laser interaction: thermal and mechanical coupling … · the thermal and mechanical coupling of...

16
HAL Id: jpa-00220563 https://hal.archives-ouvertes.fr/jpa-00220563 Submitted on 1 Jan 1980 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. LASER INTERACTION : THERMAL AND MECHANICAL COUPLING TO TARGETS R. Root To cite this version: R. Root. LASER INTERACTION: THERMAL AND MECHANICAL COUPLING TO TARGETS. Journal de Physique Colloques, 1980, 41 (C9), pp.C9-59-C9-73. 10.1051/jphyscol:1980909. jpa- 00220563

Upload: others

Post on 06-Nov-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

HAL Id: jpa-00220563https://hal.archives-ouvertes.fr/jpa-00220563

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

LASER INTERACTION : THERMAL ANDMECHANICAL COUPLING TO TARGETS

R. Root

To cite this version:R. Root. LASER INTERACTION : THERMAL AND MECHANICAL COUPLING TO TARGETS.Journal de Physique Colloques, 1980, 41 (C9), pp.C9-59-C9-73. �10.1051/jphyscol:1980909�. �jpa-00220563�

Page 2: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

JOURNAL DE PHYSIQUE CoZZoque C9, supptdment au n022, Tome 41, novernbre 2980, page ~ 9 - 5 9

LASER INTERACTION : THERMAL AND MECHANICAL COUPLING TO TARGETS

R.G. Root

PhysicaZ Sciences Inc. Wobm, MA 01801 U.S.A.

Abstract.- The physical phenomena which inf luences thermal and mechanical coupling of in f ra red l a s e r -- r a d i a t i o n t o mate r ia l s a r e reviewed. Both pulsed and CW i n t e r a c t i o n s a r e considered, but the interac- t i o n of pulsed l a s e r s with metals i n an a i r environment i s emphasized. Selected examples of vacuum in- t e r a c t i o n s and coupling t o non-metals a r e a l s o included.

1. INTRODUCTION

When a pulsed l a s e r beam i r r a d i a t e s a surface,

t h e f r a c t i o n of t h e incident energy coupled l o c a l l y

i n t o t h e t a r g e t and the impulse imparted t o t h e

t a r g e t vary s t rongly according t o which physical

phenomena dominate t h e i n t e r a c t i o n s with t h e t a r -

ge t . For example, a t low l a s e r i n t e n s i t i e s the

thermal energy deposited i n a metal surface is con-

t r o l l e d by t h e i n t r i n s i c absorp t iv i ty of t h e metal.

However, a t higher i n t e n s i t i e s , where an a i r plasma

i s ign i ted , the f r a c t i o n of t h e l a s e r energy t rans -

f e r r e d t o t h e surface l o c a l l y can be dramatical ly

increased.''' This e f f e c t i s c a l l e d the enhanced

thermal coupling. A t even higher i n t e n s i t i e s , t h e

l o c a l coupling decreases and may f a l l below t h e

i n t r i n s i c absorptance." Thus, t h e f r a c t i o n of

energy deposited i n a mate r ia l i s a s e n s i t i v e func-

t i o n of t h e l a s e r parameters - in tens i ty , pu lse

time, and spot s ize . The purpose of t h i s paper

i s t o review the physical phenomena which inf luence

t h e thermal and mechanical coupling of l a s e r rad i -

a t i o n t o mater ials .

The approach which is followed is: (1) t o

choose a few important in te rac t ions , (2) t o de-

sc r ibe them b r i e f l y , and (3) t o i l l u s t r a t e t h e i m -

por tan t e f f e c t with se lec ted experimental r e s u l t s .

Because of t h e number o f l a s e r wavelengthes, t a r g e t

mate r ia l s , ambient condit ions and l a s e r pulse in-

t e n s i t i e s is overwhelmingly l a r g e , t h e scope of

t h i s review is l imi ted t o in f ra red l a s e r s (10.6 pm

8 2 and 3.8 pm) and t o i n t e n s i t i e s behw 10 ~ / c m .

Metals a r e t h e primary mate r ia l s considered, but

se lec ted non-met.als a r e included i n some i n t e r -

ac t ion regimes. The i n t e r a c t i o n s general ly occur

i n a i r a t s tandard condit ions, except f o r a few

examples of vacuum in te rac t ions . Analysis of t h e

mater ial response i s l imi ted t o the changes which

occur during t h e l a s e r pulse time which a f f e c t t h e

l ase r /mate r ia l surface in te rac t ion . The separat ion

of CW i n t e r a c t i o n s from pulsed i n t e r a c t i o n s is based

on t h e following a r b i t r a r y c r i t e r i o n : a CW i n t e r -

ac t ion is i n s e n s i t i v e t o temporal v a r i a t i o n s i n

l a s e r i n t e n s i t y ; conversely, a pulsed l a s e r in te r -

a c t i o n depends no t only on average i n t e n s i t y b u t

a l s o on temporal var ia t ions .

2. CW INTERACTIONS: THERMAL COUPLING

A t low l a s e r i n t e n s i t y , l a s e r rad ia t ion i n t e r -

a c t s with a mate r ia l by d i r e c t absorption; t h e frac-

t i o n of energy coupled t o t h e surface (hereaf te r

c a l l e d t h e thermal coupling c o e f f i c i e n t ) is given

by t h e i n t r i n s i c absorp t iv i ty of t h e mate r ia l . I n

t h i s coupling regime, t h e thermal coupling coef f i -

c i e n t depends only on t h e l a s e r wavelength and t h e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980909

Page 3: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

C9-60 JOURNAL DE PHYSIQUE

t a r g e t mate r ia l ; l a s e r parameters such a s i n t e n s i t y ,

f luence and spot s i z e a r e i r r e l e v a n t . Thus, t h e

coupling c o e f f i c i e n t can be determined with any

s e t of l a s e r parameters, provided they f a l l within

t h e i n t r i n s i c coupling regime.

However, a s t h e l a s e r i n t e n s i t y i s increased,

new phenomena occur, such a s t a r g e t h e a t i n g , ' t a r g e t

mass removal, vaporizat ion and plasma formation,

which modify the coupling and introduce a depend-

ence on l a s e r parameters. If the i n t r i n s i c absorp-

t i v i t y is a funct ion of t h e sur face temperature,

t i o n , melt removal and pyro lys i s . Even when t h e

mass removal mechanisms do no t a f f e c t t h e l o c a l

instantaneous coupling, they may still a f f e c t da ta

i n t e r p r e t a t i o n s . Experimental measurements of t h e

fluerice required t o vaporize t h i n t i tanium f o i l s

showed a sharp increase i n f luence a s t h e l a s e r

i n t e n s i t y increased; t h i s was i n t e r p r e t e d a s a t ran-

s i t i o n from a regime i n which melt removal dominated

t h e mass removal process b u t was accompanied by

vaporizat ion of melted d r o p l e t s t o a regime i n which

complete vaporizat ion occurred. 3

t h e instantaneous l o c a l absorbed energy f lux is The most dramatic a l t e r a t i o n of t h e thermal

s t i l l represented by t h e product of the i n t r i n s i c coupling occurs when a plasma is c rea ted over a

absorp t iv i ty of t h e surface a t t h e l o c a l tempera-

t u r e and t h e instantaneous l o c a l inc iden t i n t e n s i t y ,

but the l o c a l temperature depends upon t h e h i s t o r y

of absorbed energy f l u x over t h e e n t i r e l a s e r beam

in te rac t ion area. Thus, the thermal coupling co-

e f f i c i e n t i n general depends on a l l the l a s e r para-

meters, and experimental da ta can be understood

only by solving t h e coupled problem of t h e t a r g e t

thermal response t o t h e absorbed energy f l u x and

t h e change of absorbed energy f l u x with t a r g e t tem-

perature. This e f f e c t occurs, f o r example, i n alu-

minum. ~ ( l o s t e r m a n ~ observed an e f f e c t i v e coupling

c o e f f i c i e n t of .079 f o r vaporizing t h i n aluminum

f o i l s with 10.6 pm l a s e r rad ia t ion , whereas t h e

i n t r i n s i c room temperature absorp t iv i ty i s only .03.

