l3’physical’layer’(part2)’ · eitf25’internet,,techniques’and’applicaons’...

51
EITF25 InternetTechniques and Applica8ons Stefan Höst L3 Physical layer (part 2)

Upload: others

Post on 22-May-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

EITF25  Internet-­‐-­‐Techniques  and  Applica8ons  Stefan  Höst  

L3  Physical  layer  (part  2)  

Page 2: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

From  bits  to  signals  

Principles  of  digital  communica8ons  

2

Internet  

Digital  data  

Analog  signal  

Page 3: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

On-­‐off  keying  

•  Send  one  bit  during  Tb  seconds  and  use  two  signal  levels,  “on”  and  “off”,  for  1  and  0.  

Ex.    

3

t

s(t)

T 2T 3T

x=10010010101111100

A

0

Page 4: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Non-­‐return  to  zero  (NRZ)  

•  Send  one  bit  during  Tb  seconds  and  use  two  signal  levels,  +A  and  -­‐A,  for  0  and  1.  

Ex.    

4

t

s(t)

T 2T 3T

x=10010010101111100

A

-A

Page 5: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Mathema8cal  descrip8on  

With  g(t)=A,  0<t<T,  the  signals  can  be  described  as      •  On-­‐off    •  NRZ  

5

s(t) = ang(t − nT )n∑

an = xn

an = (−1)xn

Two  signal  alterna8ves  •  s0(t)=0  and  s1(t)=g(t)  

•  s0(t)=g(t)  and  s1(t)=-­‐g(t)    

Page 6: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Manchester  coding  

•  To  get  a  zero  passing  in  each  signal  8me,  split  the  pulse  shape  g(t)  in  two  parts  and  use  +/-­‐  as  amplitude.  

Ex.    

6

T

g(t)

t

A

T/2

-A

t

s(t)

T/2 T 3T/2

x=10010010101111100

A

-A

2T 3T 4T 5T 6T 7T

Page 7: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Mul8  level  modula8on  

•  To  transmit  k  bits  in  one  signal  alterna8ve  of  dura8on  Ts,  use  M=2k  levels.  

Ex.  Two  bits  per  signal    

7

t

s(t)

T 2T 3T

x=10 01 00 10 10 11 11 10 00

A

-A

3A

-3A

01:

10:

00:

11:

Page 8: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Pulses  in  frequency  

8 0 2 4 6 8 10−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Normalised frequency

|G(f)

|2 [dB]

RecManTri

Page 9: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Bandwidth  

•  The  bandwidth  is  the  posi8ve  frequency  interval  occupied  by  the  main  part  of  the  signal  power  •  Main  lobe  •  WX%  bandwidth  contains  X%  of  power  in  signal  

Typical  X:  •  90%  •  99%  •  99.9%  

9

Pulse Wlobe W90% W99%

Rect 2/T 1.7/T 20.6/T

Man 4/T ≈ 6/T ≈ 60/T

Tri 4/T 1.7/T 2.6/T

TRC 4/T 1.9/T 2.82/T

HCS 3/T 1.6/T 2.36/T

Page 10: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Some  system  parameters  •  With  signal  8me  Ts  the  signal  rate  is  Rs=1/Ts.  The  

unit  of  the  signal  rate  is  ocen  Hz.  •  If  k  bits  are  transmided  each  signal  alterna8ve,  the  

8me  per  bit  is  Tb=Ts/k.  The  bit  rate,  or  data  rate,  is  Rb=1/Tb.  The  unit  is  b/s  or  bps.  Rb=kRs  

•  Bandwidth  efficiency  Rb/W,  in  bps/Hz  •  If  P  signal  power,  then  •  Es  =  TsP  is  energy  per  signal  alterna8ve  •  Eb  =  TbP  =  Es/k  energy  per  bit  

10

Page 11: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Modula8on  in  frequency  

•  Baseband  signal  centered  around  f=0.  •  Pass-­‐band  signal  centered  around  f=f0,  f0>>W.  •  Shic  a  BB  signal  up  in  frequency  to  PB  by  

mul8plying  with  cos(2  pi  f0  t).  •  Shic  a  PB  signal  down  to  BB  by  mul8plying  with  

cos(2  pi  f0  t)  followed  by  low-­‐pass  filtering.  

