knotted 3-valent graphs, branched braids, and ...ildt/2014/slides14/lebed.pdfknotted alent 3-v...

69

Upload: others

Post on 19-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Knotted 3-Valent Graphs, Bran hed Braids,

and Multipli ation-Conjugation Relations in a Group

Vi toria LEBED

OCAMI, Osaka

Intelligen e of Low-dimensional Topology

Kyoto, May 21-23, 2014

Based on:

✎ Qualgebras and Knotted 3-Valent Graphs, ArXiv, 2014

✎ (With S. Kamada) Alexander and Markov Theorems for Graph-Braids,

in progress

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 1 / 24

Page 2: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Part 1:How a Knot T heorist

Would Invent Qualgebras

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 2 / 24

Page 3: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Quandle olorings

Quandle olorings of knots

a b

b a�b

olorings

by (S ,�)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 3 / 24

Page 4: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Quandle olorings

Quandle olorings of knots

a b

b a�b

olorings

by (S ,�)

a

b

b�

(a�b)�

a

b

RIII←→

a

b

b�

(a� )�(b� )

a

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 3 / 24

Page 5: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Quandle olorings

Quandle olorings of knots

a b

b a�b

olorings

by (S ,�)

a

b

b�

(a�b)�

a

b

RIII←→

a

b

b�

(a� )�(b� )

a

RIII ↔ (a�b)� = (a� )� (b� ) (SD)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 3 / 24

Page 6: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Quandle olorings

Quandle olorings of knots

a b

b a�b

olorings

by (S ,�)

a

b

b�

(a�b)�

a

b

RIII←→

a

b

b�

(a� )�(b� )

a

RIII ↔ (a�b)� = (a� )� (b� ) (SD)

RII ↔ a 7→ a�b is invertible (Inv)

RI ↔ a�a= a (Idem)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 3 / 24

Page 7: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Quandle olorings

Quandle olorings of knots

a b

b a�b

olorings

by (S ,�)

a

b

b�

(a�b)�

a

b

RIII←→

a

b

b�

(a� )�(b� )

a

RIII ↔ (a�b)� = (a� )� (b� ) (SD)

RII ↔ a 7→ a�b is invertible (Inv)

RI ↔ a�a= a (Idem)

Quandle

(1982 D. Joy e,

S. Matveev)

Example

Group G ;

Conj(G )= (G , g �h= h

−1gh).

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 3 / 24

Page 8: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Quandle olorings

Quandle olorings of knots

a b

b a�b

olorings

by (S ,�)

a

b

b�

(a�b)�

a

b

RIII←→

a

b

b�

(a� )�(b� )

a

RIII ↔ (a�b)� = (a� )� (b� ) (SD)

RII ↔ a 7→ a�b is invertible (Inv)

RI ↔ a�a= a (Idem)

Quandle

(1982 D. Joy e,

S. Matveev)

knot invariants

olorings

; quandle

Example

Group G ;

Conj(G )= (G , g �h= h

−1gh).

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 3 / 24

Page 9: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Quandle olorings

Quandle olorings of knots

a b

b b

−1ab

olorings

by Conj(G )

p

α

θα

Wirtinger

presentation:

olorings by Conj(G )

l

Rep(π1

(R3\K ),G )

RIII ↔ (a�b)� = (a� )� (b� ) (SD)

RII ↔ a 7→ a�b is invertible (Inv)

RI ↔ a�a= a (Idem)

Quandle

(1982 D. Joy e,

S. Matveev)

knot invariants

olorings

; quandle

Example

Group G ;

Conj(G )= (G , g �h= h

−1gh).

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 3 / 24

Page 10: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Knotted 3-valent graphs

Standard and Kinoshita-Terasaka Θ- urves:

Θst

ΘKT

Appli ations:

❀ handlebody-knots;

❀ foams ( ategori� ation, 3-manifolds).

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 4 / 24

Page 11: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Reidemeister moves for 3-graphs

1989 L.H. Kau�man, S. Yamada, D.N. Yetter:

RIV←→

RVI←→

RV←→

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 5 / 24

Page 12: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Extending quandle olorings to 3-graphs?