Theoret ical ca lcu la t ions4 p r e d i c t an e f f e c t i v e cou-

p l ing of -11 which is in reasonable agreement with

t h e da ta .

I f t h e t a r g e t reaches high enough temperature

t o induce mass l o s s , t h e energy c a r r i e d away by

t h e removed mater ial must be properly accounted

f o r i n order .to determine the absorbed energy from

experimental data o r t o p r e d i c t t h e o r e t i c a l l y t h e

energy remaining i n t h e mater ial . Mass can be re-

moved by several processes; f o r example, vaporiza-

surface. The dynamics of a laser-produced plasma

above a sur face w i l l depend upon t h e i n t e n s i t y of

t h e inc iden t l a s e r pu lse and t h e pu lse durat ion.

A t l a s e r i n t e n s i t i e s s l i g h t l y g r e a t e r than t h e

plasma threshold i n t e n s i t y , a laser-supported com-

bust ion (LSC) wave5 is usua l ly ign i ted . LSC waves

4 a r e o f t e n seen a t i n t e n s i t i e s from 2 x 10 w/cm2 - 6 2

10 W/cm f o r 10.6 pm r a d i a t i o n with both pulsed

and CW l a s e r beams. The i g n i t i o n of an LSC wave

i n i t i a l l y t a k e s place i n t h e t a r g e t ~ a ~ o r . ~ * ~ The

heated t a r g e t vapor subsequently t r a n s f e r s i ts

energy t o t h e surrounding a i r . Once t h e a i r begins

t o absorb a s i g n i f i c a n t f r a c t i o n of t h e l a s e r ener-

gy, t h e LSC wave propagates i n t o t h e a i r along t h e

beam path.

The nature of t h e coupling i n t h e plasma re -

gime depends on i n t e n s i t y , spo t s i z e , pu lse time,

ambient a i r pressure and t h e t a r g e t mater ial . For

long pu lse times and low i n t e n s i t y t h e c rea t ion

of a LSC wave a t 10.6 Um usua l ly r e s u l t s i n cur-

t a i l i n g t h e thermal coupling a s the LSC wave pro-

pagates toward t h e l a s e r f lux . Thermal coupling

f o r sho t pu lse t imes and high inc iden t i n t e n s i t y

is t r e a t e d a s a pulsed in te rac t ion .

I t remains to'determine t h e time a t which va-

Page 4: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

por plasma ign i t ion occurs. The observed i g n i t i o n Experiments a t 5.0 pm ind ica te t h a t t h e vapor

time is t h e sum of t h e time required t o produce t h e

vapor and t h e time required t o breakdown t h e vapor.

The vapor production time is determined from t h e

t a r g e t thermal q s p o n s e t o the d i r e c t absorpt ion

of l a s e r rad ia t ion . The vapor breakdown time is

determined from t h e heat ing of t h e vapor by inverse

Bremsstrahlung absorpt ion of l a s e r rad ia t ion . The

dependence of the breakdown time on l a s e r i n t e n s i t y

and spo t s i z e is i l l u s t r a t e d i n Fig. 1 which com-

pares t h e t h e o r e t i c a l p red ic t ions of P i r r i 6 t o t h e

experimental data of Klosterman. Theoret ical pre-

d i c t i o n s of breakdown times a r e shown f o r 1-D

planar vapor dynamics, and two-dimensional (axisym-

metr ic) vapor dynamics f o r a l a s e r spo t rad ius of

-5 cm. I n t h e experiments t h e l a s e r i n t e n s i t y was

changed by changing t h e spot s ize . Thus, a t low

in tens i ty , where the spot , r ad ius i n 1 cm, t h e da ta

agrees with t h e one-dimensional p red ic t ion , whereas

a t higher i n t e n s i t i e s , a s t h e spo t s i z e shr inks t o

0.25 cm and t h e vapor dynamics becomes two-dimen-

s iona l , t h e data tends towards the 2-D predict ion.

A ALUMINUM DATA (KLOSTERMAN) FOR 0.25 5 r s I 1 CM

- THEORY (PIRRI)

- - - -

NO IGNITION -

SUPERSONIC -

Fig. 1 Time t o i g n i t e laser-supported combustion wave vs. l a s e r i n t e n s i t y , from Ref. 6.

-2 breakdown time s c a l e s a s (wavelength) , a s expected

from inverse Bremsstrahlung absorption. 3,6

3. CW INTERACTIONS - MECHANICAL COUPLING

Bulk vaporizat ion of t a r g e t mate r ia l generates

sur face pressure and impulse. The vapor pressure

on t h e surface depends on t h e ambient pressure, t h e

l a s e r i n t e n s i t y I ( t ) , l a s e r spo t rad ius and t h e de-

t a i l e d thermal response on t h e t a r g e t . A t h igh in-

t e n s i t y , where t h e background pressure i s i r r e l e -

vant , o r i n vacuum, o r f o r t imes s h o r t enough f o r

p lanar vapor dynamics t o be v a l i d t h e surface pres-

sure p can be adequately with

a n a l y t i c models. Even when a steady s t a t e pressure

regime is achieved, .'the observed coupling may show

a time dependence. Calculat ions of t h e ins tan ta -

neous mechanical coupling, p ( t ) /I ( t ) and t h e in te -

g ra ted coupling c o e f f i c i e n t C ( t ) , defined a s

a r e shown i n Fig. 2 a s a funct ion of time. Vapor-

i z a t i o n begins a t time Tv. These calculat ionS a r e

f o r carbon phe?olic t a r g e t s i r r a d i a t e d by 1 &/cm 2

of 10.6 u m radiation. ' It takes t e n times a s long

t o approach t h e steady s t a t e pressure a s it does

t o i n i t i a t e vaporizat ion; and t h e integrated ' cou-

p l ing c o e f f i c i e n t increases even more slowly.

cornon Pnenallc I - 106 w/d o - 0.81

- lnstonto eous caualinp caefflclen Intenrot d counllng coefflclent

IYU ond Nebolrlne)

Fig. 2 Mechanical coupling c o e f f i c i e n t f o r carbon phenolic i r r a d i a t e d by 10.6 pm rad ia t ion , from Ref. 9.

Page 5: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

JOURNAL DE PHYSIQUE

J u s t a s i g n i t i o n of a vapor plasma modifies

thermal coupling t o a surface, it a l s o a l t e r s t h e

mechanical coupling. I n an a i r environment, t h e

l a s e r surface i n t e r a c t i o n proceeds v i a LSC waves

10 o r laser-supported detonat ion (LSD) waves ; they

a r e discussed under pulsed coupling in te rac t ions .

I n a vacuum, however, t h e plasma is confined e n t i r e -

l y t o the vapor. The mechanical coupling of l a s e r s

t o sur faces through vapor plasma can be modelled

by r e l a t i n g t h e th ickness of t h e plasma t o t h e ab-

sorpt ion depth of t h e l a s e r r a d i a t i o n i n t h e va-

por. l1 The steady s t a t e coupling c o e f f i c i e n t f o r

a vacuum plasma decreases with i n t e n s i t y , whereas

t h e steady s t a t e coupling from vaporizat ion in-

c reases with i n t e n s i t y .

