large scale epitope identification screen and its potential application to the study of alopecia...

18
Technology is available to generate targeted experimental data Technology advancement allow high throughput antigen and epitope identification Combination of bioinformatics, proteomics, next generation sequencing and high throughput assays Several NIAD contracts tackled biodefense targets, emerging and reemerging diseases, and allergens Field moving past anecdotal evidence, into population based studies

Upload: national-alopecia-areata-foundation

Post on 14-Feb-2017

13 views

Category:

Health & Medicine


0 download

TRANSCRIPT

Page 1: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

Technology is available to generate targeted experimental data

• Technology advancement allow high throughput antigen and epitope identification

• Combination of bioinformatics, proteomics, next generation sequencing and high throughput assays

• Several NIAD contracts tackled biodefense targets, emerging and reemerging diseases, and allergens

• Field moving past anecdotal evidence, into population based studies

Page 2: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

Large scale epitope identification suggests new vaccine targets

2Lindestam Arlehamn et al. PLoS Pathog. 2013

Page 3: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

Large scale epitope identification enables novel insights in T cell biology

A

B

Figure 4

IKZF2!ADAM12!

40!

40!

40!

40!

40!

0!

4!

4!

4!

4!

4!

0!

RORC!

500!

0!

250!

0!

125!

250!

IL17RE!

40!

40!

40!

40!

40!

0!

200!

0!

400!

Log

2 F

C!

Th* > All!Th* < All!

Th1 vs Th17 gene signature !

Th

1!

Th

17

!T

h2

!T

h*&

Te

t+

!

Th1! Th17!

Th*gene signature!

Su

bje

cts

!

HC !

LTBI!

Th* ˜ Th1! Th*! ˜ Th17!

EOMES!TBX21!

Th2!

Th*!

Th17!

Th1!

120!

Tet+ !

120!

120!

120!

120!

0!

40!

40!

40!

40!

40!

0!

600!

300!

0!

300!

150!

0!

Th2!

Th*!

Th17!

Th1!

Tet+ !

IL12RB2!CCR2! IL23R!

Th2!

Th*!

Th17!

Th1!

120!

Tet+ !

120!

120!

120!

120!

0!

40!

40!

40!

40!

40!

0!

4!

4!

4!

4!

4!

0!

120!

60!

0"

400!

200!

0"

400!

200!

0"

BAFF(TNFSF13B)!KIT(CD117)! TIGIT!

120!

120!

120!

120!

120!

0!

40!

40!

40!

40!

40!

0!

4!

4!

4!

4!

4!

0!

150!

75!

0"

300!

150!

0"

500!

250!

0"

GZMK!GZMA! GZMM!

120!

120!

120!

120!

120!

0!

40!

40!

40!

40!

40!

0!

4!

4!

4!

4!

4!

0!

4000!

2000!

0!

3000!

1500!

0!

80!

40!

0!

PRF1, GZMK, GZMA, EOMES,TBX21!GZMM!RORC, ADAM12, IL17RE!

mR

NA

no

rma

lize

d c

oun

ts!

PRF1!

120!

120!

120!

120!

120!

0!

2000!

0!

1000!

ZBTB7B (ThPOK)!

70!

70!

70!

70!

70!

0!

0!

200!

400!

15!

15!

15!

15!

0!

0!

400!

800!

15!

50!

0"

100!

280!

320!

//!

//!

IKZF2!CCR2, IL12RB2, IL23R, KIT, BAFF,ABCB1!TIGIT, ZBTB7B!Examples: !

TT

T!

T!

T! Tet+!

ABCB1(MDR1)!

15!

15!

15!

15!

15!

0!

300!

0!

150!

A

B

Figure 4

IKZF2!ADAM12!

40!

40!

40!

40!

40!

0!

4!

4!

4!

4!

4!

0!

RORC!

500!

0!

250!

0!

125!

250!

IL17RE!

40!

40!

40!

40!

40!

0!

200!

0!

400!

Log

2 F

C!

Th* > All!Th* < All!

Th1 vs Th17 gene signature !

Th

1!

Th

17

!T

h2

!T

h*&

Te

t+

!

Th1! Th17!

Th*gene signature!

Su

bje

cts

!

HC !

LTBI!

Th* ˜ Th1! Th*! ˜ Th17!

EOMES!TBX21!

Th2!

Th*!

Th17!

Th1!

120!

Tet+ !

120!

120!

120!

120!

0!

40!

40!

40!

40!

40!

0!

600!

300!

