laminate analysis

31
analysis of fiber-reinforced composite materials by using M. W. Hyer’s codes ME518 01/26/2004 Chia-Wei Wang

Upload: ghassan-e-zein

Post on 18-Dec-2015

229 views

Category:

Documents


0 download

DESCRIPTION

Laminate Analysis

TRANSCRIPT

  • analysis of fiber-reinforced composite materials by using M. W. Hyers codes

    ME518

    01/26/2004

    Chia-Wei Wang

  • macro-scale mechanics analysis

    micro-scale mechanics analysis

    ABBD matrix

    maximum stress failure criterion

    outlines

  • 1fiber direction

    2

    3

    principal material coordinate system

    1-direction is aligned with the fiber direction the strain of an individual fiber or element of matrix is of no consequence at this level of analysis assume that the two-material fiber-matrix system is replaced with single homogeneous material

  • 112

    13

    2

    2312

    2

    31

    32

    1

    2

    3

    stress-strain relationship for orthotropic material

    123 231312

    =

    1E1

    21E2

    31E3

    0 0 0

    12E1

    1E2

    32E3

    0 0 0

    13E1

    23E2

    1E3

    0 0 0

    0 0 0 1G23

    0 0

    0 0 0 0 1G13

    0

    0 0 0 0 0 1G12

    1 2 3 231312

    1 2 3 231312

    =

    C11 C12 C13 0 0 0C12 C22 C23 0 0 0C13 C23 C33 0 0 00 0 0 C44 0 00 0 0 0 C55 00 0 0 0 0 C66

    123 231312

    inverse relationship

    in the principal direction

  • free thermal strains

    1

    23

    1

    3

    2

    free thermal strains do not involve shear deformation coefficients of thermal expansion (CET) in three principal

    directions are constant in range of interest

    1T T,Tref( ) = 11

    =1T

    2T T,Tref( ) =

    2 2

    =2T

    3T T,Tref( ) = 3 3

    =3T

    stress-strain relationship include free thermal strains interms of compliance matrix can be expressed as

    1 2 3 231312

    =

    C11 C12 C13 0 0 0C12 C22 C23 0 0 0C13 C23 C33 0 0 00 0 0 C44 0 00 0 0 0 C55 00 0 0 0 0 C66

    1 1T2 2T3 3T

    231312

    assumptions:

  • macro-scale mechanics analysis

    microscale mechanics analysis

    ABBD matrix

    maximum stress failure criterion

    outlines

  • micromechanics approaches

    finite element approach theory of elasticityapproachStrength-of materialapproach

    Information:stress-strain Information:

    prediction of effective material properties

  • finite element approach

    2

    3

    2

    3fibermatrix

    unit cellunit cell is the simplest repeating unit

    finite element models of unit cells1

    Stresses of interest within unit cell1

    nf = n

    m

    sf s

    m

    1. Hyer, M.W., Stress Analysis of Fiber-Reinforced Composite Materials, WCB/McGraw-Hill, New York, 1997

  • theory of elasticity concentric cylindrical model

    V F = b2

    c 2=bc

    2

    volume fraction of fiber

    2

    3

    r

    r = c

    r = b

    concentric cylinder model

  • strength-of material approach rule of mixtures models

    WfWm

    unit cell

    WfWm

    Am Af

    1

    2

    1

    1f = E1

    f1f = E1

    f LL

    =F1

    f

    A f

    1m = E1

    m1m = E1

    m LL

    =F1

    m

    Am

    1 =F1

    f + F1m

    A= E1

    f A f

    A+ E1

    m Am

    A

    LL

    = E1LL

    E1 = E1f A f

    A+ E1

    m Am

    A= E1

    fV f + E1mV m = E1

    fV f + E1m 1V f( )

  • Hyers codes

    fiber-reinforced composite materials is usually made in plate form. therefore, the plane stressassumption is usually made for analysis of effective material properties of fiber-reinforcedcomposite material.

    E1, E2, 12, 1, 2 and G12 are the most important material properties determined for laminatedcomposite materials.