4. PULSED INTERACTION PHENOMENOLOGY

The phenomenology of t h e i n t e r a c t i o n of a

pulsed 10.6 v m pu lse with surfaces depends not only

on t h e average i n t e n s i t y of t h e pulse, b u t a l s o on

t h e temporal var ia t ions . A t y p i c a l temporal pu lse

shape is sketched i n Fig. 3. A t t h e leading edge

of t h e pulse there is a gain switched spike follow-

ed by a lower i n t e n s i t y t a i l . The spike l a s t s only

100-400 n s bu t i ts peak i n t e n s i t y i s usua l ly two

t o e i g h t times l a r g e r than t h e average i n t e n s i t y

of t h e t a i l . The t a i l , which c a r r i e s most of the

energy, t y p i c a l l y h a s a durat ion of 3-40 ps.

Time -

A i r plasmas can be c rea ted above sur faces by

t h e spike. This process is c a l l e d prompt i g n i t i o n

t o d i s t inguish it from the breakdown of t h e products

of bulk vaporizat ion which was discussed e a r l i e r .

Bulk vapor breakdown cannot occur u n t i l enough time

has elapsed f o r the surface t o reach t h e vaporiza-

t i o n temperature., The spike contains i n s u f f i c i e n t

energy t o cause bulk vaporizat ion, ins tead , i g n i t i o n

takes place rap id ly from loca l ized + f e c t s which

vaporize and break down. 12113 The spike, then, con-

t r o l s whether o r no t an a i r plasma is formed. The

threshold f o r prompt i g n i t i o n from aluminum is es-

2 t imated t o be a spike fluence12 of 1.7 J/cm , and

2 a spike in tens i ty14 of 10-30 MW/cm . Typical high

energy pu lses meet these requirements when the aver-

2 age i n t e n s i t y i n t h e t a i l is approximately 1 MW/cm .

I f no plasma is i g n i t e d during t h e spike, the

t a i l of t h e pulse is absorbed d i r e c t l y by t h e sur-

face , and t h e thermal coupling c o e f f i c i e n t is given

by t h e i n t r i n s i c absorp t iv i ty . I f a plasma is i n i -

t i a t e d , t h e subsequent in te rac t ion proceeds v i a LSC

wave f o r low average i n t e n s i t y ( l e s s than 8 MW/

15'16 and an LSD nave a t high i n t e n s i t y . A s cm )

a consequence of t h e i g n i t i o n process and t h e pre-

sence of t h e t a r g e t surface, a precursor shock pre-

cedes t h e LSC wave except a t t h e lowest i n t e n s i t i e s .

When t h e LSC wave has propagated f a r enough f o r two-

dimensional e f f e c t s t o dominate the plasma flow i n

t h e v i c i n i t y of t h e surface, t h e plasma configura-

t i o n resembles t h a t shown schematically i n Fig. 4a.

The LSC wave propagating i n t o t h e a i r behind t h e

precursor shock induces a flow towqrd t h e t a r g e t .

Close t o t h e surface t h e flow resembles a stagna-

t i o n po in t flow. A s tagnat ion po in t boundary layer

a n a l y s i s must be matched t o a c o r r e c t model f o r t h e

LSC wave propagating away from t h e surface i n order

Fig. 3 sketch of 10.6 u m temporal pulse shape. t o ob ta in t h e temperature and pressure d i s t r i b u t i o n

i n the plasma, t h e r a d i a t i v e t ranspor t t o t h e t a r -

Page 6: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

g e t and t h e conductive energy t r a n s f e r .

A t high l a s e r i n t e n s i t i e s , g r e a t e r than 8 MW/

cmL f o r 10.6 pm l a s e r rad ia t ion , a laser-supported

detonation (LSD) wave i s igni ted. A s impl i f i ed

model of t h e plasma configurat ion r e s u l t i n g from

LSD wave i g n i t i o n is shown i n Fig. 4b. The l a s e r

beam absorption takes place i n a t h i n zone of h o t ,

high pressur a i r behind t h e detonat ion wave. Since

t h e detonation wave drags a i r away from t h e surface,

expansion fans form t o s a t i s f y the boundary condi-

t i o n s of zero p a r t i c l e ve loc i ty a t t h e t a r g e t sur-

face . One-dimensional gas dynamics can be matched

t o detonation and planar b l a s t wave theory t o de-

s c r i b e t h i s aspec t of t h e flow f i e l d , and cy l indr i -

c a l blast-wave theory can be u t i l i z e d t o p a r t i c a l l y

account f o r two-dimensional e f f e c t s .I6 An unsteady

LASER BEAM M

SHOCK

a)

CONDUCTION LASER BEAM

BOUNDARY LAYER

CONDUCTION

Fig. 4 Sketch of l a s e r absorption wave plasma dynamics (a) LSC wave, (b) LSD wave. From Ref. 19.

boundary layer forms on the sur face ; it resembles

t h e boundary layer behind a propagating shock wave

a s t h e c y l i n d r i c a l b l a s t wave spreads out over the

t a r g e t . Energy is t rans fe r red from t h e plasma t o

the t a r g e t through t h i s boundary layer by rad ia t ion

and conduction.

5. LSD WAVE COUPLING: RADIAL EXPANSION EFFECTS

I n one-dimension t h e thermodynamic proper t i es

behind a t r u e LSD wave i s pred ic ted by t h e Raizer

theory.10 The a n a l y s i s of p i r r i 1 6 gives t h e condi-

t i o n s above t h e surface and t h e time h i s t o r y of the

plasma proper t ies a s t h e LSD wave propagates away

from t h e surface. A t 10.6 pm f o r an i n t e n s i t y of

2 20 MW/cm , the temperature and pressure above the

surface a r e predicted t o be 9000°K and 53 atm.,

respect ively. Under these condit ions t h e r a t i o of

the energy t rans fe r red from the plasma t o t h e t a r -

g e t by rad ia t ion and conduction t o t h e l a s e r ener-

gy w i l l be l e s s than 1% f o r l a s e r pulse times of

t h e order of t e n s of microseconds. 14

I n o rder t o c a l c u l a t e t h e t o t a l coupling coef-

f i c i e n t , plasma spreading must be included. The

plasma remains approximately one-dimensional u n t i l

t h e expansion fans from t h e edge of the spo t reach

t o a x i s of symmetry. This time is approximated by

t h e beam rad ius divided by t h e speed of sound i n

the plasma. The pressure decay can be approximated

16 by cy l indr ica l b l a s t wave theory f o r time s c a l e s

g r e a t e r than two-dimensional time scale . I n t h e

v i c i n i t y of the surface t h e r e is no l a s e r absorp-

t i o n ; t h e plasma proper t ies a r e determined from

i sen t rop ic expansion r e l a t i o n s . The energy t rans-

f e r a t any i n s t a n t of time is t h e sum of t h e boun-

dary layer hea t t r a n s f e r and rad ia t ion contribu-

t ions .

calculation^^^ f o r a two-dimensional LSD wave

2 plasma with a l a s e r i n t e n s i t y of 15 MW/cm , a spot

rad ius of 1 cm and a pulse time of 1 ps ind ica te

Page 7: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

C9-64 JOURNAL DE PHYSIQUE

t h a t : (I) r a d i a t i v e energy t r a n s f e r is minimal, (2)

boundary l a y e r energy t r a n s f e r dominates, a s the

plasma spreads ou t over t h e t a r g e t , f o r times up

t o 1000 psec, ( 3 ) f o r t h e 1 psec pulse t h e t o t a l

coupling c o e f f i c i e n t is approximately 25% b u t is

a r e s u l t of energy spread o u t over a l a r g e a rea com-

pared t o t h e spo t a rea , and (4) a s t h e l a s e r inten-

s i t y i s increased, the t o t a l coupling c o e f f i c i e n t

tends t o remain constant , b u t t h e energy is spread

out over a l a r g e r agea. Therefore, f o r s h o r t l a s e r

pulses the t o t a l coupling c o e f f i c i e n t is s i g n i f i -

can t ; however, t h e l o c a i energy t r a n s f e r r e d i n t o

the t a r g e t is no t g r e a t e r than would be obtained

i f no plasma was formed. F ina l ly , f o r t h i s calcu-

l a t i o n the coupling c o e f f i c i e n t var ied inversely

with pulse time.

