ku 52nd geotechnical engineering conference: designs ......aashto lrfd bridge design specifications,...

14
11/23/2020 1 KU 52nd Geotechnical Engineering Conference: Designs Updates for Mechanically Stabilized Earth Walls in 2020 AASHTO Daniel Alzamora, P.E. FHWA – Resource Center Senior Geotechnical Engineer November 12, 2020 Updating Designs for Mechanically Stabilized Earth Walls in AASHTO Changes to How Overall (slope) Stability is Addressed AASHTO LRFD Bridge Design Specifications, 9 th Edition, 2020

Upload: others

Post on 22-Aug-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

1

KU 52nd Geotechnical Engineering Conference: Designs Updates for Mechanically Stabilized Earth Walls in 2020 AASHTO

Daniel Alzamora, P.E.FHWA – Resource CenterSenior Geotechnical Engineer

November 12, 2020

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Changes to How Overall (slope) Stability is AddressedAASHTO LRFD Bridge Design Specifications, 9th Edition, 2020

Page 2: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

2

Changes to How Overall (slope) Stability is Addressed

Summary of What is Required in the LRFD Specifications (2003 – 2018)

• Consider FS output by slope stability design programs to be a resistance factor

• = 1/FS = 1/1.3  0.75 (geotech. parameters well defined, does not support structural element)

• = 1/FS = 1/1.5  0.65 (geotech. parameters not well defined, or supports structural element)

• The analysis is based on Service I limit state• Focus of overall stability is on the soil shear strength needed for stability versus the soil shear strength 

available (i.e., Fv = Fh = 0, Mc = 0) • This resistance factor  for overall stability is combined with an overall stability load factor (p, i.e., EV) of 1.0 

(Table 3.4.1‐2) 

• All other loads, including transient loads, have a load factor of 1.0

• Therefore, external loads such as loads due to foundations are essentially unfactored

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Solution Reflected in New Specifications

• Move overall stability into the strength limit state, as overall stability is a collapse, not deformation, scenario 

• Consider FS output by slope stability design programs to be the reciprocal resistance factor. This is not a change other than what is shown below.

• = 1/FS = 1/1.3  0.75 (geotech. parameters well defined, does not support structural element)

• = 1/FS = 1/1.5  0.65 (geotech. parameters not well defined, or supports structural element)

• Continue to use p (i.e., EV) for overall stability equal to 1.0• Use standard load factors for Strength I if have foundation load on top of slope 

• For example, for Strength I, load group is EV = 1.0 for soil loading, DC = 1.25 for foundation dead load, LL = 1.75 for live load acting on foundation, etc.

• For soil resistance,  = 1/FS = 1/1.3  0.75 whether or not slope supports external loads such as a foundation (i.e., rather than decreasing  to 0.65 if foundation load is present), since foundation loads will now be factored using Strength I values

Changes to How Overall (slope) Stability is Addressed

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Page 3: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

3

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Changes to How Tmax is calculated AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020

Collaborative effort 

Stiffness Method

• Tony Allen, Washington DOT

• Richard Bathurst, GeoEngineering Centre at Queen's‐RMC

Limit Equilibrium

• Dov Leshchinsky, University of Delaware

Page 4: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

4

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Why add new design methods?

• The Simplified Method has not been good at predicting reinforcement loads as compared to measured loads, particularly for extensible reinforcements.

• Goal of the changes are to update and improve the requirements for internal stability design of MSE walls.

Allen, T.M. and Bathurst, R.J. (2015). Improved simplified method for prediction of loads in reinforced soil walls. ASCE Journal of Geotechnical and Geoenvironmental Engineering 141(11): 04015049.

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

How did we get here?

