lama - astro.ubc.ca

53
LAMA LAMA

Upload: others

Post on 13-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LAMA - astro.ubc.ca

LAMA

LAMA

Page 2: LAMA - astro.ubc.ca

LAMA

Large Astronomical Mercury-Mirror Array

Paul Hickson University of British ColumbiaKen Lanzetta SUNY Stony BrookRick Puetter UC San DiegoGene Sprouse SUNY Stony BrookAmos Yahil SUNY Stony Brook

Photo Credit: S. Radford.

Page 3: LAMA - astro.ubc.ca

LAMA

Very Large Optical Telescope Concepts

“Continued progress in optical astronomy requires a telescope of aperture and resolution significantly larger than that of present instruments” – Next Generation CFHT CommitteeAperture in the range 30-100 meters is needed

Major Optical Telescope Projects/Proposals

2012?~ 1000 M$~ 50 mMAXAT

2007~ 800 M$8 m (space)NGST

2015+> 1000 M$~ 100 mOWL

2010?~ 600 M$~ 30 mCELT

First LightCostApertureProject

Page 4: LAMA - astro.ubc.ca

LAMA

Primary Science Goals

Detect and study the first luminous systemsStudy the process of galaxy formation and evolution from redshift z ~ 20 to the presentDetermine the star formation history of the UniverseDetermine the cosmological parametersResolve the innermost regions of AGN and QSOsDetect and study the oldest and faintest stars

Page 5: LAMA - astro.ubc.ca

LAMA

Observing Galaxy Formation

Photo Credit:NASA.

Page 6: LAMA - astro.ubc.ca

LAMA

Finding The First Galaxies

Wavelength range 0.4 < ? < 2.5 umLyman-a visible to z = 19.6

Page 7: LAMA - astro.ubc.ca

LAMA

Early Protogalaxies

Credit: NGST

Page 8: LAMA - astro.ubc.ca

LAMA

Importance of ResolutionHST 2.4m NGST 8m LAMA 60m

Photo Credit:NASA

Page 9: LAMA - astro.ubc.ca

LAMA

Early Globular Clusters

Credit: NGST

Page 10: LAMA - astro.ubc.ca

LAMA

Star-Formation History of the Universe?

Credit: NASA

Page 11: LAMA - astro.ubc.ca

LAMA

Supernova Detection

-2

-1

0

1

2

3

0 2 4 6 8 10 12 14

z

log

Fv (

nJy)

LAMA 2um 300s flux limitType II, k = 0, lambda = 0Type II, k = 0, lambda = 1

Page 12: LAMA - astro.ubc.ca

LAMA

Object Counts (per square arcmin)

0.4z > 10173Strong Gravitational lenses

45 < z < 1074z < 578Active Galactic Nuclei

10.5Supernovae II per year0.3z > 1055 < z < 1051z < 557Lyman-a emitters (R = 100)

202z > 10778675 < z < 101757708z < 52628781Galaxies1 (KAB = 31.4)10 (KAB = 28.9)Flux (nJy)

Page 13: LAMA - astro.ubc.ca

LAMA

Performance Goals

0.4 – 2.5 um wavelength range< 0.1 nJy detection limit for point sources< 1 nJy detection limit for galaxiesMilliarcsec resolution~ 100 square arcmin survey area:

> 105 galaxies~ 100 supernovae per year

Page 14: LAMA - astro.ubc.ca

LAMA

Emerging Technologies

Adaptive OpticsOptical interferometry Large mercury mirrorsNear-zenith tracking opticsOH absorption cellLarge VIS/NIR arrays

Page 15: LAMA - astro.ubc.ca

LAMA

Adaptive Optics FWHM = 0.08 arcsec

FWHM = 0.8 arcsec

Credit: Gemini Project

Page 16: LAMA - astro.ubc.ca

LAMA

Adaptive Optics Performance

Distance from Guide Star (arcsec)Credit: Matt Mountain

Page 17: LAMA - astro.ubc.ca

LAMA

Image Intensity

00.10.20.30.40.50.60.70.80.9

1

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

wavelength (um)

Rel

ativ

e V

alue

FWHMStrehlIntensity

Page 18: LAMA - astro.ubc.ca

LAMA

Optical Interferometry NPOI

Page 19: LAMA - astro.ubc.ca

LAMA

Optical Interferometry

Frontier technologyPhase closure with independent telescopes has been demonstratedPrototype arrays: I2T, MkIII, IRMAOperational arrays: PTI, IOTA, NPOI, ISI, GI2T, SUSIUpcoming arrays: COAST, VLTI, KeckPhase errors within individual apertures are corrected with adaptive opticsMoving mirrors remove zero-point (piston) phase differencesPhase tracking on light from natural guide starLBT design gives interferometric imaging over 40 arcsec

Page 20: LAMA - astro.ubc.ca

LAMA

LBT Imaging Interferometer

2 x 8.4 m interferometer22.8 m baselinef/15 phase-combined beamLaser guide-star AO on individual telescopesPhase tracking on natural guide star40 arcsec FOV5 mas resolution in optical80-96% Strehl ratio in interferometric image

