l e - ioccg

45

Upload: others

Post on 24-Jul-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: L E - IOCCG
Page 2: L E - IOCCG

EdLw

)0,(

)0,()(

d

wrs

E

LR

Remote-sensing reflectance (sr-1):

The ultimate objective of RS:Retrieval useful/important environmental information

How?

algorithm!

Page 3: L E - IOCCG

inputs outputs

algorithm

(Lw or Rrs)

(IOPs or [Chl] etc)

Page 4: L E - IOCCG

Empirical(explicit or implicit)

Semi-analytical(algebraic, LUT, optimization)

Bio-optical models: Yes

Bio-optical models: No need

Bottom Up Strategy (BUS)

Top Down Strategy (TDS)

Page 5: L E - IOCCG

(O’Reilly et al 1998)

Chl centered band-ratio algorithms

Page 6: L E - IOCCG
Page 7: L E - IOCCG

Chl based on band difference

)443()670(

443670

443555)443()555( rsrsrsrs RRRRCI

166.19149.0 sr0005.0;10 CIChl CI

(Hu et al 2012)

Page 8: L E - IOCCG

(Hu et al 2012)

Page 9: L E - IOCCG

(Lee et al 1998)

Empirical:

Page 10: L E - IOCCG

EdLw

)0,(

)0,()(

d

wrs

E

LR

Remote-sensing reflectance (sr-1):

Physics-based algorithms (mechanistic)

How is Rrs related to water’s optical (biogeochemical) properties?

Page 11: L E - IOCCG

Physics-based algorithms (mechanistic)How is Rrs related to water’s optical (biogeochemical) properties?

Radiative Transfer Equation (no inelastic scattering):

dLLcld

Ld),'()'()(

)(

dLzLczd

zLdu

u ),'()'(),(),(

Page 12: L E - IOCCG

)',,0(

'')'sin()',(),'(

)()',()',()(

)',()',(

2/

0

2

0

SodfLL

Sdrs

E

ddL

bfkc

Dr

4

1 )()(

)(),'()',(i

i

b

birs

ba

bpwqr

Albert and Mobley (2003) :

)()(

)()',(

)()(

)()'()',(

b

bpp

b

bwwrs

ba

bg

ba

bgr

Lee et al (2004)

4

1 )()(

)(),'()',(

i

i

b

bbirs

ba

bgr

Park and Ruddick (2005)

4

1

4

1

))]([ln())]()[ln('()]',(ln[j

jiij

irs baPr

Van Der Woerd and Pasterkamp (2008)

Exact solution (no inelastic scattering):)0(

)',0()',(

d

urs

E

Lr

(Zaneveld 1995)

Page 13: L E - IOCCG

0794.0,0949.0

;)()(

)(),(

21

2

1

gg

ba

bgr

i

i

b

birs

Gordon et al (1988):

)()(

)()',,()',(

b

brs

ba

bChlgr

Morel et al (1993, 1996, 2002):

Page 14: L E - IOCCG

rs

rsrs

w

LErs

r

r

R

r

n

ttR

7.11

52.0

12

R

r

n

ttR rs

w

LErs

12

)0(

d

wrs

E

LR

)0()0()0( udEd EEtE

)0(2

u

w

Lw L

n

tL

Solve Rrs for IOPs or in-water constituents?

rrs Rrs ?

Page 15: L E - IOCCG

Two basic strategies:

1. Bottom-up strategy (BUS): Assume we know the spectral shapes of the optically

active components

2. Top-down strategy (TDS):Only need the spectral shape information when it is

necessary

Page 16: L E - IOCCG

))(),(()( brs baFR

))(),(),(),(),(()( bpbwdgphwrs bbaaaFR

))(),(),(),(),(()(

))(),(),(),(),(()(

))(),(),(),(),(()(

222222

111111

nbpnbwndgnphnwnrs

bpbwdgphwrs

bpbwdgphwrs

bbaaaFR

bbaaaFR

bbaaaFR

# of unknowns > # of equations!

Have to increase # of equations or decrease # of unknowns!

What are we facing in RS algorithms?

An ill formulated math problem!