11

Page 12: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Modula8on  in  frequency  

12

⇥ =

# F

s(t)

t

�3A

�1A

1A

3A

cos(2⇡f0t)

t

sf0(t)

t

�3A

�1A

1A

3A

⇤ =S(f)

f

12 (�(f + f0) + �(f � f0))

f�f0 f0

12 (S(f + f0) + S(f � f0))

f�f0 f0

Page 13: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

ASK  (Amplitude  Shic  Keying)  

Use  on-­‐off  keying  at  frequency  f0.    Ex.  

13

t

s(t)

T 2T 3T

x=10010010101111100

A

0

s(t) = xng(t − nT )cos(2π f0t)n∑

Page 14: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

BPSK  (Binary  Phase  Shic  Keying)  

Use  NRZ  at  frequency  f0,  but  view  informa8on  in  phase    

14

s(t) = (−1)xn g(t − nT )cos(2π f0t) = g(t − nT )cos(2π f0t + xnπ )n∑

n∑

t

s(t)

T 2T 3T

x=10010010101111100

A

-A

Page 15: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

QPSK  and  M-­‐PSK  

Quadrature  PSK  • 2  bits/signal  gives  4  different  phase  levels,    

15

s(t) = g(t − nT )cos 2π f0t + xnπ2

⎛⎝⎜

⎞⎠⎟n

∑xn ∈{0,1,2,3}

M-­‐PSK  •  k  bits/signal  gives  M=2k  

different  phase  levels,    

s(t) = g(t − nT )cos 2π f0t +ϕn( )n∑

ϕn =xnM2π

xn ∈{0,1,...,M −1}

Page 16: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Signal  space  

Since                                                                                        and  cos  and  sin  behaves  orthogonal,  view  PSK  signals  as  points  on  a  circle.  

16

cos(2π f0t + π2 ) = sin(2π f0t)

cos

sin

s0(t)

s1(t)

s2(t)

s3(t)

cos

sin

s0(t)

s2(t)

s4(t)

s6(t)

s1(t)s3(t)

s5(t) s7(t)

QPSK   8-­‐PSK  

Page 17: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

M-­‐PAM  (Pulse  Amplitude  Modula8on)  

•  Use  amplitude  for  informa8on  carryer.  •  M=2k  amplidudes  

                                                                                       where      

17

s(t) = ang(t − nT )cos(2π f0t)n∑ an = −M +1+ 2xn

g(t)cos1 3 5 7-1-3-5-7

s0(t) s1(t) s2(t) s3(t) s4(t) s5(t) s6(t) s7(t)

Page 18: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

M-­‐QAM  (Quadrature  amplitude  Modula8on)  

Use  that  cos  and  sin  are  orthogonal  to  combine  two  orthogonal  PAM  constella8ons  

18

g(t)cos

g(t)sin

g(t)cos

g(t)sin

Page 19: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

OFDM  Orthogonal  Frequency  Division  Mul8plexing  

N  QAM  signals  combined  in  an  orthogonal  way  •  Used  in  e.g.  ADSL,  VDSL,  WiFi,  DVB-­‐C&T&H,  LTE,  LTE-­‐A  

19

f

W

Page 20: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Transmission  media  

Guided  media  • Twisted  pair  copper  cables  • Coax  cable  • Fibre  op8c  cable  

Unguided  media  •  Radio  •  Microwave  •  Infra  red    

20

Page 21: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Fibre  op8c  

•  Transmission  is  done  by  light  in  a  glass  core  (very  thin)  

•  Total  reflec8on  from  core  to  cladding  

•  Bundle  several  fibres  in  one  cable  

•  Not  disturbed  by  radio  signals  

21

Page 22: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Op8cal  network  architekture  

Point  to  point  •  Two  nodes  are  connected  by  one  dedicated  fibre  

Point  to  mul8-­‐point  •  One  one  is  connected  to  several  end  nodes  •  PON  (Passive  Op8cal  Network)    

2.5/1  Gbps  

•  Used  in  •  Core  network  

•  FdH  22

Page 23: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Twisted  pair  copper  cables  

Two  conducters  twisted  around  each  other  •  Twis8ng  decreases  disturbances  (and  emission)  •  Used  for    •  Telephony  grid  (CAT3)  •  Ethernet  (CAT5,  CAT6  and  some8mes  CAT  7)  

23

Page 24: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Coax  cable  

One  conductor  surrounded  by  a  shield  •  Used  for  •  Antenna  signals    •  Measurement  instrumenta8ons  

24

Page 25: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Radio  structures  

Single  antenna  system      

MIMO  (Mul8ple  In  Mul8ple  Out)  

25

Page 26: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Transmission  impairments  

When  a  signal  is  transmided  on  a  link,  it  will  deteriorate  due  to  transmission  impairment:  •  Adenua8on,  loss  of  energy    

