laboratory pilot scale evaluation of heat reallocation

33
1 Laboratory pilot scale evaluation of heat reallocation properties of a bio-sourced water stable Aluminum dicarboxylate Metal Organic Framework Anastasia Permyakova, Alexandre Skrylnyk, Maame Affram, Emilie Courbon, Sujing Wang, Farid Nouar, Georges Mouchaham, U-Hwang Lee, Anil H. Valekar, Jong-San Chang, Thomas Devic, Guy de Weireld, Nathalie Steunou,* Marc Frère,* Christian Serre* Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France Faculté Polytechnique de UMONS, Service de Thermodynamique et de Physique mathématique, 31, boulevard Dolez, 7000 Mons, Belgium European Community Programme (FP7), SOTHERCO Project

Upload: others

Post on 14-May-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Laboratory pilot scale evaluation of heat reallocation

1

Laboratory pilot scale evaluation of heat reallocation properties of a bio-sourced

water stable Aluminum dicarboxylate Metal Organic Framework

Anastasia Permyakova, Alexandre Skrylnyk, Maame Affram, Emilie Courbon, Sujing Wang, Farid Nouar, Georges Mouchaham, U-Hwang Lee, Anil H. Valekar,

Jong-San Chang, Thomas Devic, Guy de Weireld, Nathalie Steunou,* Marc Frère,* Christian Serre*

Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France

Faculté Polytechnique de UMONS, Service de Thermodynamique et de Physique mathématique, 31, boulevard Dolez, 7000 Mons, Belgium

European Community Programme (FP7), SOTHERCO Project

Page 2: Laboratory pilot scale evaluation of heat reallocation

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

2

Page 3: Laboratory pilot scale evaluation of heat reallocation

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

3

Page 4: Laboratory pilot scale evaluation of heat reallocation

Foundation: reversible reaction A + B ↔ C + heat

solar heat as driving energy

High T heat (80-100°C)

water vapor

Medium T heat (30-45°C)

Low T heat (5-15°C)

desorption condenser

water vapor

Medium T heat (25-45°C)

adsorption evaporation

Principles of Thermochemical Energy Storage and transformation

4

Page 5: Laboratory pilot scale evaluation of heat reallocation

5

H2O Open storage systems

Materials for heat reallocation

Chemical sorption

(H2O + inorganic salt) Energy output:

160-630 kWh/m3

Kinetics: slow

Physical sorption (H2O+Inorganic and

Hybrid Porous Solids) Energy output:

90 kWh/m3

Kinetics: fast

Working pairs

Energy storage application Inter-seasonal storage Cycle time: several months Large quantity of material

Heat-pump application Cycle time: several minutes Small quantity of material

Working fluid

Hydrothermal stability

Suitable hydrophilicities (steep uptake at p/p0<0.3-0.4)

High sorption capacity

Easy regeneration (Td=80-100°C of solar collectors)

Stability under numerous cycles

Scalability

Page 6: Laboratory pilot scale evaluation of heat reallocation

Adsorption at too high relative

pressure

Very expensive due to

templated syntheses

Energy demanded regeneration (up

to T=140°C)

Physical sorption materials

Water sorption capacity, g H2O/g dry material

6

+ Stable, cheap - Limited in adsorption capacity

Page 7: Laboratory pilot scale evaluation of heat reallocation

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

7

Page 8: Laboratory pilot scale evaluation of heat reallocation

Metal Organic Frameworks (MOFs)

• Organic-inorganic hybrids • Crystalline • Porous

Structure of CAU-10(Al)

8

AlO4(OH)2

AlO4(OH)2 1,3 BDC

6 Å

1D square-shaped channels ~ 6 Å

CAU: Christian-Albrechts-University

cis chains of AlO4(OH)2 corner-sharing octahdera

A robust rigid hydrophilic Al-MOF

Page 9: Laboratory pilot scale evaluation of heat reallocation

Versatile chemistry • modification of SBU • Choice of organic ligand

Structural versatility • micro-, mesoporous • topology • rigid or flexible

Tunable properties

• Amphiphilic character Easy regeneration

Metal Organic Frameworks (MOFs)

hydrophobic

hydrophilic

P/P0

Wat

er u

ptak

e Amphiphilic caracter

Functionalization

O-O

-O O

NH2

O-O

-O O

OH

HO

O-O

-O O

SO3H

polar functional groups

9

Page 10: Laboratory pilot scale evaluation of heat reallocation

MIL-125(Ti)-NH2

0,5 0,3 0,1

0,2 0,4 0,6 0,8 1

10

MIL-127(Fe)

