knots, tangles and magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf–...

19
14 xi 2014 Antony Jameson Knots, Tangles and Magnetoluminescence Roger Blandford KIPAC Stanford With Yajie Yuan, Jonathan McKinney, Sasha Tchekhovskoy, Jonathan Zrake, William East 1

Upload: others

Post on 09-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

14 xi 2014 Antony Jameson

Knots, Tangles and Magnetoluminescence

Roger BlandfordKIPAC

StanfordWith Yajie Yuan, Jonathan McKinney,

Sasha Tchekhovskoy, Jonathan Zrake, William East

1

Page 2: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

14 xi 2014 Antony Jameson 2

Hardy? Ramanujan?

Page 3: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

Pulsar Wind Nebulae

14 xi 2014 Antony Jameson

• eg Crab Pulsar/Nebula • Spinning Neutron Star

• 34 ms! • Polarized inner knot is shock • γ-ray flares from nebula • Eγ ~ 400 MeV -- only • ~5 PeV electrons • t ~ hrs; Rnebula ~ lt yrs!

3

Buehler et alFermi

Prostrating myself before your majesty, I hereby report that a guest star has appeared… (This) means that there is a person of great wisdom and virtue in the country. Yang Wei-ti 1054 AD

Page 4: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

14 xi 2014 Antony Jameson

Unipolar Induction

Ω

Φ

V ~ Ω Φ ∼ Εmax/e I ~ (V / Z0) Z0~100Ω P ~ V I ~ (V2/Z0)

EMF from spinning magnetized body

Sun – V ~ 100 MV, I~1 GA, P~100PW Crab – V~ 30 PV, I~300TA, P~ 1031 W

4

SpitkovskyPorth

Page 5: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

1 lt hr = 3 masLarmor radius= 60γ9B-7

-1mas

13 vi 2014 Bochum

W

SJ

TP

=10,000mas

• GeV Crab flares appear to be synchrotron radiation by PeV electrons in mG fields• Challenge to classical electrodynamics• Similar problems in other sources

Crab Flares

Maximum energy ~ α-1 me ~ 100 MeV if E ~ B 5Cool in 10o!

Page 6: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

Quasar Jets

14 xi 2014 Antony Jameson

P~0.1

6

3C273

• eg 3C 273 • 109 Mo Spinning Black Hole •  γ-rays from relativistic jet • Eγ ~ 15 GeV • t ~ 10hr, Rjet> 30 lt yr

Page 7: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

14 xi 2014 Antony Jameson

Unipolar Induction

Ω

ΦV ~ Ω Φ ∼ Εmax/e I ~ (V / Z0) Z0~100Ω P ~ V I ~ (V2/Z0)

EMF from spinning magnetized body

Sun – V ~ 100 MV, I~1 GA, P~100PW Crab – V~ 30 PV, I~300TA, P~ 1031 W AGN – V ~ 1 ZV, I ~ 10 EA, P~1040W GRB – V ~ 0.1 YV, I~1 ZA, P~1044W

7

Spinning Black Hole

3+1D GRMHD simulation McKinney

Page 8: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

14 xi 2014 Antony Jameson

Let there be Light

•  Faraday •  Maxwell •  Initial Condition •  Definition

∂B∂t

= −∇ × E

∂E∂t

=∇ × B − j

∇ ⋅ B = 0∇ ⋅ E = ρ

=>Maxwell Tensor, Poynting Flux€

∇2A = j

8

Page 9: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

14 xi 2014 Antony Jameson

Force-Free Condition

•  Ignore inertia of matter σ =UM/UP>>Γ2, 1 •  Electromagnetic stress acts on electromagnetic energy density

•  Fast and intermediate wave characteristics, evolutionary

ρE + j × B = 0⇒ E ⋅ B = E ⋅ j = 0

j =(∇⋅ E)E × B + (B⋅ ∇ × B − E ⋅ ∇ × E)B

B2

9

Page 10: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

Force-Free Electrodynamics in Black Hole Spacetime

•  F.J=0 !div TEM=0 –  Pair production necessary

•  Fµν;ν=Jµ

–  ξφ,t => Conserved F, G–  I(Φ), V(Φ), Ω(Φ)