❀a

b

G is a group;

a

±1b

±1

±1 = 1

generalizations:

G -family of quandles (2012

Ishii-Iwakiri-Jang-Oshiro),

multiple onjugation quandle

(2013 A. Ishii)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 6 / 24

Page 13: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Extending quandle olorings to 3-graphs?

❀a

b

G is a group;

a

±1b

±1

±1 = 1

generalizations:

G -family of quandles (2012

Ishii-Iwakiri-Jang-Oshiro),

multiple onjugation quandle

(2013 A. Ishii)

❀a

±1a

±1

a

±1G is a group;

a

3 = 1

a vertex onstant version

of π1

(R3\Γ)(1995 C. Livingston)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 6 / 24

Page 14: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Extending quandle olorings to 3-graphs?

❀a

b

G is a group;

a

±1b

±1

±1 = 1

generalizations:

G -family of quandles (2012

Ishii-Iwakiri-Jang-Oshiro),

multiple onjugation quandle

(2013 A. Ishii)

❀a

±1a

±1

a

±1G is a group;

a

3 = 1

a vertex onstant version

of π1

(R3\Γ)(1995 C. Livingston)

❀a

±1a

±1

a

±1S is a symmetri quandle;

∀x , ((x �a)�a)�a= x

(2007

Fleming-Mellor)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 6 / 24

Page 15: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Extending quandle olorings to 3-graphs?

❀a

b

G is a group;

a

±1b

±1

±1 = 1

generalizations:

G -family of quandles (2012

Ishii-Iwakiri-Jang-Oshiro),

multiple onjugation quandle

(2013 A. Ishii)

❀a

±1a

±1

a

±1G is a group;

a

3 = 1

a vertex onstant version

of π1

(R3\Γ)(1995 C. Livingston)

❀a

±1a

±1

a

±1S is a symmetri quandle;

∀x , ((x �a)�a)�a= x

(2007

Fleming-Mellor)

❀a

b

S is a quandle;

∀x , ((x �±1

a)�±1b)�±1

= x

(2010

M. Niebrzy-

dowski)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 6 / 24

Page 16: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Orientation

Well-oriented 3-graphs: only zip and unzip verti es.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 7 / 24

Page 17: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Orientation

Well-oriented 3-graphs: only zip and unzip verti es.

Proposition: Every 3-graph admits a well-orientation.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 7 / 24

Page 18: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Orientation

Well-oriented 3-graphs: only zip and unzip verti es.

Proposition: Every 3-graph admits a well-orientation.

Unoriented 3-graph 7−→ { its well-orientations }.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 7 / 24

Page 19: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Qualgebra olorings for 3-graphs

a b

b a�b

olorings

by (S ,�,∗)

a b

a∗b

a∗b

bab b

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 8 / 24

Page 20: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Qualgebra olorings for 3-graphs

a b

b a�b

olorings

by (S ,�,∗)

a b

a∗b

a∗b

bab b

a

b

b∗

b∗

a� (b∗ )

RIVz

←→

a

b

b∗ (a�b)�

a�b

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 8 / 24

Page 21: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Qualgebra olorings for 3-graphs

a b

b a�b

olorings

by (S ,�,∗)

a b

a∗b

a∗b

bab b

a

b

b∗

b∗

a� (b∗ )

RIVz

←→

a

b

b∗ (a�b)�

a�b

RIV ↔ a� (b∗ )= (a�b)�

RVI ↔ (a∗b)� = (a∗ )� (b∗ )RV ↔ a∗b = b∗ (a�b)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 8 / 24

Page 22: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Qualgebra olorings for 3-graphs

a b

b a�b

olorings

by (S ,�,∗)

a b

a∗b

a∗b

bab b

a

b

b∗

b∗

a� (b∗ )

RIVz

←→

a

b

b∗ (a�b)�

a�b

RIV ↔ a� (b∗ )= (a�b)�

RVI ↔ (a∗b)� = (a∗ )� (b∗ )RV ↔ a∗b = b∗ (a�b)

& (SD),

(Inv),

(Idem)

Qualgebra

Quandle

Algebra

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 8 / 24

Page 23: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Qualgebra olorings for 3-graphs

a b

b a�b

olorings

by (S ,�,∗)

a b

a∗b

a∗b

bab b

a

b

b∗

b∗

a� (b∗ )