The e f f e c t of plasma spreading on energy t rans -

f e r i n the LSD regime has been experimentally ob-

served, 17'18 and t h e thermal coupling is indepen-

dent of i n t e n s i t y f o r l a r g e targets .17 Total ther-

mal coupling of a pulsed 10.6 pm l a s e r t o nickel

a s measured by Hall e t a1.,18 is shown i n Fig. 5.

The nominal l a s e r pulse time is 6 psec. The t o t a l

coupling increases dramatical ly a f t e r a plasma is

ign i ted , bu t t h e coupling decreases a t higher inc i -

dent fluence because the plasma expands beyond t h e

t a r g e t .

Peok lncldent Fluence [ J / c ~

36

,25

- * .20-

'2

P - 2 .15 -

f L

1 . l o

Fig. 5 Thermal coupling of 10.6 pm r a d i a t i o n t o .: nickel . Data from Ref. 18.

6. LSC WAVE REGIME: ENHANCED LOCAL COUPLING

I g n i t i o n of an LSC wave can l e a d t o enhanced

1 l o c a l thermal coupling f o r aluminum surfaces. It

has been shown t h a t enhanced thermal coupling t o

aluminum is a r e s u l t of energy t rans fe r red by rad i -

a t i o n from t h e ho t , high pressure, laser-supported

plasma adjacent t o t h e t a r g e t . 5,19,20,21 A sketch

of t h e one-dimensional LSC wave plasma configura-

t i o n is shown i n Fig. 6. The l a s e r is inc iden t

from t h e r i g h t hand s ide. The gain switched spike

i g n i t e s an a i r plasma next t o t h e t a r g e t surface,

and t h e expansion of t h e plasma d r i v e s a precursor

shock i n t o t h e a i r . The l a s e r absorpt ion zone pro-

pagates i n t o t h e shocked a i r ; t h e absorpt ion occurs

e s s e n t i a l l y a t constant pressure and t h e propaga-

t i o n of t h e absorpt ion zone is cont ro l led by con-

duction and r a d i a t i v e t r a n s p o r t from t h e ho t plasma.

0 .

I I N1 Doto 1Holl et 01.) d -10 .6prn Rs = . I 6 cm RT - 1.6 cm

AIR

LSC WAVE

(LASER ABSORPTION ZONE)

l I l i l l

A

PRECURSOR SHOCK

I 1 I 1 1 1 1 1

~

0

FLUX

0 0

{;:::ctlQnl --• 0 Direct Absorntlon-----* -

Fig. 6 One-dimensional LSC wave configurat ion.

t-

The LSC wave propagates i n t o t h e shocked a i r a t

slow speed, and a l a r g e f r a c t i o n of t h e energy is

used t o h e a t t h e plasma t o a temperature of approx-

imately 2000OoK. This ho t plasma is capable of 0

r a d i a t i n g i n s p e c t r a l regions l e s s than 1250 A

which a r e wel l absorbed by the aluminum t a r -

ge t s . 20'21 The expansion of t h e a i r a s it is heat-

ed a c t s a s a p i s t o n which maintains t h e precursor

shock.

E f f i c i e n t l o c a l thermal coupling t o t h e sur-

face requ i res t h r e e c r i t e r i a t o be met: (1) a

Page 8: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

plasma must be ign i ted adjacent t o t h e surface; (2)

t h e plasma must be an LSC wave, and (3) t h e one-

dimensional configurat ion i l l u s t r a t e d i n Fig. 6 must

be maintained throughout t h e pulse. These require-

ments a r e s u f f i c i e n t t o i d e n t i f y t h e range of l a s e r

parameters corresponding t o t h e enhanced coupling

region. The e?hanced coupling region is i l l u s t r a t -

ed i n Fig. 7. The coordinates of t h e p l o t a r e

l a s e r i n t e n s i t y , I , and ?, which i s the la,ser pu lse

time T normalized by t h e time, TZD, a t which r a d i a l P

expansion of t h e high pressure plasma a f f e c t s t h e

cen te r of t h e l a s e r spot. (r2D is defined a s R/a P

where R is t h e rad ius of the l a s e r spo t and a is P

Fig. 7 Region of enhanced l o c a l thermal coupling.

t h e sound speed i n t h e plasma, approximately 4.5 x

5 10 cm/s.) Once r a d i a l expansion begins, t h e dy-

namics of t h e plasma no longer maintains t h e one-

dimensional character i l l u s t r a t e d i n Fig. 6; t h e

pressure drops and so does t h e plasma temperature.

A s a r e s u l t , t h e e f fec t iveness of t h e plasma i n

t ranspor t ing energy v i a rad ia t ion is rap id ly dimi-

nished. Thus, t h e region of ? > 1 is el iminated

from the enhanced coupling region because r a d i a l

expansion c u r t a i l s t h e r a d i a t i v e t r a n s p o r t before

t h e l a s e r pu lse is term-inated. The high i n t e n s i t y

region is el iminated because, above t h e LSD wave

2 t r a n s i t i o n threqhold of 8 W c m , an LSD wave i s

produced which h a s poor coupling. The low inten-

s i t y region, below t h e plasma i g n i t i o n threshold

of 1 MW/cm2, is el iminated because t h e gain switch

spike corresponding t o t h i s l a s e r i n t e n s i t y is not

s t rong enough t o c r e a t e a plasma over aluminum. The

remaining a rea is t h e enhanced coupling regime.

The 1-D plasma configurat ion shown i n Fig. 6

has been s tud ied t h e o r e t i c a l l y by many i n v e s t i g a t o r s

and a summary of t h e i r con t r ibu t ions is presented

i n Refs. 14 and 15. To p r e d i c t thermal coupling

the contr ibut ion of t h e r a d i a l l y expanding plasma

shown i n Fig. 4a must be included. To make quanti-

t a t i v e p red ic t ions , a model was synthesized 19,22

i n which t h e e a r l y time plasma cynamics was de-

scr ibed by t h e one-dimensional configurat ion of Fig.

6 and t h e l a t e time plasma dynamics was represented

by b l a s t wave decay laws of t h e appropriate geomet-

ry. The boundary between e a r l y time and l a t e time

was determined t o be t h e smaller of r and r P 2D'

Pred ic t ions made with t h i s model agreed with t h e

data within 30% over most of t h e range of i n t e r e s t .

A complementary approach which was an a x i a l l y sym-

metr ic numerical simulation has a l s o been develop-

ed,'' and t h e r e is good agreement between t h e pre-

d i c t i o n s of t h e two models.

A comparison of t h e a n a l y t i c a l model pr$dic-

t i o n s and experimental data of Rudder and Augus-

t ~ n i , ~ ~ and McKay e t a l . ,' a r e shown i n Fig. 8.

Fig. 8 Central thermal coupling t o aluminum by 10.6 pm l a s e r rad ia t ion . Comparison of d a t a and theory.

Page 9: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

JOURNAL DE PHYSIQUE

Since the experiments involve a range of in tens i -

t i e s , t h e t h e o r e t i c a l curves were ca lcu la ted f o r

two l i m i t i n g i n t e n s i t i e s . The da ta is general ly

i n agreement with t h e theory; i n p a r t i c u l a r t h e

p red ic ted decrease i n t h e l o c a l thermal coupling

with increasing 4 is observed. A more d e t a i l e d

comparison of thermal coupling da ta and theory i s

discussed l a t e r f o r oblique angles of incidence.