0!

300!

150!

0!

Th2!

Th*!

Th17!

Th1!

Tet+ !

IL12RB2!CCR2! IL23R!

Th2!

Th*!

Th17!

Th1!

120!

Tet+ !

120!

120!

120!

120!

0!

40!

40!

40!

40!

40!

0!

4!

4!

4!

4!

4!

0!

120!

60!

0"

400!

200!

0"

400!

200!

0"

BAFF(TNFSF13B)!KIT(CD117)! TIGIT!

120!

120!

120!

120!

120!

0!

40!

40!

40!

40!

40!

0!

4!

4!

4!

4!

4!

0!

150!

75!

0"

300!

150!

0"

500!

250!

0"

GZMK!GZMA! GZMM!

120!

120!

120!

120!

120!

0!

40!

40!

40!

40!

40!

0!

4!

4!

4!

4!

4!

0!

4000!

2000!

0!

3000!

1500!

0!

80!

40!

0!

PRF1, GZMK, GZMA, EOMES,TBX21!GZMM!RORC, ADAM12, IL17RE!

mR

NA

no

rma

lize

d c

oun

ts!

PRF1!

120!

120!

120!

120!

120!

0!

2000!

0!

1000!

ZBTB7B (ThPOK)!

70!

70!

70!

70!

70!

0!

0!

200!

400!

15!

15!

15!

15!

0!

0!

400!

800!

15!

50!

0"

100!

280!

320!

//!

//!

IKZF2!CCR2, IL12RB2, IL23R, KIT, BAFF,ABCB1!TIGIT, ZBTB7B!Examples: !

TT

T!

T!

T! Tet+!

ABCB1(MDR1)!

15!

15!

15!

15!

15!

0!

300!

0!

150!

Increased cell survival and proliferationIncreased resistance to TB

Increased persistence

Cytotoxic CD4+

Lindestam Arlehamn et al. JI 2014

Page 4: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

Large scale epitope identification enables definition of correlates of protection

• High resolution map of T cell responses in the general population of an endemic area (Sri Lanka)

• 408 epitopes described, 80% novel

• Over 700 patients from hyperendemic areas

• CD8 T cells are associated with protection from DENV

4Weiskopf et al. PNAS 2013

0 5 10 15 200

100

200

300

400

5001000

1500

2000

Average response per HLA

p= 0.05

Protection ------- Susceptibility

Av

era

ge

SF

C/ H

LA

Magnitude per responder

0 5 10 15 200

1000

2000

3000

4000

5000p= 0.04

Protection ------- Susceptibility

Av

era

ge

SF

C / r

es

po

nd

er

Frequency of responses

0 5 10 15 200

10

20

30

40p= 0.36

Protection ------- Susceptibility

Fre

qu

en

cy

of

res

po

nd

ers

[%

]

Magnitude per Epitope

0 5 10 15 200

100

200

300

400

500p= 0.02

Protection ------- Susceptibility

Avera

ge S

FC

/ ep

ito

pe

Breadth of response

0 5 10 15 200

5

10

15

20

25

p= 0.2

Protection ------- Susceptibility

Av

era

ge

nu

mb

er

of

ep

ito

pe

s / r

es

po

nd

er

Page 5: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

Novel protein identification immunoproteomics

• Pollen extract separated on 2D gel

• Spots picked, based on antibody or protein staining

• Spots cut out from gel, analyzed in mass spectrometer

• 83 new proteins from 2D gel + 10 proteins from whole extract mass spec were chosen for further studies

Schulten et al. PNAS 2013

Page 6: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

T cell antigen identification based on HLA class II binding predictions

• Predict peptides binding to a panel of 25 HLA class II molecules (DR, DP, DQ)

• Synthesize 822 peptides that bind promiscuously (>12 HLA variants)

• Test peptides as pools for IL-5 production in PBMC from TG allergic donors

Page 7: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

A majority of Th2 cells in allergic donors target novel epitopes

7

IL-5

TG

Ext

ract 1 2 3 4 5 1 2 3 4 5 6 7 8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

0

20

40

60

80

100

% R

esp

on

de

rs

Allergics

Normals

Known allergens

Novel antigens

IL-5

Allergics Normals0

500

1000

1500

2000

2500

SF

C/1

0 6

PB

MC

Known

Novel

A

B

Novel antigens are therapeutic in allergy models

Page 8: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

Towards large-scale screen of potential targets for T cell recognition in AA

• The issue of large versus small

• Donor recruitment

• HLA typing of donor cohort

Page 9: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

The issue of large versus small for large-scale screens

• According to one approach, it is most relevant to study in situ T cells during acute episodes