RIVz

←→

a

b

b∗ (a�b)�

a�b

RIV ↔ a� (b∗ )= (a�b)�

RVI ↔ (a∗b)� = (a∗ )� (b∗ )RV ↔ a∗b = b∗ (a�b)

& (SD),

(Inv),

(Idem)

Qualgebra

Quandle

Algebra

3-graph invariants

olorings

; qualgebra

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 8 / 24

Page 24: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Computation example

Isos eles olorings:

a a

a∗a a a

a∗a

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 9 / 24

Page 25: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Computation example

Isos eles olorings:

a a

a∗a a a

a∗a

x x x ∗x

Θst

x

x

x ∗x

y ∗y y

y

a

b

ΘKT

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 9 / 24

Page 26: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Computation example

x x x ∗x

Θst

x

x

x ∗x

y ∗y y

y

a

b

ΘKT

(⋆)

a = x � (y ∗y)= y �x ,

b = x�̃y = y�̃(x ∗x),

= (y ∗y)�x = (x ∗x)�̃y .

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 9 / 24

Page 27: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Computation example

x x x ∗x

Θst

x

x

x ∗x

y ∗y y

y

a

b

ΘKT

(⋆)

a = x � (y ∗y)= y �x ,

b = x�̃y = y�̃(x ∗x),

= (y ∗y)�x = (x ∗x)�̃y .

Qualgebra (S4

, g �h= h

−1gh, g ∗h= gh) ; (⋆) ⇔ xyx = yxy .

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 9 / 24

Page 28: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebra olorings

Computation example

x x x ∗x

Θst

x

x

x ∗x

y ∗y y

y

a

b

ΘKT

(⋆)

a = x � (y ∗y)= y �x ,

b = x�̃y = y�̃(x ∗x),

= (y ∗y)�x = (x ∗x)�̃y .

Qualgebra (S4

, g �h= h

−1gh, g ∗h= gh) ; (⋆) ⇔ xyx = yxy .

Solutions: x = y and x = (123),y = (432) and...So, #C iso

S

4

(ΘKT

)>#S

4

=#C iso

S

4

(Θst

).

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 9 / 24

Page 29: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebras and groups

Part 2:How an Algebraist

Would Invent Qualgebras

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 10 / 24

Page 30: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebras and groups

Group qualgebras

Example 1

Group G ; group qualgebra QA(G )= (G , g �h= h

−1gh, g ∗h= gh).

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 11 / 24

Page 31: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebras and groups

Group qualgebras

Example 1

Group G ; group qualgebra QA(G )= (G , g �h= h

−1gh, g ∗h= gh).

QA(G )- oloringsWirtinger

←−−−−−−→presentation

Rep(π1

(R3\Γ),G )

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 11 / 24

Page 32: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebras and groups

Group qualgebras

Example 1

Group G ; group qualgebra QA(G )= (G , g �h= h

−1gh, g ∗h= gh).

QA(G )- oloringsWirtinger

←−−−−−−→presentation

Rep(π1

(R3\Γ),G )

abstra t level quandle axioms spe i� qualgebra axioms

topology moves RI-RIII moves RIV-RVI

groups onjugation onjugation-multipli ation intera tion

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 11 / 24

Page 33: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebras and groups

Group qualgebras

Example 1

Group G ; group qualgebra QA(G )= (G , g �h= h

−1gh, g ∗h= gh).

QA(G )- oloringsWirtinger

←−−−−−−→presentation

Rep(π1

(R3\Γ),G )

abstra t level quandle axioms spe i� qualgebra axioms

topology moves RI-RIII moves RIV-RVI

groups onjugation onjugation-multipli ation intera tion

B Quandle axioms ⇒ all properties of onjugation.

B Qualgebra axioms ; all properties of onjugation/multipli ation

intera tion.

(b�a)∗ (a�b)= ((a�̃b)�a)∗b

(= a

−1bab

−1ab)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 11 / 24

Page 34: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebras and groups

Other qualgebra examples

Example 1

Group G ; group qualgebra QA(G )= (G , g �h= h

−1gh, g ∗h= gh).