The amount of energy t r a n s f e r r e d t o t h e zur-

f a c e depends no t only on t h e r a d i a t i v e proper t i es

of t h e plasma, b u t a l s o on t h e s p e c t r a l absorption

c h a r a c t e r i s t i c s of the t a r g e t . The coupling of

metal surfaces o ther than aluminum i s determined

by using t h e appropriate s p e c t r a l absorp t iv i ty .

LSC wave plasmas tend t o r a d i a t e s t rongly i n 0

t h e s p e c t r a l region 1 < 1250 A. For shor t pulse

times and small spots , and a t low i n t e n s i t y most

of t h e rad ia t ion is emit ted a t wavelengths l e s s 0

than 1250 A, which a l l t h e metals absorb well.

There is l i t t l e d i f fe rence between t h e f luence ab-

sorbed by various metals f o r these l a s e r parameters.

~t longer pu lse times, o r higher in tens i ty , the

r a d i a t i o n i n t h e s h o r t wavelength regime becomes

sa tura ted and it is cont ro l led by t h e plasma tem-

pera ture c l o s e t o t h e t a r g e t , whereas t h e radi-

D

a t i o n in t h e band A > 1250 A, which is transparent ,

is cont inual ly increasing. Even with aluminum,

which absorbs long wavelenghs poorly, t h e long wave-

i n terms of t h e s p e c t r a l absorp t iv i ty . Thus, f o r

example, copper and s i l v e r , which a r e b e t t e r r e f l e c -

t o r s of 10.6 ym r a d i a t i o n than aluminum, a r e pre-

d ic ted t o absorb plasma rad ia t ion more s t rongly than

aluminum. For a l l o y s , t h e s t ronges t absorber i s

t i tanium, followed by s t e e l and aluminum.

7. PULSED LASER MECHANICAL COUPLING

I g n i t i o n of LSC and LSD waves c r e a t e s high

pressure plasma over t h e t a r g e t surface. The re -

s u l t i n g impulse del ivered t o t h e surface rece ives

a con t r ibu t ion from both t h e e a r l y time p lanar waves

( i l l u s t r a t e d i n Fig. 6) and t h e l a t e time two-di-

mensional waves, shown i n Fig. 4. The impulse de-

l i v e r e d by an LSD wave was f i r s t modelled by P i r r i , 6

using a n a l y t i c methods. More extensive modelling,

including numerical s imualt ions, w& performed by

F e r r i t e r e t a1.24 The impulse from LSC waves h a s

25,26 a l s o been ca lcu la ted based upon t h e pressure

sca l ing laws used i n t h e thermal coupling calcula-

t ions . 19

A convenient method of present ing t h e r e s u l t s

is t o give t h e r a t i o of t h e p red ic ted impulse over

a given a r e a divided by t h e impulse determined from

t h e p lanar surface pressure, ps, a c t i n g on t h e l a s e r

beam a r e a n~: f o r t h e pu lse time T Ths r e s u l t s P'

of Bouche e t a 1 ., 26 f o r t h e LSC wave models a r e

summarized i n Fig. 9 a s a funct ion of ?. Calcula-

t i o n s a r e made f o r one-dimensional plasma pressures

l eng th band makes an inpor tan t con t r ibu t ion f o r f o r 10 and 30 atm, which a r e t h e l i m i t s t y p i c a l l y

high in tens i ty , long pulse t imes and l a r g e spots . observed experimentally f o r LSC waves, and t h e a rea

I n t h i s regime t h e coupling t o metals o ther than

aluminum, which absorb t h e long wavelength band

b e t t e r , i s enhanced r e l a t i v e t o t h e coupling t o

A 1 2024.

Theoret ical p red ic t ions of t h e f luence absorb-

ed by var ious a l loys22 i n d i c a t e t h a t t h e metalis

can be arranged i n t o a hierarchy based upon ab-

sorbed f luence; t h e hierarchy can be understood

between them is shaded f o r a l l b u t t h e i n f i n i t e

plane ca lcu la t ions . The four ca lcu la t ions are:

(1) c e n t r a l coupling which uses t h e p ressure pre-

d i c t e d a t t h e cen te r of t h e spot , (2) coupling over

t h e l a s e r spo t which includes t h e s p a t i a l v a r i a t i o n

i n pressure over t h e spot , (3) coupling over t h e

l a s e r spo t p l u s shock annulus which includes t h e

contr ibut ion from t h e a rea covered by t h e expand-

Page 10: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

ing r a d i a l shock before t h e end of the pulse, and a t e a r l y time; there fore , t h e plasma dynamics is

(4 ) coupling t o a i n f i n i t e plane which includes one-dimensional perpendicular t o t h e t a r g e t . The

t h e t o t a l impulse de l ivered by t h e expanding plasma plasma configurat ion is i d e n t i c a l t o Fig. 6 - a

a f t e r t h e pulse terminates. precursor shock followed by a l a s e r absorpt ion zone - - except t h a t t h e l a s e r beam is inc iden t a t a d i f -

f e r e n t angle. The e a r l y time behavior can still

be modelled a s a p lanar LSC wave i f t h e l a s e r inten-

s i t y I is changed t o t h e p ro jec ted i n t e n s i t y I cos

8, and t h e l a s e r absorpt ion c o e f f i c i e n t kL, is re-

TARGET

at Normal Incidence

Fig. 9 Pred ic t ions of mechanical coupling by LSC Fig. 10 Angle of incidence geometry. (a) Cross- wave plasmas. From Ref. 26. sec t iona l view, (b) t a r g e t plane view.

The l o c a l coupling t o t h e spo t o r t h e cen te r placed by t h e c o e f f i c i e n t k L ,/cos 0 appropriate f o r

of the spot is enhanced a t low but is diminished describing l a s e r beam a t tenua t ion perpendicuiar

a t l a r g e ?; however, the t o t a l coupling is always t o the t a r g e t .

enhanced. The onset of l a t e r a l expansion a t t h e cen te r

8. EXTENSION ANGLE OF INCIDENT AND AMBIENT PRESSURE

The i n t e r a c t i o n of pulsed 10.6 pm l a s e r pu lses

with aluminum surfaces, which a r e a t on oblique

angle t o t h e l a s e r beam, h a s been s tud ied both

t h e o r e t i c a l l y 2 2 ~ 2 7 and experimentally. 28 The goe-

metry of the in te rac t ion a t oblique angles of in-

cidence is sketched in Fig. 10. The e a r l y time

configurat ion, a s viewed from a plane defined by

t h e inc iden t l a s e r beam d i r e c t i o n and t h e t a r g e t

normal, is shown i n Fig. 10A. The plasma a t t h e

c e n t e r of the t a r g e t h a s no knowledge of t h e edges

of t h e spo t is determined by a competition between

t h e time f o r a r a r e f a c t i o n wave generated a t t h e

edge of t h e t a r g e t spo t t o reach the' cen te r and

t h e time f o r t h e laser-supported absorpt ion wave

a t t h e cen te r of t h e t a r g e t t o propagate v e r t i c a l l y

[ i n Fig. 10a) t o t h e edge of t h e l a s e r beam. A 8

view of t h e l a s e r beam in t a r g e t plane is shown

i n Fig. lob. The c h a r a c t e r i s t i c time f o r l a t e r a l

expansion along t h e semi-minor a x i s i s R/a = T p 2 ~ '

where a is t h e speed of sound i n t h e plasma; t h i s P

i s t h e same time s c a l e t h a t c o n t r o l s t h e r a d i a l

Page 11: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

C9-68 JOURNAL DE PHYSIQUE

expansion f o r normal incidence. Only a t a l a t e r naively sca l ing t h e f luence absorbed f o r 8 = O 0

t ime, character ized by T3D, does motion along t h e by t h e f a c t o r cos 8 . The LSC wave thermal cou-

semi-major a x i s begin. The b l a s t wave decay laws p l i n g c o e f f i c i e n t increases a s t h e p ro jec ted inten-

f o r time t a r e chosen t o represen t two-dimensional sity is reduced. ~h~ data also shows that plasma

motion f o r T3D > t > T2D and three-dimer?sional mo- i g n i t i o n threshold is controlled by the beam inten-

t i o n f o r t > T3D. The expansion is represented by

powered o r unpowered b l a s t wave decay laws accord-

ing t o whether o r no t t h e l a s e r is still on.