•  Horizon boundary conditions –  EM finite for infalling observer

•  Energy outflow in non-rotating frame •  Energy inflow in rotating frame

14 xi 2014 Antony Jameson 10

Page 11: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

14 xi 2014 Antony Jameson

•  Relativistic Force-Free treatment –  No inertia

•  Relativistic MHD –  Maxwell + Inertia + Pressure

•  Collisionless plasma has anisotropic pressure tensor

•  Can connect to Drifting Orbit Representation •  P|| ~n2B-1; P+~nB1/2 … changes dynamics, stability, waves…•  Space, time, greater than gyro scales

MagnetoHydroDynamics

∇⋅ (TEM +TF ) = 0j =σ(E + v × B)

curvature magnetization gradient ExB gravity acceleration

11

Page 12: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

Knots and Tangles •  Knots - links

–  Reconnection to tie and untie–  Acceleration in a small volume–  Slow process, lower energy particles –  Shocks also accelerate

•  Tangles - braids, hitches… –  Sudden transition to lower energy state–  E > c B?; runaway acceleration –  Volumetric process –  Magnetic energy->electrons -> γ-rays –  Implosion, chain reaction?–  Small fraction of average power

14 xi 2014 12Antony Jameson

Alexander (1928): t+t-1-1 etc

Cerrutti

Only connect

Alexander the Great slices Gordian Knot(accompanied by electrical storm!)

Reconnection

Page 13: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

Knots and Tangles •  Knots - links

–  Reconnection to tie and untie–  Acceleration in a small volume–  Slow process, lower energy particles –  Shocks also accelerate

•  Tangles - braids, hitches… –  Sudden transition to lower energy state–  E > c B?; runaway acceleration –  Volumetric process –  Magnetic energy->electrons -> γ-rays –  Implosion, chain reaction?–  Small fraction of average power

14 xi 2014 13Antony Jameson

Alexander: t+t-1-1

Cerrutti

Only connect

Spheromak

“Hairy” magnetic rope

Page 14: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

Sonoluminescence

14 xi 2014 Antony Jameson 14

Rayleigh-Plesset equation

Cavitation -> implosion -> optical (x-ray??) flashes

Page 15: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

Magnetoluminescence •  Topology-preserving re-arrangement of magnetic tangle

•  Rapid dissipation of electromagnetic energy •  Relativistic conditions •  Efficient, volumetric particle acceleration of TeV, PeV electrons, positrons

•  Prompt synchrotron emission of γ-rays •  Current carried by emitting particles •  Pressure loss->non-spherical implosion?

14 xi 2014 Antony Jameson 15

Page 16: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

Force-Free Equilibria •  B ~ A ~ j -> Helmholtz equation •  Spheromak solutions

•  n, l, m, s!•  Two phases

•  Magnetic ropes, confined to nested surfaces•  Chaotic field

•  Connect structural stability to microphysics?

13 vi 2014 Bochum 16

Yuan

Page 17: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

Permitted Transition?

14 xi 2014 Antony Jameson 17

Exploring these and other models with RMHD and RFFcodes to understand nonlinear evolution

Page 18: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

Summary •  New mechanisms needed to account for most dramatic gamma ray flares

•  Associated with spinning, magnetized compact objects

•  Dissipation of electromagnetic energy •  Steady emission - relativistic reconnection •  Flares – untangling flux tubes? •  Interesting applied math, computing

14 xi 2014 Antony Jameson 18

Happy Birthday!

Page 19: Knots, Tangles and Magnetoluminescenceaero-comlab.stanford.edu/jameson/aj80th/blandford_v2.pdf– Small fraction of average power 14 xi 2014 Antony Jameson 12 Alexander (1928): t+t-1-1

`

14 xi 2014 Antony Jameson 19