, 2015

Systematic uncertainties

▪ 2% lepton ID (correlated btw bkgs, uncorrelated between lepton categories)

▪ 10% jet counting (per jet) (uncorrelated between all processes)▪ 10% x-section uncertainty for backgrounds (uncorrelated) +

theoretical x-section uncertainty for signal (small)▪ ‘shape’ uncertainty derived by propagating effect of 10% jet

energy scale shift up/down to MET and recalculating shapes templates of kinematic variables

▪ Uncertainties are introduced into toy pseudo-experiments through marginalization (pdfs fixed in likelihood evaluation but systematically varied in shape and normalization in toy pseudo-experiment generation)

108

From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])

Christopher Rogan - University of Chicago HEP - March 9, 2015

Compared to Reality

(GeV)l~

m100 150 200 250 300 350 400 450

(G

eV)

0 1χ∼m

0

50

100

150

200

250

300

95%

C.L

. upp

er lim

it on

cro

ss s

ectio

n (fb

)

1

10

210 = 8 TeVs, -1 = 19.5 fb

intCMS Preliminary L

95% C.L. CLs NLO Exclusions

theoryσ 1±Observed

experimentσ1±Expected

Lµ∼

Lµ∼, Le

~ Le~ → pp

) = 101χ∼ l → Ll

~(Br

CMS-PAS-SUS-12-022

109

From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])

Christopher Rogan - University of Chicago HEP - March 9, 2015

Expected Limit Comparison

110

[GeV]Ll~m

100 150 200 250 300 350 400 450

[GeV

]0 χ∼

m

0

50

100

150

200

250

300

350

400

σN

0

1

2

3

4

50χ∼ l 0

χ∼ l → Ll~ Ll

~

+ ATLAS selection∆RM

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L. excl

0χ∼

= mLl~m

[GeV]Ll~m

100 150 200 250 300 350 400 450

[GeV

]0 χ∼

m

0

50

100

150

200

250

300

350

400

σN

0

1

2

3

4

50χ∼ l 0

χ∼ l → Ll~ Ll

~

+ ATLAS selectionT2M

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L. excl

0χ∼

= mLl~m

[GeV]Ll~m

100 150 200 250 300 350 400 450

[GeV

]0 χ∼

m

0

50

100

150

200

250

300

350

400

σN

0

1

2

3

4

50χ∼ l 0

χ∼ l → Ll~ Ll

~

+ CMS selectionCTM

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L. excl

0χ∼

= mLl~m

[GeV]Ll~m

100 150 200 250 300 350 400 450

[GeV

]0 χ∼

m

0

50

100

150

200

250

300

350

400

σN

0

1

2

3

4

50χ∼ l 0

χ∼ l → Ll~ Ll

~

+ CMS selection∆RM

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L. excl

0χ∼

= mLl~m

From

PRD

89,

055

020

(arX

iv:1

310.

4827

)

Christopher Rogan - University of Chicago HEP - March 9, 2015

Charginos

111

[GeV]±χ∼m

100 150 200 250 300 350

[GeV

]0 χ∼

m

0

50

100

150

200

250

300

σN

0

1

2

3

4

5]0

χ∼)νl W(0χ∼)νl [W(→ ±χ∼ ±χ∼

+ ATLAS selection∆RM

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L. excl

0χ∼

= m±χ∼m

[GeV]±χ∼m

100 150 200 250 300 350

[GeV

]0 χ∼

m

0

50

100

150

200

250

300

σN

0

1

2

3

4

5]0

χ∼)νl W(0χ∼)νl [W(→ ±χ∼ ±χ∼

+ ATLAS selectionT2M

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L. excl

0χ∼

= m±χ∼m

[GeV]±χ∼m

100 150 200 250 300 350

[GeV

]0 χ∼

m

0

50

100

150

200

250

300

σN

0

1

2

3

4

5]0

χ∼)νl W(0χ∼)νl [W(→ ±χ∼ ±χ∼

+ CMS selectionCTM

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L. excl

0χ∼

= m±χ∼m

[GeV]±χ∼m

100 150 200 250 300 350

[GeV

]0 χ∼

m

0

50

100

150

200

250

300

σN

0

1

2

3

4

5]0

χ∼)νl W(0χ∼)νl [W(→ ±χ∼ ±χ∼

+ CMS selection∆RM

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L. excl

0χ∼

= m±χ∼m

From

PRD

89,

055

020

(arX

iv:1

310.

4827

)

Christopher Rogan - University of Chicago HEP - March 9, 2015

Super-Razor Basis Selection

112

[GeV]±χ∼m

100 150 200 250 300 350

[GeV

]0 χ∼

m

0

50

100

150

200

250

300

σN

0

1

2

3

4

5]0

χ∼)νl W(0χ∼)νl [W(→ ±χ∼ ±χ∼

+ Razor selectionRθ cos × β

Rφ∆ × ∆

RM

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L. excl0χ∼

= m±χ∼m

[GeV]Ll~m

100 150 200 250 300 350 400 450

[GeV

]0 χ∼

m0

50

100

150

200

250

300

350

400

σN

0

1

2

3

4

50χ∼ l 0

χ∼ l → Ll~ Ll

~

+ Razor selectionRθ cos × β

Rφ∆ × ∆

RM

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L. excl0χ∼

= mLl~m

From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])

Christopher Rogan - University of Chicago HEP - March 9, 2015 113

Comparisons

[GeV]±χ∼ m150 200 250 300 350

σN

0

1

2

3

4

5 + ATLAS selectionT2M

+ ATLAS selection∆RM

Rθ cos × βRφ∆ × ∆RM

]0χ∼)νl[W(× 2→ ±χ∼ ±χ∼

= 100 GeV0χ∼ m

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L.

[GeV]±χ∼ m150 200 250 300 350

σN

0

1

2

3

4

5 + CMS selectionCTM

+ CMS selection∆RM

Rθ cos × βRφ∆ × ∆RM

]0χ∼)νl[W(× 2→ ±χ∼ ±χ∼

= 100 GeV0χ∼ m

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L.

[GeV]0χ∼ m

0 50 100 150 200

σN

0

1

2

3

4

5

6

7 + CMS selectionCTM

+ CMS selection∆RM

Rθ cos × βRφ∆ × ∆RM

]0χ∼)νl[W(× 2→ ±χ∼ ±χ∼

= 250 GeV±χ∼ m

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L.

[GeV]0χ∼ m

0 50 100 150 200

σN

0

1

2

3

4

5

6

7 + ATLAS selectionT2M

+ ATLAS selection∆RM

Rθ cos × βRφ∆ × ∆RM

]0χ∼)νl[W(× 2→ ±χ∼ ±χ∼

= 250 GeV±χ∼ m

-1 = 20 fbL dt ∫ = 8 TeV s MadGraph+PGS

95% C.L.

From

PRD

89,

055

020

(arX

iv:1

310.

4827

)