    E1.F and E2.F E1 and E2 Hyers code material property predicted

    G12.F G12

    NU12.F 12

    ALPHA12.F 1 and 2

  • plane stress assumption

    =

    12

    13

    23

    3

    2

    1

    66

    55

    44

    332313

    232212

    131211

    12

    13

    23

    3

    2

    1

    00000

    00000

    00000

    000

    000

    000

    S

    S

    S

    SSS

    SSS

    SSS

    1212

    =

    1E1

    12E1

    0

    12E1

    1E2

    0

    0 0 1G12

    1 212

    reduced

    xy12 xy

    =

    cos2 sin2 2cos sinsin2 cos2 2cos sin

    cos sin cos sin cos2 sin2

    1E1

    12E1

    0

    12E1

    1E2

    0

    0 0 12G12

    cos2 sin2 2cos sinsin2 cos2 2cos sin

    cos sin cos sin cos2 sin2

    x y xy

    =

    S 11 S 12 S 13S 21 S 22 S 23S 31 S 32 S 33

    x y xy

    rotated

    x y xy

    =

    Q 11 Q 12 Q 13Q 21 Q 22 Q 23Q 31 Q 32 Q 33

    1212

    or

    3 is not zero 1, 2, 23 and 13 are zero

    SBAR2D.F

    QBAR.F

  • E1 = E1f 1+( )V f + Em 1+( ) 1 V f( )

    =221

    f Em 1 V f( ) 12f m( )E2f 1+ vm( ) 1+V f 1 2vm( )( ) + Em 1 23f 212f 21f( ) 1 V f( )

    =2E2

    f mV f m 12f( )

    E2f 1+ vm( ) 1+V f 1 2vm( )( ) + Em 1 23f 212f 21f( ) 1V f( )

    E1 = E1fV f + Em 1 V f( )

    v12 = 12f V f + 1V f( ) m

    E1, E2, 12 and 21

    rule of mixture

    rule of mixture

    1E2

    =V f

    E2f +

    1 V f( )Em

    rule of mixture

    modified rule of mixture

    1E2

    =

    V f

    E2f +

    1 V f( )Em

    V f + 1 V f( )

    alternative rule of mixture

    1E2

    =

    fV f

    E2f +

    m 1 V f( )Em

    V f + 1 V f( )

    f =E1fV f + 1 v12

    f v21f( )Em + vmv21f E1f[ ] 1 V f( )

    E1fV f + Em 1 V f( )

    m =1 vm

    2( )E1f 1 vmv12f( )Em[ ]V f + Em 1 V f( )E1fV f + Em 1 V f( )

    concentric cylinders model

    (3.32)

    (3.29)

    (3.30a)

    (3.30b)

    (3.77)

    (3.87)

    (3.93)

    (3.106)

    (3.107)

    Because fiber composite materials aretransversely isotropic; hence, 13=12. But,n12n21

    use E1.F to obtain E1 use E2.F to obtain E2 use NU12.F to obtain 12E1:

    E2:

    12:

    Please referred to Hyer [1] for derivation details.1. Hyer, M.W., Stress Analysis of Fiber-Reinforced Composite Materials, WCB/McGraw-Hill, New York, 1997

    12E1

    = 21E2

  • G12, G13, G23

    : partitioning factor used to correct the volumefraction of matrix subjected to load

    rule of mixtures

    concentric cylinders model

    ( )m

    f

    f

    f

    G

    V

    G

    V

    G

    +=11

    1212

    (3.117)

    ( ) ( )( ) ( )

    ++

    +=

    fmffm

    fmffmm

    GGVGG

    GGVGGGG12 (3.60)

    modified rule of mixtures

    1G12

    =

    V f

    G12f +

    ' 1V f( )Gm

    V f +' 1V f( )(3.118)

    Here we assumed composite materialsare transversely isotropic; hence,G12=G13.G23 can be calculated from

    ( )232

    23 12 +=

    EG

    use G12.F to obtain G12

  • alternative rule of mixtures

    mmff

    mmmfff

    VEVE

    VEVE

    +

    +=

    1

    111

    (3.130)

    ( ) ( ) fmfmfmmf

    fmfm VVE

    EEV 1

    1

    1122

    ++= (3.140)

    rule of mixturesmmff VV += 22 (3.139)

    Simple rule of mixtures does not make sense for 1, since it is clear that the matrix andfiber must expand the same amount in the 1 direction when the temperature ischanged. The simple rule of mixtures in the fiber direction ignores this fact!

    use ALFA12.F

    1 and 2

  • =

    12

    13

    23

    3

    2

    1

    66

    55

    44

    332313

    232212

    131211

    12

    13

    23

    3

    2

    1

    00000

    00000

    00000

    000

    000

    000

    S

    S

    S

    SSS

    SSS

    SSS

    1266

    1355

    2344

    333

    2

    2323

    222

    1

    1313

    1

    1212

    111

    111

    11

    1

    GS

    GS

    GS

    ES

    E

    vS

    ES

    E

    vS

    E

    vS

    ES

    ===

    ===

    ===

    where

    =

    12

    13

    23

    3

    2

    1

    66

    55

    44

    332313

    232212

    131211

    12

    13

    23

    3

    2

    1

    00000

    00000

    00000

    000

    000

    000

    C

    C

    C

    CCC

    CCC

    CCC

    132312121233131322232311332211

    6666

    5555

    4444

    1123131223

    1212221133

    2213231213

    1313331122

    3312231312

    2323332211

    2

    1

    11

    SSSSSSSSSSSSSSSS

    SC

    SC

    SC

    S

    SSSSC

    S

    SSSSC

    S

    SSSSC

    S

    SSSSC

    S

    SSSSC

    S

    SSSSC

    +=

    =

    ==

    =

    =

    =

    =

    =

    =

    where

    use THREESC.F

    the compliance matrix, Sij, and the stiffness matrix, Cij

  • ( )