•  Electromagne8c  emission  

•  Distor8on,  modifica8on  of  signal  shape  •  Mul8-­‐path  propaga8on  

•  Noise,  various  noise  sources  

 

26

Signal-­‐to-­‐noise  ra8o  (SNR)  =     Average  signal  power  Average  noise  power  

Page 27: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Noise  disturbances  

Thermal  noise  (Johnson-­‐Nyquist)  •  Generated  by  current  in  

a  conductor  •  -­‐174  dBm/Hz  

(3.98*10-­‐18  mW/Hz)  •  Rela8vely  white  Impulse  noise  •  Ocen  user  generated    

Intermodula8on  noise  •  Different  systems  disturb  

each  other  Cross-­‐talk  •  User  in  the  same  system  

disturb  each  other  Background  noise  •  Misc  disturbances  

(e.g.  Telephony  cable  -­‐140  dBm/Hz)  

27

Page 28: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Addi8ve  white  noise  

A  commonly  used  model  for  noise  is  the  AWGN  channel  (Addi8ve  White  Gaussian  Noise)  •  White  noise  with  PSD(f)  =  N0/2  is  added  to  the  

signal  •  Acer  LP  filter  and  sampling  the  added  noise  

samples  are  Gaussian  distributed    

28

zn ∼ N 0, N0 / 2( )

Page 29: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Gaussian  channel  

A  Gaussian  channel  is  a  sta8s8cal  transmission  model  with  input  variable  X  of  total  power  E[X2]<P  and  output  variable  Y=X+Z,  where  Z  is  Normal  distributed  with  zero  mean  and  variance  N.    

29

X

Z ⇠ N⇣0,pN⌘

Y = X + Z

1

Page 30: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

A  glimpse  of  Informa8on  Theory  

•  The  channel  represents  all  impairments  during  transmission.  •  The  informa8on  about  X  by  observing  Y  is  given  by  the  mutual  informa8on  

30

Channel  X   Y  

I(X;Y ) = f (x, y)log2f (x, y)f (x) f (y)

dxdyR2∫

Maximise  for  E[X2]=P  over  all  distribu8ons  to  get  the  channel  capacity      For  the  Gaussian  channel    

C = maxf (x ),E[X2 ]=P

I(X;Y )

C = 12log2 1+

PN

⎛⎝⎜

⎞⎠⎟

= 12log2 1+ SNR( )

Page 31: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Shannon  capacity  

If  s(t)  is  a  band  limited  signal  with  bandwidth  W  and  power  P  is  transmided  over  an  AWGN  channel,  the  maximum  achievable  data  rate  [b/s]  is  given  by  

31

C =W log2 1+P

N0W⎛⎝⎜

⎞⎠⎟

=W log2 1+ SNR( )

ii

“InfoTheory” — 2014/11/5 — 10:13 — page 235 — #243 ii

ii

ii

9.3. Fundamental Shannon limit 235

Consider a band limited Gaussian channel with bandwidth W and noise levelN0. If the transmitted power constraint is P, then the capacity is given by

C = W log⇣

1 +P

N0W

[b/s] (9.52) Eq:Gauss:Capacity

The capacity maximises the throughput for a fixed signal power when usinga certain bandwidth. As the bandwidth increases the noise power will alsoincrease, whereas the signal power will remain, meaning that the capacity in-crease will diminish with increasing bandwidth. In Figure

fig:Gauss:GbandlimWvsC9.6 the capacity as a

function of the bandwidth is shown. As the bandwidth increases to infinity thefollowing limit value will be reached.

C• = limW!•

W log⇣

1 +P/N0

W

= limW!•

log⇣

1 +P/N0

W

⌘W

= log eP/N0 =P/N0ln 2

W

C

Figure 9.6: Capacity as a function of the bandwidth W for a fixed total signalpower P. fig:Gauss:GbandlimWvsC

Denoting the achieved bit rate as Rb, it is required that this is not more than thecapacity, C• > Rb. Further, assume that the signalling time is Ts and that ineach signal k information bits are transmitted. Then the average power is theenergy per time instance, which can be derived according to

P =EsTs

=EbkTs

=EbTb

(9.53) Gauss:Limit:PT

where Es is the average energy per transmitted symbol, Eb the average energyper information bit and Tb = Ts/k the average transmission time for each infor-mation bit. The variable Eb is very important since it can be compared between

Page 32: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Fundamental  Shannon  limit  

Lexng  the  bandwidth  approach  infinity  gives  

 The  achieved  bit  rate  is  Rb=Ts/k.  Then    Hence,  communica8on  is  only  possible  if  

 Approaching  the  limit  means  lexng  the  computa8onal  complexity  go  to  infinity.  