Correlation between structural and adsorption properties

m i c r o p o r o u s m e s o p o r o u s

Hydrophilic Amphiphilic Hydrophobic

0

0,5

1

1,5

2

0 0,2 0,4 0,6 0,8 1

p/p°

MIL-101(Cr)

CAU-10(Al) MIL-125(Ti)-NH2 UiO-66(Zr)-NH2 MIL-100(Fe) MIL-101(Cr) MIL-100(Fe)

Water adsorption isotherms: adsorption capacity (g/g)

0

0,5

1

0 0,2 0,4 0,6 0,8 1

p/p°

MIL-100(Fe)

Amphiphilic character → position of adsorption step (p/p0)

MIL-125(Ti)-NH2

Page 11: Laboratory pilot scale evaluation of heat reallocation

11

Correlation between structure and adsorption properties Dehumidification,

Open cycle air-conditioning

Heat-pump and thermochemical energy storage

0

0,3

0,6

0,9

1,2

1,5 p/p0 = 0-0.3 p/p0 = 0.3-0.5

Adsorption capacity, g/g

Hydrophilic Amphiphilic Hydrophobic

Hydrothermal stability

Suitable hydrophilicities (steep uptake at p/p0<0.3)

High sorption capacity

Page 12: Laboratory pilot scale evaluation of heat reallocation

CAU-10: advantages and limitations Water sorption isotherms at 25°C Excellent cycling stability

Suitable hydrophilicity Why CAU-10?

But…

↑ hydrophilic character of MOF → good for heat-pump ↑ polarity of linker → solubility in water↑, → possible synthesis in water Green biocompatible synthesis?

Petrol-based linker Synthesis in toxic solvent (DMF)

more hydrophilic bio-sourced Industrial producation by Avantium

0,4 0,3 0,2 0,1 0,0

0,2 0,4 0,6 0,8

adsorption capacity (g/g)

12

Page 13: Laboratory pilot scale evaluation of heat reallocation

MIL-160(Al): an alternative approach for hydrophilic MOFs

MIL-160(Al) isostructural with CAU-10

CAU-10 MIL-160(Al)

Computational

Design

DFT optimized structure

Alternative strategy

Standard approach to enhance the hydrophilicity of MOF: grafting polar functional groups O-O

-O O

NH2

O-O

-O O

OH

HO

O-O

-O O

SO3H

• higher affinity for water • decrease of the Vpore and thus, total uptake

UiO-66(Zr)-NH2 and MIL-125(Ti)-NH2

G. Maurin,D. Damasceno-Borges, A. Cadiau 13

Page 14: Laboratory pilot scale evaluation of heat reallocation

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

14

Page 15: Laboratory pilot scale evaluation of heat reallocation

A new hydrophilic Al dicarboxylate MOF: structure and synthesis

Structure solved from XRPD, Modelling and Solid State NMR

and DFT modelling

Isostructural with CAU-10

A. Cadiau et al., Adv. Mater, 2015

6 Å

Green scalable synthesis: solvent (H2O, reflux) cheap Al salts as metal precursor 2,5 Furane dicarboxylic linker produced from biomass (Avantium)

1D channels ~ 6 Å

Cis chains of AlO4(OH)2

Al(OH)[O2C-C4H2O-CO2].nH2O

15

Page 16: Laboratory pilot scale evaluation of heat reallocation

MIL-160(Al): optimization of synthesis

High throughput synthesis methodology

Screening of synthesis parameters New conditions:

AlCl3 precursor NaOH A. Cadiau et al., Adv. Mater, 2015

High yield (93% based on Al)

+ Al(OH)(CH3COO)2

H2O

reflux (24h)

MIL-160 13.82 g

93 % (dry)

eco-compatible and friendly less corrosive

16

Initially reported conditions:

Page 17: Laboratory pilot scale evaluation of heat reallocation

CAU-10(Al)

MIL-160(Al)

Water sorption properties of MIL-160(Al) and CAU-10

Origin of the increased hydrophilicity?