    3

    21

    22

    21

    22

    21

    sincos2

    cossin

    sincos

    =

    =

    +=

    +=

    z

    xy

    y

    x

    use ALPHA.F

    x, y, xy and z

  • macro-scale mechanics analysis

    micro-scale mechanics analysis

    ABBD matrix

    maximum stress failure criterion

    outlines

  • Nx = xdzH 2H 2

    Ny = ydzH 2H 2

    Nxy = xydzH 2H 2

    Mx = xzdzH 2H 2

    My = yzdzH 2H 2

    Mxy = xyzdzH 2H 2

    x y xy

    =

    Q 11 Q 12 Q 16Q 12 Q 22 Q 26Q 16 Q 26 Q 66

    xyxy

    x y xy

    =

    Q 11 Q 12 Q 16Q 12 Q 22 Q 26Q 16 Q 26 Q 66

    xo + z x

    o

    yo + z x

    o

    xyo + z x

    o

    NxNyNxy

    =

    A11 A12 A16A12 A22 A26A61 A26 A66

    xo

    yo

    xyo

    +

    B11 B12 B16B12 B22 B26B16 B26 B66

    xo

    yo

    xyo

    MxMyMxy

    =

    B11 B12 B16B12 B22 B26B16 B26 B66

    xo

    yo

    xyo

    +

    D11 D12 D16D12 D22 D26D16 D26 D66

    xo

    yo

    xyo

    NxNxNxyMxMyMxy

    =

    A11 A12 A16 B11 B12 B16A12 A22 A26 B12 B22 B26A16 A26 A66 B16 B26 B66B11 B12 B16 D11 D12 D16B12 B22 B26 D12 D22 D26B16 B26 B66 D16 D26 D66

    xo

    yo

    xyo

    xo

    xo

    xyo

    stress resultants (Nij) and moment resultants (Mij)

    plane stress assumption

    strain (x, y, xy) can be expressed in terms of and at reference surface

    xo ,yo ,xyo( )

    xo ,yo ,xyo( )

    combine ABD matrix together

    stress resultants (Nij) and moment resultants (Mij)expressed in terms of and

    xo ,yo ,xyo( )

    xo ,yo ,xyo( )

    laminate theory: ABBD matrix relations

  • NxNyNxy

    =

    A11 A12 A13A12 A22 A23A13 A23 A33

    xo

    yo

    xyo

    +

    B11 B12 B13B12 B22 B23B13 B23 B33

    xo

    yo

    xyo

    MxMyMxy

    =

    B11 B12 B13B12 B22 B23B13 B23 B33

    xo

    yo

    xyo

    +

    D11 D12 D13D12 D22 D23D13 D23 D33

    xo

    yo

    xyo

    laminate theory: ABBD matrix relations

    symmetric laminated materials - ABBD matrix reduced to:

    NxNyNxy

    =

    A11 A12 A13A12 A22 A23A13 A23 A33

    xo

    yo

    xyo

    MxMyMxy

    =

    D11 D12 D13D12 D22 D23D13 D23 D33

    xo

    yo

    xyo

  • material properties of IM6/3501-6 (graphite fiber/epoxy)

    Base properties of (IM6) graphite fibersProperty Units Nominal values

    E11 GPa 258.59E22, E33 GPa 13.90G12, G13 GPa 50.85

    G23 GPa 8.2612, 13 - 0.2623 - 0.331 1/oC -0.855x10-6

    2, 3 1/oC 3.24x10-6Vf - 63%

    Base properties of (3501-6) EpoxyE GPa 4.34G GPa 1.59 - 0.36 1/oC 40.5x10-6Vm - 37%

    Base properties of IM6/3501-6 graphite fiber/epoxy1 GPa 164.532,3 GPa 7.6583

    G12,G13 Gpa 4.0937G23 GPa 2.853312,13 - 0.296923 - 0.3421, 1/oC -0.4513x10-62,3 1/oC 17.03x10-6

  • If the graphite-epoxy material is cooled (T= 75oC), and no initial strainis applied, what are the resulting residual stresses in each direction?