Example 1'

Group G & X ⊂G ; the sub-qualgebra of QA(G ) generated by X .

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 12 / 24

Page 35: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebras and groups

Other qualgebra examples

Example 1

Group G ; group qualgebra QA(G )= (G , g �h= h

−1gh, g ∗h= gh).

Example 1'

Group G & X ⊂G ; the sub-qualgebra of QA(G ) generated by X .

Example 0

Trivial qualgebra (S , a�b = a, a∗b), where ∗ is ommutative.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 12 / 24

Page 36: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebras and groups

Other qualgebra examples

Example 1

Group G ; group qualgebra QA(G )= (G , g �h= h

−1gh, g ∗h= gh).

Example 1'

Group G & X ⊂G ; the sub-qualgebra of QA(G ) generated by X .

Example 0

Trivial qualgebra (S , a�b = a, a∗b), where ∗ is ommutative.

; abstra t graph invariants

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 12 / 24

Page 37: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebras and groups

�Qualgebrability�

Existen e

Dihedral quandle (Z/nZ, a�b = 2b−a) is not �qualgebrizable�:

(a�b)� = 2 −2b+a

a� (b∗ )= 2(b∗ )−a

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 13 / 24

Page 38: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Qualgebras and groups

�Qualgebrability�

Existen e

Dihedral quandle (Z/nZ, a�b = 2b−a) is not �qualgebrizable�:

(a�b)� = 2 −2b+a

a� (b∗ )= 2(b∗ )−a

Uniqueness

QA(S3

) is the unique �qualgebraization� of Conj(S3

).

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 13 / 24

Page 39: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Classi� ation

Small examples

Example 4

Non-trivial qualgebra stru tures on Q = {p,q,r ,s}?

Des ription: put p = q,q = p,r = r ,s = s;

x � r = x , x �y = x for other y ;

∗ is ommutative,

r ∗x = r for x 6= r , r ∗ r = s ∗ s = s ,

p∗q = s , p∗p = q∗q ∈ {p,q,s},

p∗ s = q∗ s ∈ {p,q,s}.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 14 / 24

Page 40: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Classi� ation

Small examples

Example 4

Non-trivial qualgebra stru tures on Q = {p,q,r ,s}?

Des ription: put p = q,q = p,r = r ,s = s;

x � r = x , x �y = x for other y ;

∗ is ommutative, ; 9 stru tures.

r ∗x = r for x 6= r , r ∗ r = s ∗ s = s ,

p∗q = s , p∗p = q∗q ∈ {p,q,s},

p∗ s = q∗ s ∈ {p,q,s}.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 14 / 24

Page 41: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Classi� ation

Small examples

Example 4

Non-trivial qualgebra stru tures on Q = {p,q,r ,s}?

Des ription: put p = q,q = p,r = r ,s = s;

x � r = x , x �y = x for other y ;

∗ is ommutative, ; 9 stru tures.

r ∗x = r for x 6= r , r ∗ r = s ∗ s = s ,

p∗q = s , p∗p = q∗q ∈ {p,q,s},

p∗ s = q∗ s ∈ {p,q,s}.

❀ Not an ellative ⇒ do not ome from groups.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 14 / 24

Page 42: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Classi� ation

Small examples

Example 4

Non-trivial qualgebra stru tures on Q = {p,q,r ,s}?

Des ription: put p = q,q = p,r = r ,s = s;

x � r = x , x �y = x for other y ;

∗ is ommutative, ; 9 stru tures.

r ∗x = r for x 6= r , r ∗ r = s ∗ s = s ,

p∗q = s , p∗p = q∗q ∈ {p,q,s},

p∗ s = q∗ s ∈ {p,q,s}.

❀ Not an ellative ⇒ do not ome from groups.