MIL-160(Al) more hydrophilic adsorbent:

water uptake at lower p/p0 Larger uptake at saturation: 0.37 g/g vs 0.32 g/g

A. Cadiau et al., Adv. Mater, 2015

- Adsorption site: μ2-OH (more accessible compared to CAU-10)

- Additional interactions between H(H2O) & O(furan)

MIL-160

Water sorption isotherms at 298K

G. Maurin

17

Page 18: Laboratory pilot scale evaluation of heat reallocation

5 10 15 20 25 30

MIL-160(Al): hydrothermal stability and cycling stability

No loss after more than 10 cycles

A. Cadiau et al., Adv. Mater, 2015

Hydrothermal treatment: boiling water for 1 day

18

Wight, %

Time, h

Temperature, °C

T adsorption at 30°C (RH 80%)

T desorption at 100°C (RH 0.03%)

250

100

0 0,2 0,4 0,6 0,8 1

p/p0

ml/g

N2 sorption porosimetry Porosity maintained

X-ray powder diffraction Preservation of structure

2 Theta – scale (°)

Page 19: Laboratory pilot scale evaluation of heat reallocation

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

19

Page 20: Laboratory pilot scale evaluation of heat reallocation

Energy storage application: operating conditions

20

Working fluid: water Closed energy storage system T condenser =T evaporator=10°C

P=1,25 kPa

Δm, mg

Time, h

Temperature, °C

T desorption at 80°C (solar collectors)

T adsorption at 30°C T min for space-heating

in winter

Gravimetric lift: Δm = m adsorbed – m desorbed

Page 21: Laboratory pilot scale evaluation of heat reallocation

MIL-160 : the best choice from physical sorption materials

0,06

0,12

0,20

0,32 0,34

0,36 0,37

51

87

144

244

284 300 308

0

50

100

150

200

250

300

0

0,1

0,2

0,3

0,4

0,5Cycling loading lift

Energy storage capacity

Hydrophilic character of MOFs

Highest cycling loading lift Highest energy storage capacity Excellent cycling stability Green bio sourced synthesis

Condition of lift: ads. at 30°C, 1.25 kPa des. at 80°C, 1.25 kPa

Cycling lift, g/g Energy storage capacity, Wh/kg

21

Page 22: Laboratory pilot scale evaluation of heat reallocation

Scale-up and shaping of MIL-160(Al) Scale-up:

Multiplying all amounts by ca. 10 times Larger scale glass reactor (2L) 400 g of MIL-160

Granulation method MIL-160(Al)+ silica sol solution Granulation using the rotating fan Drying

KRICT, Korea, J-S Chang Granules of MIL-160(Al): 0.5-1.8 mm 22

Page 23: Laboratory pilot scale evaluation of heat reallocation

Characterization of MIL-160(Al) before and after shaping PXRD Nitrogen sorption porosimetry IR TGA

0

120

240

360

0 0,5 1

p/p0

MIL-160 shaped_adsMIL-160 shaped_desMIL-160 powder_adsMIL-160 powder_des

Powder: SBET=1150 m2.g-1

Shaped: SBET=1010 m2.g-1

MIL-160(Al) powder

MIL-160(Al) shaped

4 10 20 30 40 50 60

2 Theta – scale (°)

Va/cm3(STP) g-1

N2 sorption porosimetry X-ray powder diffraction

Preservation of structure Porosity maintained 23

Page 24: Laboratory pilot scale evaluation of heat reallocation

Water sorption and energy storage properties of MIL-160(Al)

Gravimetric loading lift of powder and shaped MIL-160(Al)