• AASHTO T15/FHWA MSE Task Force• Started 2012 – one focus area was MSE internal stability• Composed of MSE leaders in academia, consulting, and the industry• Assessed best path forward (limit equilibrium, and new stiffness method)• Recommended research needed and eventual adoption

• AASHTO T15 and COBS• Beginning in 2014, continued this assessment• Used formal AASHTO COBS process through T15 mid‐yr meetings, the annual AASHTO COBS meetings, and e‐mail

• Final decision: • adopt the Stiffness Method for geosynthetic walls• allow the continued use of the Simplified Method• Use limit equilibrium for situations that are beyond empirical basis for the other methods, and for compound stability

• Adopted in the AASHTO LRFD Specifications as the “Stiffness Method” in 2019 (published 3‐2020)

Page 5: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

5

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Changes to MSE wall design

Change in Tmax calculation

• Existing methods• Simplified Method• Coherent Gravity Method (inextensible Reinforcement)

• New methods• Stiffness Method• Limit Equilibrium • These methods are limited in AASHTO to extensible reinforcements only

Change in Overall Stability Calculation

• Service limit vs strength limit 

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

What is Tmax?

Z

Sv

Reinforced FillUnit weight (γ)Friction angle (ф)Active earth Pressure (ka)

σv

Tmax is the force acting on the MSE reinforcement at any given depth.

Tmax is a function of the:• vertical stress• strength of the soil• spacing of the reinforcement• Reinforcement stiffness• Facing

Tmax

Source: FHWA

Page 6: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

6

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Simplified Method

VHMAX SσT

SV is vertical reinforcement spacing, for equally spaced reinforcements

VaH σ)/(Kσ ar KKZ

Sv

Reinforced FillUnit weight (γ)Friction angle (ф)Active earth Pressure (ka)

σv

...... Zγσ rV

Source: FHWA

Source: FHWA NHI‐10‐024 

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Coherent Gravity Method

VHMAX SσT

SV is vertical reinforcement spacing, for equally spaced reinforcements

VaH σ)/(Kσ KaKr)2/(σV eLW

Source: FHWA

Z

Sv

Reinforced FillUnit weight (γ)Friction angle (ф)Active earth Pressure (ka)

σv pa

We

L

ZrγW

Source: AASHTO LRFD Bridge Design Specifications

Page 7: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

7

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

New Methods to calculate Tmax

2020 AASHTO – Incorporates the use of these new design methods for extensible reinforcements.

• Limit Equilibrium

• Stiffness Method

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Stiffness Method ‐

• Allen, T.M. and Bathurst, R.J. 2015. An improved simplified method for prediction of loads in reinforced soil walls. Journal of Geotechnical and Geoenvironmental Engineering 141(11): 752 04015049.

• Allen, T.M. and Bathurst, R.J. 2018. Application of the simplified stiffness method to design of reinforced soil walls. Journal of Geotechnical and Geoenvironmental Engineering 144(5):756 04018024.

Page 8: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

8

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Stiffness Method

Z

Sv

Reinforced FillUnit weight (γ)Friction angle (ф)Active earth Pressure (ka)

σv

Source: FHWA

Tmax = SV [γr H Dtmax + γf (Href/H)S] Kavh Φfb Φg Φfs Φlocal Φc

Φ are empirically determined factors that capture the effect of reinforcement, cohesion, and wall geometry have on Tmax

Tmax = SV σH

σH = σV [Kavh Φfb Φg Φfs Φlocal Φc]   [σV Ka  (Kr/Ka)]  for simplified

σV =  [γr H Dtmax + γf(Href/H)S]   [γr Z  + γf hs] for simplified

• Dtmax is the Tmax distribution factor• Href is the reference wall height of 20 ft

Source: AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Soil Failure Limit State:• Working stress conditions may not apply if

there is a contiguous failure surface through the reinforced soil zone.

• As specified in AASHTO (2020), keep factored peak reinforcement strains in wall < 2% for stiff faced walls, and <2.5% for flexible faced walls, to maintain (soil) working stress conditions.

• These target maximum strains are 0.5% strain more conservative than recommended in the Allen and Bathurst (2018) ASCE paper.