Page 21: LAMA - astro.ubc.ca

LAMA

Liquid-Mirror Telescopes

Three 3m telescopes in operationA 6m nearing completionA 4m project in Chile

Photo Credit: Chip Simons Photography

Page 22: LAMA - astro.ubc.ca

LAMA

Liquid-Mirror Technology

Strehl RatioS = central intensity/ideal central intensity

S = 0.81 measured in lab tests of 2.5m LM

S ~ 0.5-0.7 estimated for NODO 3m telescope

S ~ exp(-k2σ2)k = 2π/λσ = RMS OPD error

Images courtesy of Dr. E. Borra, Universite Laval

Page 23: LAMA - astro.ubc.ca

LAMA

Liquid-Mirror Interferometric Testing

Image courtesy of Dr. E. Borra, UniversiteLaval

Page 24: LAMA - astro.ubc.ca

LAMA

Liquid-Mirror Surface Quality

85 nm RMS error ð S = 0.93 at λ = 2 um

Image courtesy of Dr. E. Borra, Universite Laval

Page 25: LAMA - astro.ubc.ca

LAMA

Scattered Light

Credit: Dr. E. Borra, Universite Laval

Page 26: LAMA - astro.ubc.ca

LAMA

Mercury Telescopes NODO

Photo credit: Mark K. Mulrooney

Page 27: LAMA - astro.ubc.ca

LAMA

LMT Imaging Arp 270

Page 28: LAMA - astro.ubc.ca

LAMA

LMT Imaging Field Galaxies

Page 29: LAMA - astro.ubc.ca

LAMA

LMT Imaging Distant Cluster

Page 30: LAMA - astro.ubc.ca

LAMA

LMT Imaging Cluster Core

Page 31: LAMA - astro.ubc.ca

LAMA

Large Zenith Telescope

Page 32: LAMA - astro.ubc.ca

LAMA

6m Primary Mirror Truss

Page 33: LAMA - astro.ubc.ca

LAMA

LZT Mirror Truss

Page 34: LAMA - astro.ubc.ca

LAMA

Making the mirror-segment mold

Page 35: LAMA - astro.ubc.ca

LAMA

LZT Air Bearing

Page 36: LAMA - astro.ubc.ca

LAMA

LMT Tracking Optics

Page 37: LAMA - astro.ubc.ca

LAMA

Preliminary Design (Single element)

M1: 10 m f/1.5 parabolicM2: 0.75 m hyperbolicM3: 0.2 m flat2 compensation lenses5 min trackingRMS spot dia < 150 masStrehl ratio > 0.1 @ 2 um

Page 38: LAMA - astro.ubc.ca

LAMA

Background Light

Credit: Space Telescope Science Institute

Page 39: LAMA - astro.ubc.ca

LAMA

OH Absorption Cell

NIR sensitivity is directly proportional to backgroundGain of ~ 100 is possibleOH Production: Radiative excitation by Meinel photonsCollisional dexcitation in ~100 usColumn density > 1018 cm-2

Path length ~ 10 mPressure ~ 0.1 TorrLifetime ~ 10 msGas consumption ~ 2 kg/hr O3, 40 g/hr H

23 OOHHO +→+

Page 40: LAMA - astro.ubc.ca

LAMA

OH Absorption vs Column Density

Page 41: LAMA - astro.ubc.ca

LAMA

Sample Model Calculation (N = 1018 cm-3)

Before

After

Page 42: LAMA - astro.ubc.ca

LAMA

Cerro Chanjnantor

5000 m high desert in Northern ChileSite of ALMA millimeter arrayProposed site of Cornell IR telescope and several others

Photo credit: S. Radford

Page 43: LAMA - astro.ubc.ca

LAMA

Chajnantor Seeing vs Paranal (ESO VLT)

Credit: Cornell University

Page 44: LAMA - astro.ubc.ca

LAMA

LAMA Concept

Optical-NIR interferometerNear-zenith pointing and trackingSurvey fields around natural guide starsWavefront control on each element (AO)Phase tracking on all beamsDiffraction limit of 60m telescopeEquivalent area of 42m telescopeFully sample isoplanatic areaBackground reduction by gas-phase OH absorption cells0.1 nJ point source sensitivity (AB = 33.9)Mercury primary mirrorsHigh dry site (eg. Alto-Plano)Low project cost (~ $50M)

Page 45: LAMA - astro.ubc.ca

LAMA

Array Geometry

|___

____

____

____

____

____

____

____

____

___|

60m

Page 46: LAMA - astro.ubc.ca

LAMA

Array Transfer Function

Page 47: LAMA - astro.ubc.ca

LAMA

Single-Element PSF

Page 48: LAMA - astro.ubc.ca

LAMA

LAMA PSF

Page 49: LAMA - astro.ubc.ca

LAMA

PSF Profile

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

radius (mas)

Intensity

Encircled Energy

Page 50: LAMA - astro.ubc.ca

LAMA

Conceptual Design

Page 51: LAMA - astro.ubc.ca

LAMA

10m Array Element

Page 52: LAMA - astro.ubc.ca

LAMA

Survey Mode

~ 360 survey fields, each 30 x 30 arcsec~ 150 observations per year for each field

ò100 pJy detection limit for galaxies (0.1”)

10 pJy detection limit for point sources

ò90 square arcmin in one year~ 40,000 sec integration time

Page 53: LAMA - astro.ubc.ca

LAMA

Summary

A Very-Large Optical Telescope is feasible nowA 60 m optical interferometer would provide unprecedented sensitivity and resolutionGains of an order of magnitude or more over NGST are possiblefor survey-type observationsLiquid-Mirrors provide a way to beat the cost curve by a factor of 10-50Such a telescope could be built on a relatively short timescale (~ 6 yrs)