    1 2 3

    =

    C11 C12 C13C12 C22 C23C13 C23 C33

    0 1T0 2T0 3T

    =

    166.79 3.499 3.4993.499 8.7458 3.03933.499 3.0393 8.7458

    0.00003384750.001276950.000127695

    =

    3.314.914.9

    (MPa)

    solution:1. use THREESC.F to obtain Cij2. use ALFA12.F to obtain 1 and 23. use the matrix operation:

    example I

  • example II. stretch-twist coupling.

    For a symmetric laminated composite material with lay up [0/45/90]4s - if a tensile loadis applied in the x-direction, what would happen if one of the layers is (inadvertantly)dropped?z

    x

    0o45o

    -45o90o

    90o-45o45o0o

    90o-45o45o0o

    0o45o

    -45o90o

    x

    0o45o

    -45o90o

    90o-45o45o0o

    90o-45o45o0o

    0o

    -45o90o

  • Solution: use STRESS.F equal thicknesses for each layer assumed input E1, E2, G12, 12, and layer thickness the difference of ABBD matrix between the two cases

    A =108.0 34.08 034.08 108.0 00 0 36.97

    B =0 0 00 0 00 0 0

    D =30.92 6.966 1.2626.966 15.78 1.2621.262 1.262 7.583

    [0/45/90/ 0/45/90]S [0/45/90/0/-45/90/90/45/0/90/45/0]

    A =103.2 30.05 3.94230.05 103.2 3.9423.942 3.942 32.76

    B =0.4081 0.3804 0.39420.3804 1.169 0.39420.3942 0.3942 0.3804

    D =25.88 5.647 0.27925.647 12.79 0.2792

    0.2792 0.2792 6.155

    by applying 100MN in x-direction, we find for the curvatures: x=0, y=0, xy=0 x=0.1518e-4, y=-0.44293e-3, xy=0 .3149e-3vs.

    example II. stretch-twist coupling.

  • -Fx Fx

    symmetric case

  • -Fx Fx

    asymmetric case

  • macro-scale mechanics analysis

    micro-scale mechanics analysis

    ABBD matrix

    maximum stress failure criterion

    outlines

  • maximum stress failure criterion:

    the maximum stress in the fiber direction equals the maximumstress in a uniaxial specimen of the same material loaded inthe fiber direction when it fails;

    the maximum stress perpendicular to the fiber direction equalsthe maximum stress in a uniaxial specimen of the samematerial loaded perpendicular to the fiber direction when itfails;

    the maximum shear stress in the 1-2 plane equals themaximum shear stress in a specimen of the same materialloaded in shear in the 1-2 plane when it fails.

    1C

  • example III.

    A symmetric graphite-reinforced composite plate as [45/02]S is subjected toonly thermal loading (below). At what temperature will the composite platefail? In what mode? Base your answer on the maximum stress criterion.

    10012F502T

    -2002c15001T-12501c

    failure stresses (MPa)graphite-reinforced composites

    24.3x10-6/oC2, 3-0.01800x10-6/oC1

    4.40GPaG13,G12

    3.20GPaG23

    0.24812, 130.45823

    12.10GPaE2, E3

    155.0GPaE1

    typical engineeringproperties of graphite-

    polymer composite

  • solution:

    0-0.1959n-0.11879n0o-0.038577n-0.23602n0.55075n-45o0.038577n-0.23602n0.55075n45o

    1221layer

    Failure is due to tensile stress, perpendicular to fibers in the 45o layers bydecreasing the temperature by 211.84oC!

    use STRESS.F

    example III

    -255.231021-12627105230o-25922592-211.84847.4-27232270-45o

    2592-2592-211.84847.4-2723227045o

    12F- 12F2T2c1T1clayer

    failure mode

  • download and compile instructions

    1. Login into any CAEN UNIX machines2. Make a directory, which is a directory for storage the file, by using %mkdir

    hyer_directory. You can use other than hyer_directory for your favor.3. Under %, type in cd ~chiawei/Public4. You will need to copy a file Hyer.tar.gz into the directory you created at step 2 by using

    the following command %cp Hyer.tar.gz ~/hyer_directory/5. Then go to your hyer_directory by %cd ~/hyer_directory6. Then you will need to uncompressed the the file with the following two commands

    % gzip -d Hyer.tar.gz % tar -xvf Hyer.tar7. You will see a directory named Hyer created at your hyer_directory.8. Goto Hyer directory by using % cd Hyer9. There are 15 files and one directory SUN. Under SUN direcotry are all executable files

    of the 14 FOTRAN codes. Sometimes, depending your account setup, you might need touse % chmod +x *.exe to make all executable files work.

    10. If you want to compile the FORTRAN codes by yourself. Please use the followingcommand % f77 -o e1.exe E1.F for example to compile E1.F.