32

C∞ = limW→∞

W log 1+ P / N0

W⎛⎝⎜

⎞⎠⎟ =

P / N0

ln2 C∞

Rb= Eb / N0

ln2>1

Eb

N0

> ln2 = 0.69 = −1.59dB

Page 33: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Data communication

Two  nodes  that  transmit  data  on  a  physical  link  cannot  do  this  simultaneously  on  the  same  frequencies  with  the  same  coding  scheme.  

33

Page 34: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Data flow concepts

34

Page 35: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Duplexing  

Duplex  communica8on  can  be  achieved  by  •  TDD  (Time  Division  Duplexing)  

Each  direc8on  has  its  8me  slots  to  transmit  in.  •  FDD  (Frequency  Division  Duplexing)  

Each  direc8on  has  its  frequency  slots  to  transmit  in  

35

Page 36: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Multiplexing of links

Also,  physical  links  need  to  be  shared.  This  is  called  mulKplexing,  where  one  physical  link  is  divided  into  several  channels.    

36

Page 37: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Multiplexing techniques

5  basic  types  of  mul8plexing  techniques:  •  Space-­‐Division  mul8plexing  (SDM)    •  Time-­‐Division  Mul8plexing  (TDM)  •  Frequency-­‐Division  Mul8plexing  (FDM)  •  Wavelength-­‐Division  Mul8plexing  (WDM)    •  Code-­‐Division  Mul8ple  Access  (CDMA)  

37

Page 38: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Space-Division Multiplexing (SDM)

SDM  is  used  in  cables.  Each  channel  uses  one  line  (op8cal  fibre  or  twisted  pair).

38

Page 39: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Time-Division Multiplexing (TDM)

In  TDM,  each  channel  occupies  a  por8on  of  the  8me    in  the  link.  

39

Page 40: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Frequency-Division Multiplexing (FDM)

FDM  is  an  analog  mul8plexing  technique  where  each  link  has  its  own  frequency  band  

Each  channel  uses  a  unique  carrier  frequency.  

Ch 1 Ch 2

fCh N...

40

Page 41: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Wavelength-Division Multiplexing (WDM)

In  an  op8cal  fibre  different  wavelengths  can  be  combined.  

41

Page 42: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Synchronous TDM

If  a  channel  has  nothing  to  send,  its  8me  slots  will  be  empty!  

42

Page 43: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Example: Empty slots

43

Page 44: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Statistical Time-Division Multiplexing

In  Sta8s8cal  TDM,  the  channels  have  no  reserved  8me  slots.  Instead,  slots  are  dynamically  allocated.    Data  about  the  des8na8on  is  added  to  each  slot.  Sta8s8cal  TDM  usually  has  beder  performance  than  Synchronous  TDM  when  not  all  channels  transmit  data  all  the  8me.  

44

Page 45: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

TDM comparison

45

Page 46: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

CDMA (Code-Division Multiple Access)

CDMA,  or  Spread  Spectrum,  is  a  mul8ple  access  technique  for  wireless  links.  The  original  signal  is  changed  in  a  spreading  process.      

46

Page 47: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Spread Spectrum techniques

•  Frequency  Hopping  Spread  Spectrum  (FHSS)  •  A  source  uses  many  carrier  frequencies.  One  

frequency  is  used  at  a  8me,  but  the  frequencies  are  changed  very  ocen  (e.g.  1000  8mes  a  second).    

•  Direct  Sequence  Spread  Spectrum  (DSSS)  •  Each  data  bit  is  replaced  with  n  bits  (called  chips)  

using  a  unique  spreading  code.  The  chip  sequences  for  all  users  are  orthogonal.  

47

Page 48: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

Comparison with FDM

48

Page 49: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

DSSS

The  original  signal  is  combined  with  the  spreading  code.  

49

Mod seq 1

Mod seq 2

Mod seq M

U 1

U 2

U N

US 1

US 2

US M

All added

Mod seq M

U N

Mod seq 2

U 2

Mod seq 1

U 1

Page 50: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

DSSS example

50

Page 51: L3’Physical’layer’(part2)’ · EITF25’Internet,,Techniques’and’Applicaons’ Stefan’Höst L3’Physical’layer’(part2)’

OFDMA  (OFDM  access)  

Mul8-­‐user  OFDM  

51

f

W

User 1User 2User 3