A comparison between experimental data ,28 and

t h e o r e t i c a l p red ic t ions 22'27 f o r t h e f luence ab-

sorbed by A1 2024 t a r g e t s a r e shown i n Fig. 11, f o r

2 a nominal l a s e r beam i n t e n s i t y of 1.5 MW/cm . The

2 beam area is 40 cm and t h e pu lse time is 10 ps.

The agreement between data and theory is q u i t e good

except f o r a few d a t a p o i n t s a t normal incidence

which a r e marked by l i n e s t o ind ica te t h a t t h e r e

was poor plasma ign i t ion . This good agreement sup-

p o r t s t h e o r i g i n a l model a s well a s t h e extension

t o angle of incidence.

8

Angle of Incidence

Fig. 11 Fluence deposited i n A 1 2024 by 10.6 pm ! rad ia t ion inc iden t a t an angle.

Both t h e d a t a and t h e theory show l a r g e oou-

p l i n g a t l a r g e angles of incidence (8 > 74O). The

s i t y , not t h e p ro jec ted in tens i ty . 28

The t h e o r e t i c a l p red ic t ion f o r t h e surface

pressure generated by t h e LSC wave is p l o t t e d a s

a funct ion of angle of incidence i n Fig. 12. The

experimental data28 agree q u i t e well with t h e theo-

r e t i c a l p red ic t ions (except f o r t h e d a t a p o i n t which

is flagged because of poor i g n i t i o n ) . The theore-

t i c a l c a l c u l a t i o n s of impulse imparted t o a surface

Angle of Incidence

Fig. 12 Surface pressure f o r 10.6 pm rad ia t ion inc iden t a t an angle.

p r e d i c t t h a t t h e r e is l i t t l e degradation i n pre-

d i c t e d impulse between 8 = O0 and 8 = 60°; t h e drop

absorbed fluence is twice t h e value pred ic ted by i n surface pressure is p a r t i a l l y compensated by

Page 12: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

t h e slower pressure decay a s 0 is increased. A t

6 = 7 5 O , t h e p ro jec ted f luence is only 1 / 4 of t h e

normal fluence, b u t the del ivered impulse f o r ?= 1

is 70% of t h e value f o r normal incidence.

The plasma impulse coupling i s predicted t o

10,14,15 vary a s the ambient pressure t o t h e 1 / 3 power.

The decrease has been observed experimentally i n

t h e LSD wave regime, although t h e peak pressures

measured f a l l below 30 percent below t h e pred ic ted

values.2g Experimental da ta ind ica te t h a t t h e ther -

mal coupling by r a d i a t i v e t ranspor t from LSC wave

plasma remains approximately constant a s t h e pres-

sure is reduced, a s long a s a well-developed plasma

is formed. However, a s t h e ambient pressure drops

a threshold is reached below which an a i r plasma

cannot be created. The thermal coupling a t pres-

s u r e s below t h e a i r threshold is accomplished by

d i r e c t absorption; a t l e a s t f o r low l a s e r inten-

s i t i e s . However, it has been observed by McKay

and schriempf31 t h a t a t high i n t e n s i t y it is pos-

s i b l e t o i g n i t e a vacuum plasma which enhances t h e

thermal coupling. This plasma is not t h e r e s u l t

of bulk vaporization,31 ins tead it apparent ly is

crea ted by defec t vaporizat ion and is, there fore ,

d i f f e r e n t than t h e CW vapor plasma mentioned i n

Sect ion 3.

9. PULSED 3.8 pm COUPLING CONSIDERATIONS

Although both 10.6 pm and 3.8 pm pulsed l a s e r

rad ia t ion e x h i b i t enhanced thermal coupling t o high-

l y r e f l e c t i v e metal t a r g e t s , t h e mechanisms by which

t h e coupling i s achieved may be d i f f e r e n t .

The DF l a s e r pulse, from t h e Boeing photoly-

t i c a l l y i n i t i a t e d lase r ,32 which is shown i n Fig.

13, does no t have a leading edge spike and it has

a r e l a t i v e l y long r i s e time t o approximately -85

psec. Plasma i g n i t i o n occurs i n t h e middle of t h e

pulse. 2132r33 A s a r e s u l t , t h e physics of the in-

be categorized f o r t h e durat ion of t h e whole pulse,

a s e i t h e r d i r e c t l a s e r absorption o r plasma radi-

a t i v e t r a n s f e r .

1 ime tpsl

Fig. 13 Sketch of DF l a s e r pulse shape.JL

Nor can d i rec t . absorp t ion of DF l a s e r radi-

a t ion be simply character ized by the i n t r i n s i c room

temperature absorp t iv i ty a s it can be f o r 10.6 pm

pulsed rad ia t ion . For 3.8 urn rad ia t ion t h e i n i t i a l

absorp t iv i ty of A l 2 0 2 4 i s l a r g e r , namely .05, and

t h e peak i n t e n s i t y is usual ly g r e a t e r than 10 MW/

cmL. The absorbed h e a t f l u x i n t h e d i r e c t absorp-

t i o n regime is more than an order of magnitude

l a r g e r than a t 10.6 pm. This rap id h e a t t r a n s f e r

can r a i s e t h e t a r g e t surface temperature s i g n i f i -

can t ly during the pulse. To understand t h e cou-

p l ing when no plasmas a r e formed, t h e e f f e c t s of

t a r g e t heat ing and mass l o s s must be considered

j u s t a s they a r e i n CW in te rac t ions .

It is no t known a p r i o r i whether plasma ign i -

t i o n by pulsed 3.8 pm rad ia t ion i s assoc ia ted with

loca l ized defec t s , a s it is f o r 10.6 um r a d i a t i o n ,

o r whether it r e s u l t s from breakdown of t h e vapor

produced by bulk evaporation of t h e surface a s it

does i n CW in te rac t ions . Since inverse Bremsstrah-

lung absorpt ion by e lec t rons s c a l e s a s wavelength

squared, t h e threshold i n t e n s i t y f o r defec t i n i t i -

a t i o n of plasma is higher f o r DF l a s e r pulses . HOW-

t e r a c t i o n between t h e l a s e r and t h e t a r g e t cannot ever, t h e l a r g e r bulk hea t ing r a t e experienced by

Page 13: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

JOURNAL DE PHYSIQUE

t h e metal under 3.8 Um i r r a d i a t i o n may lead t o bulk

vaporizat ion of t h e t a r g e t during t h e pulse; then

plasma i n i t i a t i o n can proceed by breakdown of t h e

bulk vapor a s it does i n CW in te rac t ions .

