largeeddy simulation jhu-les code, stevens et al, jrse ...stevens, gayme, meneveau, jrse 7, 023115...

10
W NDINSPIRE Large eddy simulation JHU-LES code, Stevens et al, JRSE (2014) Visualization courtesy of D. Bock (Extended Services XSEDE) “optimal” spacing? Combining economic and fluid dynamic models to determine optimal spacing in very large windfarms Richard Stevens 1,2 Benjamin Hobbs 1,3 Andres Ramos 4 Charles Meneveau 1 1. Whiting School of Engineering, The Johns Hopkins University 2. University of Twente, The Netherlands 3. Chair, CAISO Market Surveillance Committee 4. Comillas Pontifical University, Spain “optimal” spacing? Outline 1. Wake modeling 2. Modeling of tradeoffs: Wake power loss vs Wind farm size costs 3. Results MIN Cost MAX Profit, if limited land Effect of turbulenceinfluenced O&M Effect of alignment

Upload: others

Post on 22-Jun-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Largeeddy simulation JHU-LES code, Stevens et al, JRSE ...Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015); Stevens et al. to be submitted = (sx*sy)1/2 Outline 1. Wake modeling 2. Modeling

W NDINSPIRE

Large eddy simulation JHU-LES code, Stevens et al, JRSE (2014) Visualization courtesy of D. Bock (Extended Services XSEDE)

“optimal” spacing?

Combining economic and fluid dynamic models to determine 

optimal spacing in very large wind‐farms

Richard Stevens1,2

Benjamin Hobbs1,3

Andres Ramos4

Charles Meneveau1

1. Whiting School of Engineering, The Johns Hopkins University

2. University of Twente, The Netherlands3. Chair, CAISO Market Surveillance Committee4. Comillas Pontifical University, Spain

“optimal” spacing?

Outline

1.   Wake modeling2.   Modeling of tradeoffs: 

Wake power loss vsWind farm size costs

3.   Results• MIN Cost• MAX Profit, if limited land• Effect of turbulence‐influenced O&M• Effect of alignment

Page 2: Largeeddy simulation JHU-LES code, Stevens et al, JRSE ...Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015); Stevens et al. to be submitted = (sx*sy)1/2 Outline 1. Wake modeling 2. Modeling

Barthelmie, et al. J. Physics Conf. Series 75 (2007), 012049

Depending on wind direction, loss of power ~50%!

Wake effects in large wind-farms

Spacing 9.4D

Spacing 10.5D

Spacing 7.0D

Horns Rev layout

Observed

Coupled wake boundary layer model

Combines strength of two models:

• Wake model approach (e.g., Jensen 1983)

+ Works well in entrance regime

- Doesn’t in fully developed regime

Internal boundary layer

• ‘Top-down’ approach (Frandsen, 2006; Calaf, Meneveau, Meyers, 2010)

- No info on turbine positions

+ Captures interaction with

atmospheric boundary layer

Page 3: Largeeddy simulation JHU-LES code, Stevens et al, JRSE ...Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015); Stevens et al. to be submitted = (sx*sy)1/2 Outline 1. Wake modeling 2. Modeling

• Turbine velocity (fully developed regime) depends on sye (top-down), kw (wake); iterate until get same velocity in both models

• Two way coupling leads to improved results!Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015)

Coupled wake boundary layer model

Model comparison: Generic Farm(Neutral stability, Region II operation)

Symbols: LES results; Lines: model resultsColors: sy=3.49

sy=5.23sy=7.85

CWBL model captures effects in both aligned and staggered wind-farms; “Top-down” or wake models don’t.Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015); Stevens et al. to be submitted

= (sx*sy)1/2

Page 4: Largeeddy simulation JHU-LES code, Stevens et al, JRSE ...Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015); Stevens et al. to be submitted = (sx*sy)1/2 Outline 1. Wake modeling 2. Modeling

Outline

1.   Wake modeling2.   Modeling of tradeoffs: 

Wake power loss vsWind farm size costs

3.   Results• MIN Cost• MAX Profit, if limited land• Effect of turbulence‐influenced O&M• Effect of alignment

Objective: Develop better understanding of

optimal wind turbine spacing in large wind-farms

Industry approach: Site-specific optimization for turbine placement with Jensen-type models. Typical: Sopt ~6 - 10D