Source: AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020

Page 9: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

9

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Source:Allen, T.M. and Bathurst, R.J. (2015). Improved simplified method for prediction of loads in reinforced soil walls. ASCE Journal of Geotechnical and Geoenvironmental Engineering 141(11): 04015049.

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

• Limit equilibrium (LE) analysis has been used in  the  design  of  complex structures for decades.

• LEA finds the required tensile  force distribution in each layer

• For  internal stability –applicable for extensible reinforcement only

• LEA applicable for all reinforcements for global and compound stability

Technical Report Documentation Page 1. Report No.

2. Government Accession No.

3. Recipient’s Catalog No.

FHWA-HIF-17-004

4. Title and Subtitle

5. Report Date

Limit Equilibrium Design Framework for MSE Structures with Extensible Reinforcement

October 2016 6. Performing Organization Code

7. Principal Investigator(s): See Acknowledgements for Authors and Contributors

8. Performing Organization Report

No. Dov Leshchinsky, Ph.D1, Ora Leshchinsky, P.E.1, Brian Zelenko, P.E., John Horne, Ph.D., P.E.

9. Performing Organization Name and Address

10. Work Unit No. (TRAIS)

Parsons Brinckerhoff 1015 Half Street, SE, Suite 650 Washington, DC 20003 1ADAMA Engineering, Inc., 12042 SE Sunnyside Rd., Suite 711, Clackamas, OR 97015

11. Contract or Grant No. DTFH6114D00047-5010

12. Sponsoring Agency Name and Address

13. Type of Report and Period

Federal Highway Administration HIBT-20 Office of Bridge Technology 1200 New Jersey Avenue, SE Washington, DC 20005

14. Sponsoring Agency Code

15. Supplementary Notes FHWA COR – Silas Nichols, P.E. FHWA Alt. COR – Khalid Mohamed, P.E. 16. Abstract

Current design of reinforced soil structures in the U.S. distinguishes between slopes and walls using the batter angle as a criterion. Using a unified approach in limit state design of reinforced ‘walls’ and ‘slopes’ should diminish confusion while enabling a wide and consistent usage in solving geotechnical problems such as complex geometries and soil profiles. Limit equilibrium (LE) analysis has been used successfully in the design of complex and critical (e.g., tall dams) for many decades. Limit state analysis, including LE, assumes that the design strength of the soil is mobilized. Presented is a LE framework, limited to extensible reinforcement, which enables the designer to find the tensile force distribution in each layer required at a limit state. This approach is restricted to Allowable Stress Design (ASD). Three example problems are presented. 17. Key Words

18. Distribution Statement

Mechanically Stabilized Earth Wall Design, MSE Wall Design, Limit Equilibrium, Geotechnical, Extensible reinforcement

No restrictions.

19. Security Classif. (of this report)

20. Security Classif. (of this

21. No. of Pages

22. Price

UNCLASSIFIED

UNCLASSIFIED 120

Form DOT F 1700.7(8-72) Reproduction of completed page authorized

Source: FHWA‐HIF‐17‐004

Page 10: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

10

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Source: FHWA‐HIF‐17‐004

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Source: FHWA‐HIF‐17‐004

Page 11: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

11

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Source: FHWA‐HIF‐17‐004

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Source: FHWA‐HIF‐17‐004

Page 12: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

12

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Source: FHWA‐HIF‐17‐004

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Impact on Design –

Extensible reinforcements

Page 13: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

13

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Illustration of some of the design differences for specific parameters. 

Source: FHWA

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Impact on Design – Extensible reinforcements

1. More accurate model to represent loading of reinforcement

2. Generally require less reinforcement for walls under 25‐ft 

3. Little change for walls over 25‐ft

4. New methods allow us to take into account• Facing contribution

• Variable lengths of reinforcements

Page 14: KU 52nd Geotechnical Engineering Conference: Designs ......AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 11/23/2020 2 Changes to How Overall (slope) Stability is Addressed

11/23/2020

14

Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

QUESTIONS?