• High in biological relevance - but not suited to high throughput epitope/antigen identification

• Memory and resident T cells, especially away from acute phases, recirculate in the periphery and they are readily detected in PBMC

• Examples from TB, allergies, influenza, herpes…

Page 10: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

Donor recruitment• Based on these considerations we moved to

enroll AA donors through community outreach

• The AA community is in general eager to help, amenable to full unit donations

Page 11: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

Reported HLA associations in AA

• Increased frequency of DQB1*03, coding for DQ7

heterodimers in patients when compared with

controls British Journal of Dermatology 165(4):823-7

• HLA-DR4, DR11 and DQ*03 alleles increased in

unrelated AA patients compared with controls. Journal of

Inv. Derm. Symp.Proc. Vol 4;3, December 1999

• Most recent metanalysis Betz RC et al. Nat Commun. 2015

Jan 22;6:5966

• Class II association, but CD8 infiltrate -> a conservative

approach would target both

Page 12: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

HLA typing of donor cohort

Allele Genes GF alopecia GF common

A*01:01 1 2.8 8.5

A*02:01 13 36.1 13.5

A*02:05 2 5.6 1.2

A*02:06 1 2.8 2.5

A*03:01 1 2.8 8.0

A*11:01 6 16.7 6.7

A*24:02 4 11.1 8.8

A*24:159 1 2.8

A*25:01 1 2.8 1.2

A*29:02 2 5.6 1.5

A*30:01 2 5.6 2.6

A*32:01 1 2.8 2.9

A*68:01 1 2.8 2.3

Expected

3

5

0

1

3

2

3

0

0

1

1

1

1

(p=0.02) not bonferroni corrected

Page 13: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

A list of over 300 potential targets

• Compiled from published proteomic studies, gene expression data (genes down in AA vs. control scalp), and several additional hair follicle proteins

• Many keratins and keratin-associated proteins– Because of protein homology a more limited set of

peptides maybe required

• Trichohyalin and keratins are heavily modified– We do not know which proteins are modified and where

/how

– we focused on unmodified versions, hoping to detect reactivity against non-modified peptides

Page 14: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

Peptide selection strategy311 unique protein sequences (UniProt) –

Clustered at 50% identity threshold (UCLUST)

15-mers overlapping by 10aa + variants from alignment

Predictions for general Class II DR & A*02:01

2278 MHC class II peptides

(10%-ile +DQB1*03:01)

2000 MHC class I

(1%-ile)

www.iedb.orgMHC binding tool v. 2.15.1

Page 15: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

Overall message

• Technology is available to generate targeted experimental data

• We have recruited an initial donor cohort (and age matched controls)

• Assembled a target set of over 300 proteins

• The IEDB analysis resource can be used to predict epitopes

Page 16: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

Acknowledgments

• Sinu Paul

• John Sidney

• April Frazier

• Cecilia Lindestam Arlehamn

• AA donors

• LJI clinical coordination team

• Angela Christiano

• Annemieke De Jong

Page 17: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata
Page 18: Large Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata

HLA typing of donor cohort

Allele Genes GF alopecia GF SD GF common Expected

DRB1*01:01 2 5.6 4.7 2.8 2

DRB1*01:03 1 2.8 0.4 0.4 0

DRB1*03:01 1 2.8 8.0 7.1 3

DRB1*04:01 2 5.6 5.3 2.3 2

DRB1*04:07 2 5.6 1.8 2.4 1

DRB1*07:01 5 13.9 8.0 7.0 3

DRB1*08:03 1 2.8 0.6 3.8 0

DRB1*08:04 1 2.8 0.7 1.1 0

DRB1*10:01 1 2.8 1.1 1.9 0

DRB1*11:01 3 8.3 5.6 6.1 2

DRB1*11:02 1 2.8 0.7 1.1 0

DRB1*11:04 2 5.6 2.3 1.4 1

DRB1*12:01 1 2.8 2.2 2.0 1

DRB1*13:01 2 5.6 5.5 3.2 2

DRB1*13:15 1 2.8 0.0 0

DRB1*14:01 1 2.8 3.4 0

DRB1*14:02 1 2.8 2.8 0

DRB1*14:06 1 2.8 0.2 0.6 0

DRB1*15:01 6 16.7 14.2 6.3 5

DRB1*16:02 1 2.8 0.4 3.9 0