Lift conditions: Adsorption: 30°C / p=1.25 kPa Desorption: 80°C/p=1.25 kPa

300 Wh/kg 292 Wh/kg

MIL-160(Al) powder 0.36 g/g

MIL-160(Al) shaped 0.32 g/g

High energy storage capacity:

24

Page 25: Laboratory pilot scale evaluation of heat reallocation

Water sorption properties of MIL-160(Al)

Critical data for modelling of different operating conditions (T, P)

Water sorption isotherms at different temperatures (30-80°C, step of 10°C)

0

0,1

0,2

0,3

0,4

0 1000 2000 3000 4000 5000 6000 7000 8000

p, Pa

60°C 40°C 50°C

30°C

70°C

80°C

Adsorption capacity, g/g

25

Page 26: Laboratory pilot scale evaluation of heat reallocation

Pilot test open-system prototype

I. Dry air generator II. Controlled air humidification system III. Adsorption column

Adsorption process: T=30°C, p=1.32 kPa Air flow rate: 215 l/min

The measurement of input and output air temperatures → the thermal power curve

26

Page 27: Laboratory pilot scale evaluation of heat reallocation

H= A*Cp*ΔT H: thermal power (W) A: air mass flow rate (kg/s) Cp: air heat capacity (J/kg*K) ΔT: temperature difference between input and output air

Pilot test open-system prototype

Input and output air temperatures

The thermal power curve

0

30

60

90

0:00 0:30 1:00 1:30 2:00 2:31time

343 Wh/kg (141 kWh/m3)

Thermal heat power, W

Energy storage capacity Energy storage density

27

Page 28: Laboratory pilot scale evaluation of heat reallocation

0

100

200

300

400

T ads=30°C/ p=1.25 kPa T des=80°C/ p=1.25 kPa This work

Literature T ads = 40°C/ p=1.20 kPa

T des=90°C

Comparison with other materials

Energy storage capacity, Wh/kg

28

Page 29: Laboratory pilot scale evaluation of heat reallocation

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation: which?

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

29

Page 30: Laboratory pilot scale evaluation of heat reallocation

MIL-160(Al): heat-pump applications

MIL-160: one of the best MOF so far at lift 1, close to SAPO-34

Gravimetric water loading lift (g/kg)

A. Cadiau

T ads=40°C/ p=1.2 kPa T des=95°C/ p=5.6 kPa

30

Page 31: Laboratory pilot scale evaluation of heat reallocation

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation: which?

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

31

Page 32: Laboratory pilot scale evaluation of heat reallocation

Conclusions:

I. New hydrothermally stable hydrophilic MOF: MIL-160(Al) • Alternative strategy of hydrophilic MOF synthesis • Green bio-sourced synthesis with high yield (93%) II. Excellent properties of MIL-160(Al) for heat pump application • Enhanced hydrophilicity • Excellent stability under numerous cycles • Performance comparable and even higher than SAPO-34

III. A series of MOFs towards space heating application • MIL-160(Al): best candidate (highest cycling loading lift, stability, green and

cheap synthesis) • Energy capacity: 300 Wh/kg • Scape-up (400 g) and Shaping • Pilot test with an open reactor (348 Wh/kg or 144 kWh/m3) • Higher performance compared to zeolites, SAPO-34 and AlPO-18

32

Page 33: Laboratory pilot scale evaluation of heat reallocation

Acknowledgements: • Porous Solid team, UVSQ, France C. Serre, N. Steunou, T. Devic, F. Nouar, S. Wang, C. Martineau, A. Cadiau, M. Affram

• Service thermodynamique, UMONS, Belgium M. Frère, A. Srylnyk, E. Courbon, G. De Weireld

• University of Montpellier: D. Damasceno-Borges, G. Maurin (DFT, GCMC, MD)

• TU Delft, ND: J. Gascon, F. Kaptjeen, M. De Lange (Heat transfer calculations)

• KRICT, Korea: J-S Chang, Y-K Hwang (Heat transfer) • European Community Programme (FP7), SoTherCo and SoTherCo partners

Thank you for attention! 33