❀ Two are asso iative, three have neutral elements, none are unital

asso iative.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 14 / 24

Page 43: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Classi� ation

Computation example

Standard and Hopf u� graphs:

a

b

C

st

a

b

a

′C

H

#CQ

(Cst

)=#{(a,b, ) ∈Q |b∗a= a, b∗ = } = 18,

#CQ

(CH

)=#{(a,b, ) ∈Q |b∗a= a� , b∗ = �a} = 14.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 15 / 24

Page 44: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Symmetri qualgebras

Part 3:Variations onQualgebra Ideas

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 16 / 24

Page 45: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Symmetri qualgebras

Symmetri qualgebras and orientation independen e

Problem: Qualgebra invariants depend on orientations.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 17 / 24

Page 46: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Symmetri qualgebras

Symmetri qualgebras and orientation independen e

Problem: Qualgebra invariants depend on orientations.

Solution: a good involution ρ : S → S .

a ρ(a)←→

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 17 / 24

Page 47: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Symmetri qualgebras

Symmetri qualgebras and orientation independen e

Problem: Qualgebra invariants depend on orientations.

Solution: a good involution ρ : S → S .

a ρ(a)←→

ρ(ρ(a))= a

ρ(a)�b = ρ(a�b)a�ρ(b)= a�̃b

(a∗b)∗ρ(b)=ρ(b)∗ (b∗a)= a

Symmetri

quandle

(1996

S. Kamada)

Symmetri

qualgebra

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 17 / 24

Page 48: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Symmetri qualgebras

Symmetri qualgebras and orientation independen e

Problem: Qualgebra invariants depend on orientations.

Solution: a good involution ρ : S → S .

a ρ(a)←→

ρ(ρ(a))= a

ρ(a)�b = ρ(a�b)a�ρ(b)= a�̃b

(a∗b)∗ρ(b)=ρ(b)∗ (b∗a)= a

Symmetri

quandle

(1996

S. Kamada)

Symmetri

qualgebra

Example

Group G ; QA

∗(G )= (G , g �h= h

−1gh, g ∗h= h, ρ(h)= h

−1).

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 17 / 24

Page 49: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Symmetri qualgebras

Symmetri qualgebras and orientation independen e

Problem: Qualgebra invariants depend on orientations.

Solution: a good involution ρ : S → S .

a ρ(a)←→

ρ(ρ(a))= a

ρ(a)�b = ρ(a�b)a�ρ(b)= a�̃b

(a∗b)∗ρ(b)=ρ(b)∗ (b∗a)= a

Symmetri

quandle

(1996

S. Kamada)

Symmetri

qualgebra

Example

Group G ; QA

∗(G )= (G , g �h= h

−1gh, g ∗h= h, ρ(h)= h

−1).

abstra t level spe i� symmetri qualgebra axioms

topology unoriented 3-graphs

groups onjugation- and multipli ation-inversion intera tion

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 17 / 24

Page 50: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Symmetri qualgebras

Symmetri qualgebras: examples

ρ(ρ(a))= a

ρ(a)�b = ρ(a�b)a�ρ(b)= a�̃b

(a∗b)∗ρ(b)=ρ(b)∗ (b∗a)= a

Properties

❀ ∀b, maps a 7→ a∗b and a 7→ b∗a

are bije tions. ; pseudo-sudoku

❀ Symmetri qualgebras with

asso iative ∗ ←→ groups.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 18 / 24

Page 51: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Symmetri qualgebras

Symmetri qualgebras: examples

ρ(ρ(a))= a

ρ(a)�b = ρ(a�b)a�ρ(b)= a�̃b

(a∗b)∗ρ(b)=ρ(b)∗ (b∗a)= a

Properties

❀ ∀b, maps a 7→ a∗b and a 7→ b∗a

are bije tions. ; pseudo-sudoku

❀ Symmetri qualgebras with

asso iative ∗ ←→ groups.

Example 3

S = {x ,y ,z }, a�b = a, ∗ is ommutative.

∗ x y z

x x y z

y y z x

z z x y

ρ x z y

Z/3Z

∗ x y z

x x z y

y z y x

z y x z

ρ x y z

∗ x y z

x y x z

y x z y

z z y x

ρ x y z

not groups

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 18 / 24

Page 52: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Symmetri qualgebras

Symmetri qualgebras: examples

Example 3

S = {x ,y ,z }, a�b = a, ∗ is ommutative.

∗ x y z

x x y z

y y z x

z z x y

ρ x z y

Z/3Z

∗ x y z

x x z y

y z y x

z y x z

ρ x y z

∗ x y z

x y x z

y x z y

z z y x

ρ x y z

not groups

Example 4

❀ Non-trivial qualgebras of size 4 are not symmetri .