The threshold f o r LSD waves f o r s h o r t pu lses

of 3.8 u m rad ia t ion is estimated t o be 40-50 MW/

cm . 14'15 The LSC wave plasmas a t 3.8 pm a r e sup-

ported by much higher i n t e n s i t i e s than a t 10.6 pm;

represen ts t h e range of values observed f o r t h e

f i r s t shot on a f r e s h aluminum surface. The c i r -

c l e s with b a r s represen t t h e da ta range observed

f o r t h e e i g h t sho t on t h e surface. The mult iple

pu lse e f f e c t was inves t iga ted a t only t h r e e

fluences. Plasma i g n i t i o n occurs between a t an

average f luence of 40-50 J/cm2 ( the s p a t i a l peak

2 i n t h e fluence is about 70 ~ / c m ) . For f luences

i n consequence t h e plasmas a r e h o t t e r , a t higher l e s s than 40 ~ / c m ~ , t h e i n t e r a c t i o n proceeds by

2 pressure, and t h e r a d i a t i v e t r a n s f e r t o t h e surface d i r e c t absorption. Above 40-45 J/cm , d i r e c t ab-

is a f a c t o r of t en la rger . sorpt ion occurs a t t h e beginning of t h e pulse, bu t

A l ayer of metal vapor may be created between

t h e plasma and t h e t a r g e t e i t h e r a s a r e s u l t of t h e

i g n i t i o n process o r a s a consequence of the high

h e a t f lux. The vapor absorbs t h e plasma rad ia t ion ,

t h u s it i n t e r f e r e s with energy t ranspor t t o t h e sur-

face u n t i l it is r a i s e d t o high temperatures where

it a l s o w i l l r ad ia te . However, metal vapors tend

t o r a d i a t e p r e f e r e n t i a l l y i n t h e longer wavelength

bands, which reduces t h e thermal coupling t o alumi-

num.

Recent data3' on t h e f luence deposited by pul-

sed 3.8 um l a s e r rad ia t ion i n t e r a c t i n g with alumi-

num surfaces i s shown i n Fig. 14. The shaded a rea

a l nc fder t Pulse Fluence

i n t h e middle of t h e pu lse a plasma is ign i ted and

t h e subsequent i n t e r a c t i o n is mediated by an LSC

wave plasma. The data i n d i c a t e s t h a t t h e r e is

l i t t l e enhancement assoc ia ted with plasma formation

f o r t h e f i r s t shot, b u t t h e enhancement is sub-

s t a n t i a l on subsequent sho ts i n t h e plasma regime.

The increase of coupling with t h e number of sho ts

is not completely understood, bu t it appears t o

be r e l a t e d t o t h e i n c r e a s e . i n t h e surface absorp-

t i v i t y of t h e t a r g e t which occurs a s t h e r e s u l t

of sur face damage by p r i o r i r r a d i a t i o n s . 32

2 A t high f luences, say above 80 J/cm , the t a r -

g e t can vaporize and t h e vapor l ayer c u r t a i l s radi-

a t i v e t ransport . Creation of l o c a l LSD waves could

a l s o cause t h e reduction i n absorbed fluence, bu t

t h e mult iple pulse enhancement argues a g a i n s t t h e

i n t e r p r e t a t i o n .

although t h e b a s i c i n t e r a c t i o n s which govern

3.8 ).impulsed l a s e r i n t e r a c t i o n s with metal sur-

faces appear t o be a combination of those observed

in CW i n t e r a c t i o n s and those found i n pulsed 10.6

).im i n t e r a c t i o n s , a d e t a i l e d understanding of t h e

d a t a shown i n Fig. 14 is s t i l l lacking.

10.. INTERACTION WITH NON-METALS

The types of i n t e r a c t i o n s which have been ob-

Fig. 14 Fluence deposi ted i n A 1 2024 by 3.8 !AI served i n metals can a l s o occur f o r non-metals such rad ia t ion . Data from Ref. 32.

a s ceramics and f iberg lass . The major d i f fe rence

Page 14: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

is t h a t the.non-metals can absorb r a d i a t i o n in- e ra ted by LSC waves over aluminum t a r g e t s ; t h a t

depth. Simple t h e o r e t i c a l models have been used is, t h e pressure is given by t h e LSC wave predic-

t o analyze data from s i n g l e pu lse experimeilts i n

8 f resh surfaces of f i b e r g l a s s (Cordopreg E-glass) ,

s l i p c a s t fused s i l i c a (SCFS) and pyroceram.

Figure 15 shows t h e pu lse data f o r t h e maxi-

mum value of t h e surface pressure observed during

t h e in te rac t ion of pulsed 10.6 u m rad ia t ion with

n ~ n - m e t a l s . ~ ~ Also shown a r e the t h e o r e t i c a l pre-

d i c t i o n s f o r the pressure, based upon t h e synthesis

of models described below. The t h e o r e t i c a l predic-

t i o n s a r e i n good agreement with t h e da ta , thus

lending credence t o t h e phenomenology underlying

t h e predict ions.

t i o n s below 4 NW/cmL, by LSD wave pred ic t ions above

2 8 MW/cm , and by a t r a n s i t i o n from LSC wave values

2 t o LSD wave values between 4 MW/cm2 and 8 MW/cm .

The pressure data f o r i n t e n s i t i e s above 2 m/cm 2

a r e shown i n Fig. 15 and they a r e cons i s ten t with

the t h e o r e t i c a l p red ic t ions .

2 A t l a s e r i n t e n s i t i e s below 2 MW/cm , t h e sur-

face in te rac t ion of t h e v i r g i n t a r g e t is dominated

by d i r e c t absorption of t h e l a s e r by t h e t a r g e t

with an in-depth absorption length of 6 um. Pres-

sure is generated a s t h e r e s u l t of vaporizat ion

of t h e g l a s s f i b e r s . The time resolved surface

pressure t r a c e s ind ica te t h a t t h e pressure b u i l d s

pato (~o lm& I I 1 I ' l ' l ' l I I I L up slowly, r a t h e r than promptly a s would be expect- -

A A ASCFS - o++PYROCERANI

- ed i f a plasma were ignited.33 The maximum sur-

0 @ e CORD0 PREG D cr. E-c (Ass

face pressure da ta , shown i n Fig. 15, show an ab-

r u p t fa l l -o f f a s a funct ion of fluence. This be-

- havior is incons i s ten t with vaporizat ion induced

by surface absorption of the l a s e r , bu t it is i n

good agreement with vaporizat ion models based on

No Plasma - in-depth absorpt ion with an absorpt ion length of

2 - / I - Air Plasma 6 Um. A s t h e l a s e r pulse fluence i s increased be- - ,' /' Theory

1 1 l l d l ' l 1 ' 1 ' 1 ' 1 1 1 1 1 - yond t h e threshold values f o r pressure generation, 0.1 0.2 0.4 0 . 6 . 8 1 2 4 6 8 1 0

Fig. 15 Surfaces pressure f o r 10.6 vm rad ia t ion on non-metals. Data from Ref. 33.

2 A t l a s e r i n t e n s i t i e s above 2 MW/cm , t h e sur-

face in te rac t ion is dominated by t h e prompt forma-

t i o n of an a i r plasma above t h e surface, and t h e

surface pressure and r a d i a t i v e t r a n s f e r t o the sur-

face can be determined from t h e LSC wave model de-

scr ibed i n Sect ion 6. 23

Theoret ical ca lcu la t ions p r e d i c t t h a t vapori-

zat ion induced by plasma re rad ia t ion has only only

a neg l ig ib le e f f e c t upon t h e surface pressure gen-

the maximum surface pressure is cons i s ten t with

t h e pred ic t ions based on steady s t a t e t a r g e t v a p o r -

i za t ion .

A t i n t e n s i t i e s below plasma threshold, t h e

energy remaining i n t h e t a r g e t a f t e r the pulse,

c a l l e d t h e res idua l energy, is l imi ted by t h e on-

34 s e t of r a p i d vaporization. Theoret ical ana lys i s ,

p r e d i c t a maximum res idua l energy of 6 ~ / c m ~ f o r

a 6 pm absorption depth and t a r g e t i n i t i a l l y a t

room temperature.

The response of f i b e r g l a s s t o

by pulsed l a s e r s ind ica tes t h a t t h e usefu l energy

f o r bulk mate r ia l heat ing on a mul t ip le pu lse b a s i s

6

Page 15: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

C9-72 JOURNAL DE PHYSIQUE

2 is l imi ted t o l e s s than 7 ~ / c m . However, t h e same

mult iple pulse experiments ind ica te t h a t t h e plasma

threshold f o r a previously i r r a d i a t e d t a r g e t may

2 decrease t o below I MW/cm .