Surprisingly “large” spacing from simple(st) model (Meyers & Meneveau, Wind

Energy, 2012):Optimal spacing Sopt ~12-15D for very large wind farms (top-down model)

• Accounted for land & turbine costs, but not cable/road costs

Questions: 1. What is the effect of including linear costs (cables, roads, losses)?2. How robust are results to optimization criteria?

i. Min cost/MWh (unlimited land)ii. Max profit/km2 (limited land)

3. How do results depend on wind farm layout (staggered vs. aligned)?

Page 5: Largeeddy simulation JHU-LES code, Stevens et al, JRSE ...Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015); Stevens et al. to be submitted = (sx*sy)1/2 Outline 1. Wake modeling 2. Modeling

Parameters consideredNormalized w.r.t. turbine costs

Area (land) cost

Linear (cable, road, loss) costs

Revenue

Maintenance cost

Outline

1.   Wake modeling2.   Modeling of tradeoffs: 

Wake power loss vsWind farm size costs

3.   Results• MIN Cost• MAX Profit, if limited land• Effect of turbulence‐influenced O&M• Effect of alignment

Page 6: Largeeddy simulation JHU-LES code, Stevens et al, JRSE ...Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015); Stevens et al. to be submitted = (sx*sy)1/2 Outline 1. Wake modeling 2. Modeling

Power Loss—Distance Cost Tradeoffs

Land:• Land cost = 0.001

• Length cost = 0.004

Off-Shore:• Land cost < 0.0001

• Length cost = 0.01(Royalties ~$5000/ha)                                                  (Lease cost ~$100/ha)

(Cables ~ $60/m; Roads ~$80/m;                               (Cables ~$1000/m ,60 W/m/turbine loss)                                                   70 W/m/turbine loss)

Normalized Turbine Cost

Interturbine distance (multiple S of rotor diameter D)

Optimize normalized costs

Define costs as

This gives the following normalized power per unit cost

Page 7: Largeeddy simulation JHU-LES code, Stevens et al, JRSE ...Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015); Stevens et al. to be submitted = (sx*sy)1/2 Outline 1. Wake modeling 2. Modeling

Effect of linear & area costs

Increase area (land) costs

Incr

ease

line

ar (

cabl

e, r

oad)

cos

ts

Off‐shore

Land

If (1) land limited and (2) wind highly profitable want to squeeze in more turbines! Define profit per unit area:

{} / (sD)2

Optimize profit in fixed area

This gives the following normalized profit:{ } / s2

Page 8: Largeeddy simulation JHU-LES code, Stevens et al, JRSE ...Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015); Stevens et al. to be submitted = (sx*sy)1/2 Outline 1. Wake modeling 2. Modeling
Page 9: Largeeddy simulation JHU-LES code, Stevens et al, JRSE ...Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015); Stevens et al. to be submitted = (sx*sy)1/2 Outline 1. Wake modeling 2. Modeling

Optimize profit with O&M cost as function of turbulence

(turbulence-influenced O&M ~10% of levelized capital cost)

γ=1.25 γ=1.5 γ=2

• Turbulence-sensitive O&M wider optimal spacing As reduced maintenance costs compensate in part for reduced

revenues from having fewer turbines

OL

Effect of farm layout on optimal spacing(area costs only)

Best Aligned Staggered

Best: Minimize wake effects for given wind turbine density

Page 10: Largeeddy simulation JHU-LES code, Stevens et al, JRSE ...Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015); Stevens et al. to be submitted = (sx*sy)1/2 Outline 1. Wake modeling 2. Modeling

ConclusionsContribution: Optimum spacing for large farm with:

• CWBL model• Area & linear costs

Under our parameters: • Min cost in infinite farm Sopt ~ 10‐15D• Max profit in limited area  closer (depending on profit/turbine)

• Considering turbulence‐sensitive O&M  spread out

Sopt sensitive to:• Length costs (especially off‐shore farms) • Area costs (especially on‐shore)

W NDINSPIRE