❀ Trivial qualgebras: QA

∗(Z/4Z), QA∗(Z/2Z×Z/2Z), and two

non-asso iative ones.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 18 / 24

Page 53: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Bran hed braids

Alexander-Markov theorem

losure

Theorem (Alexander, 1923; Markov, 1935)

❀ Surje tivity.

❀ Kernel: moves M1 and M2.

B

B

M1

←→B

B

B

M2

←→B

M2

←→B

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 19 / 24

Page 54: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Bran hed braids

Bran hed Alexander-Markov theorem

Bran hed

braids

losure

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 20 / 24

Page 55: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Bran hed braids

Bran hed Alexander-Markov theorem

Bran hed

braids

losure

Theorem (S. Kamada - L., 2014)

❀ Surje tivity.

❀ Kernel: moves M1 and M2.

B

B

M1

←→B

B

B

M2

←→B

M2

←→B

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 20 / 24

Page 56: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Bran hed braids

Bran hed Alexander-Markov theorem

bran hed braids

losure

−→ 3-graphs

Theorem (S. Kamada - L., 2014)

❀ Surje tivity.

❀ Kernel: moves M1 and M2.

Generalizations

❀ Graph-braids (verti es of arbitrary valen e).

❀ Virtual and welded versions.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 20 / 24

Page 57: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Bran hed braids

Bran hed Alexander-Markov theorem

bran hed braids

losure

−→ 3-graphs

Theorem (S. Kamada - L., 2014)

❀ Surje tivity.

❀ Kernel: moves M1 and M2.

Generalizations

❀ Graph-braids (verti es of arbitrary valen e).

❀ Virtual and welded versions.

bran hed braid invariants

olorings

; weak qualgebra

(omit a�a= a)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 20 / 24

Page 58: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Co y le invariants

Qualgebra o y le invariants for 3-graphs

a b

b a�b

7→χ(a,b)

b

a�b

bab b

7→ −χ(a,b)

a∗b

bab b

7→λ(a,b)

a b

a∗b

7→ −λ(a,b)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 21 / 24

Page 59: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Co y le invariants

Qualgebra o y le invariants for 3-graphs

a b

b a�b

7→χ(a,b)

b

a�b

bab b

7→ −χ(a,b)

a∗b

bab b

7→λ(a,b)

a b

a∗b

7→ −λ(a,b)

a

b

a∗b

(a∗b)�

−λ(a,b)

χ(a∗b, )

RVIz

←→

a

b

(a� )∗ (b� )

b�

a

� −λ(a� ,b� )

χ(b, )

χ(a, )

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 21 / 24

Page 60: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Co y le invariants

Qualgebra o y le invariants for 3-graphs

a b

b a�b

7→χ(a,b)

b

a�b

bab b

7→ −χ(a,b)

a∗b

bab b

7→λ(a,b)

a b

a∗b

7→ −λ(a,b)

a

b

a∗b

(a∗b)�

−λ(a,b)

χ(a∗b, )

RVIz

←→

a

b

(a� )∗ (b� )

b�

a

� −λ(a� ,b� )

χ(b, )

χ(a, )

RIV ↔ χ(a,b∗ )=χ(a,b)+χ(a�b, )RVI ↔ χ(a∗b, )+λ(a� ,b� ) =χ(a, )+χ(b, )+λ(a,b)RV ↔ χ(a,b)+λ(a,b) =λ(b,a�b)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 21 / 24

Page 61: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Co y le invariants

Qualgebra o y le invariants for 3-graphs

a b

b a�b

7→χ(a,b)

b

a�b

bab b

7→ −χ(a,b)

a∗b

bab b

7→λ(a,b)

a b

a∗b

7→ −λ(a,b)

a

b

a∗b

(a∗b)�

−λ(a,b)

χ(a∗b, )

RVIz

←→

a

b

(a� )∗ (b� )

b�

a

� −λ(a� ,b� )

χ(b, )

χ(a, )

RIV ↔ χ(a,b∗ )=χ(a,b)+χ(a�b, )RVI ↔ χ(a∗b, )+λ(a� ,b� ) =χ(a, )+χ(b, )+λ(a,b)RV ↔ χ(a,b)+λ(a,b) =λ(b,a�b)

Qualgebra

2- o y le

RI-RIII are automati .