Page 17: L E - IOCCG

1. Bottom-up strategy (BUS):

)()()( bpbwb bbb

a(λ) = aw(λ) + axi(λ) bb(λ) = bbw(λ) + bbxi(λ)

Build-up an Rrs spectrum block-by-block:

)()()()( dgphw aaaa

)()()()( 21 dgphw aMaMaa

)()()( 3 bpbwb bMbb

)()()()()( gdphw aaaaa

Page 18: L E - IOCCG

Bio-optical models (forward model)

Page 19: L E - IOCCG

)(1)()(

phB

phph ChlAa

Example of one parameter hyperspectral aph(λ) model:

Bricaud et al (1995):

Lee (1994); Lee et al (1998):

PPaph )ln()(a)(a)( 10

P = aph(440)

Modeling aph spectrum

Page 20: L E - IOCCG

Example of two-parameters model: (Ciotti et al 2002)

Page 21: L E - IOCCG

(Hoepffner and Sathyendranath, 1993)

Multiple-parameters model:

Page 22: L E - IOCCG

2D Graph 1

400 450 500 550 600 650 700

0.0

0.2

0.4

0.6

0.8

1.0 HOPE (0.1)

HOPE (3.0)

GSM

Wavelength [nm]

Examples of modeled spectra)(pha)

(ph

a

Page 23: L E - IOCCG

Absorption components: adg spectrum shapes

)440()( Sdg ea S: 0.01 – 0.02 nm-1

(Bricaud et al 1981)

Page 24: L E - IOCCG

440)(bpb

)()(

)()(

b

brs

ba

bGR

Page 25: L E - IOCCG

)()()()()(

)()()(

321

3

bpbwdgphw

bpbw

rsbMbaMaMa

bMbGR

M1-3 are wavelength independent variables!Then they could be derived by comparing the modeled Rrs spectrum with the measured Rrs spectrum.

The blue-green domain: e.g., Hoge and Lyon (1996), Carder et al (1999)The red-infrared domain: e.g., Binding et al (2012)The entire spectrum (spectral optimization): e.g., Bukata et al (1995), Lee et al (1994,1996,1999), Maritorena et al (2002), Boss and Roesler (2006), Brando et al (2012),Werdell et al (2013)

Spectral ranges used for solutions (e.g. examples of BUS):

Look-Up-Tables (LUT): e.g., Carder et al (1991); Mobley et al (2005)

3-variable model to describe an Rrs spectrum(Sathyendranath et al 1989)

Page 26: L E - IOCCG

Matching between measured and modeled Rrs

2

1

2

1

2

2

1

22

1

)(

)()(~

)(

)()(~

rs

rsrs

rs

rsrs

R

R

RRn

R

RRrs

Quantitative measure of the closure (error function):

Spectral Optimization

0

0.001

0.002

0.003

0.004

0.005

0.006

400 450 500 550 600 650 700 750 800

Mod. Rrs Mea. Rrs

Wavelength [nm]

Rrs

[sr-1

]

Logic (assumption) behind SOA:A unique set of bio-optical properties for each Rrs spectrum.

Page 27: L E - IOCCG

Algorithms using information in the red-infrared bands

)67(

)75(

xRrs

xRrsfChl

)70(

)75(

)67(

)75(

xRrs

xRrs

xRrs

xRrsfChl

(Gitelson et al 2007)

Two bands Three bands

Page 28: L E - IOCCG

)()(

)()(

)(

)(

)(

)(

111

212

2

1

2

1

redphredw

redphredw

redbp

redbp

redrs

redrs

aMa

aMa

b

b

R

R

Proper contrast of Rrs at λ1 and λ2 then leads to M1.

)()(

)()(

1

3

phw

bp

rsaMa

bMGR

)()()()()(

)()()(

321

3

bpbwdgphw

bpbw

rsbMbaMaMa

bMbGR

Page 29: L E - IOCCG

aph

Page 30: L E - IOCCG

2. Top-down strategy (TDS):

b

brs

ba

bGR

Remote sensing measures the total effect:

Water clarity (or turbidity) is also a measure of total effect.

Rrs bb&a ax

Clarity (Secchi depth, light depth, TSM/SPM, etc)

Examples of TDS:

Loisel & Stramski (2000), QAA (Lee et al, 2002); Smyth et al (2006); Doran et al (2007).