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 21 / 24

Page 62: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Co y le invariants

Qualgebra o y le invariants for 3-graphs

a b

b a�b

7→χ(a,b)

b

a�b

bab b

7→ −χ(a,b)

a∗b

bab b

7→λ(a,b)

a b

a∗b

7→ −λ(a,b)

RIV ↔ χ(a,b∗ )=χ(a,b)+χ(a�b, )RVI ↔ χ(a∗b, )+λ(a� ,b� ) =χ(a, )+χ(b, )+λ(a,b)RV ↔ χ(a,b)+λ(a,b) =λ(b,a�b)

Qualgebra

2- o y le

RI-RIII are automati .

3-graph invariants

olorings

;weights

qualgebra & 2- or 3- o y le

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 21 / 24

Page 63: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Co y le invariants

Qualgebra o y les: example

Example 4

Q = {p,q,r ,s} x � r = x , x �y = x for other y ;

∗ is ommutative,

r ∗x = r for x 6= r , r ∗ r = s ∗ s = s ,

p∗p = q∗q ∈ {p,q,s}, p∗q = s ,

p∗ s = q∗ s ∈ {p,q,s}.

❀ Z

2(Q)∼=Z8

❀ B

2(Q)∼=Z4

❀ H

2(Q)∼=Z/2Z⊕Z4

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 22 / 24

Page 64: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Co y le invariants

Qualgebra o y le invariants: diverse questions

Qualgebra 2- oboundaries :

φ :S →Z; χ(a,b)=φ(a�b)−φ(a), ; trivial

λ(a,b)=φ(a)+φ(b)−φ(a∗b) invariants

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 23 / 24

Page 65: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Co y le invariants

Qualgebra o y le invariants: diverse questions

Qualgebra 2- oboundaries :

φ :S →Z; χ(a,b)=φ(a�b)−φ(a), ; trivial

λ(a,b)=φ(a)+φ(b)−φ(a∗b) invariants

Question: De�ne and study qualgebra homology in higher degrees?

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 23 / 24

Page 66: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Co y le invariants

Qualgebra o y le invariants: diverse questions

Qualgebra 2- oboundaries :

φ :S →Z; χ(a,b)=φ(a�b)−φ(a), ; trivial

λ(a,b)=φ(a)+φ(b)−φ(a∗b) invariants

Question: De�ne and study qualgebra homology in higher degrees?

Solution: for rigid qualgebras (←→ rigid 3-graphs).

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 23 / 24

Page 67: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Co y le invariants

Qualgebra o y le invariants: diverse questions

Qualgebra 2- oboundaries :

φ :S →Z; χ(a,b)=φ(a�b)−φ(a), ; trivial

λ(a,b)=φ(a)+φ(b)−φ(a∗b) invariants

Question: De�ne and study qualgebra homology in higher degrees?

Solution: for rigid qualgebras (←→ rigid 3-graphs).

Enhan ements

❀ Region oloring and shadow o y le invariants.

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 23 / 24

Page 68: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo

Co y le invariants

Qualgebra o y le invariants: diverse questions

Qualgebra 2- oboundaries :

φ :S →Z; χ(a,b)=φ(a�b)−φ(a), ; trivial

λ(a,b)=φ(a)+φ(b)−φ(a∗b) invariants

Question: De�ne and study qualgebra homology in higher degrees?

Solution: for rigid qualgebras (←→ rigid 3-graphs).

Enhan ements

❀ Region oloring and shadow o y le invariants.

❀ Distinguish zip- and unzip-verti es:

a∗b

a

b

7→λ(a,b)

a b

a∗b

7→λ(a,b)

Vi toria LEBED (OCAMI, Osaka) Qualgebras and 3-Graphs ILDT2014 23 / 24

Page 69: Knotted 3-Valent Graphs, Branched Braids, and ...ildt/2014/slides14/lebed.pdfKnotted alent 3-V Graphs, Branched Braids, and Multiplication-Conjugation Relations in a Group ria Victo