Page 31: L E - IOCCG

The Quasi-Analytical Algorithm (QAA)

(a,bb,etc) Rrs

Forward modeling:

QAA:

(a,bb) Rrs

b

brs

ba

bR

05.0

Page 32: L E - IOCCG

0

0bpbp )()( bb

rrs()

0 w 0 0( ) ( ) ( )a a a

)(),(),(F)( 0bw0020bp barb rs

)(),(),(F)( bwbp3 bbra rs

η

The data flow of QAA:

)443()443()443()443(

)443()443()411()411( w

dgphw

dgph

aaaa

aaaa

)443(

)411(

)443(

)411(

dg

dg

ph

ph

a

a

a

a

(Lee et al 2002)

Page 33: L E - IOCCG

wavelength (nm)

400 450 500 550 600 650

absorp

tion c

oeffic

ient (

m-1

)

0.0

0.1

0.2

0.3

0.4

pure water

[C] = 0.03

[C] = 1.0

[C] = 5.0

For a reference wavelength, λ0, variation of a(λ0) is limited.

λ0

λ0

Known a(λ0), enables calculation of bb(λ0) from Rrs(λ0); propagate bb(λ0) to

bb(λ), then enables calculation of a(λ) from Rrs(λ).

No need of spectral model of ax(λ) in this process!

Logic behind QAA (and its updated versions):

Page 34: L E - IOCCG

)667()490(

)667(5)(

)490()443(log

0 rs

rs

rsrs

rsrs

rr

rr

rr

2469.0366.1146.110)550()550( waa

aw(550) = 0.0565

Empirical!

When 550 nm as the reference wavelength (λ0)

Page 35: L E - IOCCG

a(555) (m-1

)

0.05 0.2 0.50.1

a(5

55

) (m

-1)

0.05

0.2

0.5

0.1

a(550) [m-1]

a(5

50

) [

m-1

]

Page 36: L E - IOCCG

rrs(λ) = Rrs(λ)/(0.52 + 1.7 Rrs(λ))

1

1

2

00

2

)(*4

)()(

)()(

g

rggg

ba

bu

rs

b

b

g0=0.089,g1=0.125

2

10

b

b

b

brs

ba

bg

ba

bgr

Rrs rrs {a&bb}

Invert Rrs:

Page 37: L E - IOCCG

)550()550(1

)550()550()550( bwbp b

u

aub

550)550()( bpbp bb

2469.0366.1146.110)550()550( waa

Page 38: L E - IOCCG

0 1 2 3 4 5

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

data

v4

v5

rrs(443)/rrs(550)

η

)55(

)443(9.0exp2.110.2

xr

r

rs

rs

Empirical:

Page 39: L E - IOCCG

)(

)())(1()(

u

bua b

)()()( bpbwb bbb

Page 40: L E - IOCCG

).440()440()440()440(

),440()440()410()410(

dgphw

dgphw

aaaa

aaaa

).440()440()440()440(

),410()410()410()410(

dgphw

dgphw

aaaa

aaaa

)()()()( dgphw aaaa

)440(

)410(

ph

ph

a

a

)440(

)410(

dg

dg

a

a

Page 41: L E - IOCCG

).440()440()440()440(

,)440()410()440()410(

)440(

dgwph

wwg

aaaa

aaaaa

).440()440()440()440(

),440()440()410()410(

dgphw

dgphw

aaaa

aaaa

Page 42: L E - IOCCG

0 2 4 6 8

0.005

0.010

0.015

0.020

0.025

0.030

data

v5

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

data

v5

rrs(443)/rrs(550)rrs(443)/rrs(550)

a ph(4

12

)/a p

h(4

43

)

S [

nm

-1]

)550(/)443(8.0

2.074.0

rsrs rr

)550(/)443(6.0

002.0015.0

,)411443(

rsrs

S

rrS

e

Empirical!

Page 43: L E - IOCCG

1 2( ) ( ) M ( ) ( )w ph dga a a M a

Ensemble solutions:

Wang et al. 2006; Zheng et al. 2015

Page 44: L E - IOCCG

(Zheng et al. 2015)

Page 45: L E - IOCCG

Key Points:

1. Various inversion algorithms for IOPs have been developed; but more/better ones are also expected.

2. BUS derives every component first, then (simultaneously) derives the total optical property.

Assume the spectral shapes of the optically active components are well characterized! BUS relies more on the accuracy of forward

bio-optical model

TDS relies more on the accuracy of Rrs measurement

3. TDS derives total first, then decompose to separate components.