11. SUMMARY

The thermal and mechanical coupling of l a s e r

beams t o mate r ia l s var ies s t ronglx a s the in te rac-

t i o n phenomenology changes. For d i r e c t absorption,

t h e instantaneous thermal coupling is given by t h e

t a r g e t surface absorp t iv i ty , b u t the t o t a l thermal

coupling includes e f f e c t s from t a r g e t heat ing and

mass loss . Whenever plasmas a r e created, e i t h e r

by bulk vapor breakdown o r by defec t induced break-

down, t h e l a s e r energy is absorbed i n t h e plasma,

and mechanical and thermal coupling is determined

by t h e plasma propert ies . For LSD wave plasmas,

thermal coupling is dominated by plasma r a d i a l ex-

pansion and enhanced t o t a l thermal coupling can oc-

cur ; f o r LSC wave plasmas, r a d i a t i v e t ranspor t dom-

i n a t e s t h e t ranspor t and enhanced l o c a l coupling

i s observed. Mechanical coupling r e s u l t s from

vaporizat ion i n t h e d i r e c t absorption regime, and

from t h e high pressure plasma i n the plasma medi-

a t e d coupling regime. The plasma phenomena which

a r e observed f o r CW i n t e r a c t i o n s and pulsed 10.6

pm in te rac t ions , a l s o occur f o r oblique angles of

incidence, f o r pulsed 3.8 u m l a s e r rad ia t ion , and

f o r t h e in te rac t ion with non-metal mate r ia l s , how-

ever , t h e l a s e r parameters which de l inea te t h e in-

t e r a c t i o n regimes, a s well a s t h e magnitude of the

e f f e c t s , a r e d i f f e r e n t .

11. RESUME

Le couplage thermique e t m6canique d'un

fa i sceau l a s e r avec des matgriaux var ie en fonct ion

de l ' i n t g r a c t i o n qu i a l i e u . S i l ' absorp t ion e s t

d i r e c t e , l a couplage thermique instantang e s t

dgterming par l ' a b s o r p t i v i t g de l a surface mais l e

couplage intggr6 comprend l e s e f f e t s de chauffage

de l a c i b l e e t de per te de masse. Quand il y a

crgat ion d'un plasma, par claquage soit dans l e

gros de l a vapeur s o i t i n i t i g par des d6fauts de

surface, l ' gnerg ie e s t absorbge par l e plasma e t

l e s couplages thermique e t m6canique sont deter-

mings par l e s proprigtgs de l a vapeur. Quand il

y a formatioii d'un onde de' dgtonation (LSD), l e

couplage thermique e s t doming par l 'expansion

r a d i a l e du plasma: il peut y avo i r augmentation

du couplage thermique global . Quand il y a for-

mation d'une onde de combustion (LSC), l e t rans-

p o r t thermique e s t principalement par radiat ion:

on observe une augmentation du couplage 3. Le

couplage mgcanique provient de l a vaporisat ion de

l a surface dans l e rggime 2 absorption d i r e c t e e t

de l a pression 61eveB du plasma dans l e rggime 2

couplage ind i rec te . Les msmes phgnomsnes que

l ' o n abserve dans l e s in tgrac t ions avec l a s e r s

continus e t l a s e r s C02 2 impulsion on l i e u a u s s i

dans l e cas d'incidence oblique, dans l e cas d'un

l a s e r impulsionnel 2 3.8 pm ou dans l e c a s de

matgriaux non mgtalliques: l e s param&tres du

l a s e r q u i l i m i t e n t l e s d i f f g r e n t s rggimes

d1 in t6rac t ion e t l ' o r d r e de grandeur des e f f e t s

sont cependant d i f fg ren ts .

REFERENCES

1. McKay, J. A . , Stegman, R. L., and Schriempf, J. T. , "Thermal E f f e c t s of Pulsed Laser Ir- rad ia t ion ," 2nd DoD High Energy Laser Con- ference Proceedings, Col. Springs, Col., Nov. 1976.

2. Nichols, D. B. and Hall, R. B . , "Thermal Cou- p l ing of 2.8-Micron Laser Radiation t o Ketal Tarq~ets." Paper No. VI-6 presented a t A I M Conference on Fluid Dynamics of High Power Lasers, October 30-November 2 , 1378, Cambridge, MA.

3. Klosterman, E l l i o t Lee, "Expcrimentai lnves- t i g a t i o n of Subsonic Laser Absorption Wave I n i t i a t i o n from Metal Targets a t 5 and 10.6 pm," Mathematical Sciences Northwest, Inc., MSNW Report No. 75-123-2, March, 1975.

4. Thomas, P. D. and Musal, H. M. , "A Theoreti- c a l Study of Laser-Target In te rac t ion ," Final

Page 16: LASER INTERACTION: THERMAL AND MECHANICAL COUPLING … · the thermal and mechanical coupling of laser radi- ation to materials. The approach which is followed is: (1) to choose a

Technical Report No. LMSC-D352890, Lockheed Miss i les and Space Company, Inc . , Palo Alto, CA, August 1973.

Deposition Experiments with Miscrosecond Dura- t i o n C02 Laser Radiation," Laser Digest-Summer 1975, AFWL-TR-75-229, A i r Force Weapons Labora- to rv . Kir t land A i r Force Base, NM, Oct. 1975.

A . . . 5 . Raizer, Yu P., Soviet Physics JETP, 31, 1148

(1970). 24. F e r r i t e r , N. e t a l . , AIAA Jour. 5, 1597 (1977).

P i r r i , A. N . , "Analytic Solut ions f o r Laser- Supported Combustion Wave Ign i t ion Above Sur- faces , " AIAA Paper 76-23, Washington, D.C., Jan. 1976.

Thomas, P. D. and Musal, H. M . , "A Theoret ical Study of Laser-Target In te rac t ion ," Lockheed Palo Alto Research Laboratory Report LMSC- D 352890, Palo Alto, CA, Aug. 1973 and P a r t 11, LMSC-D401354, Apri l 1974.

P i r r i , A. N . , "Analytical Solut ions f o r I n i t i - a t i o n of Plasma Absorption move Laser-lrradi- a ted Surfaces," Technical Report No. PSI TR- 15, Physical Sciences Inc., Woburn, MA, Oct. 1974.

Wu, P. K. and Nebolsine, P. E., A I A A Journal , 15, 751 (1977). -

Raizer, Yu P., Soviet Physics JETP, 21, 1009, (1965).

Basov, N. G. 575 (1968).

e t a l . , Soviet Physics JETP,

Walters,C. T., Barnes, R. H . , Beverly, R. E. 111, J. Appl. Phys. 49, 2937 (1978).

Weyl, G. P i r r i , A . , and Root, R., "Laser Igni- t i o n of Plasma Off Aluminum Surfaces," AIAA Paper 80-1319, Snowmass, CO, J u l y 1980.

Re i l ly , J. P . , Ballantyne, A., and Woodroffe, J. A., AIAA Journal, 17, 1098 (1979) .

Rei l ly , J. and ~ o u c h g , E., W. J. schacer Assoc., Wakef i e l d , MA, (p r iva te communiation) .

Gelman, H., ~ i r r i , A. N. , Root, R. G. and Wu, P. K. S., "Coupling of Non-Normally Incident Pulsed Laser Flux t o Metals Surfaces i n an A i r Environment," A I A A Paper 79-0251, New O r - l eans , LA, January 1979.

McKay, J. A. e t a l . , ~ p p . ~ h y s . Le t te r s , 36, 125 (1980).

Beverly, R. E.,111, and Walters, C. T . , J. App. Phys. 5, 3485 (1976).

McKay, N. and Research Lab., Washington, D.C., (p r iva te communication).

McKay, J. A. and Schriempf, J. T., App. Phys. L e t t . 2, 433 (1979).

Maher, W. E . , and Hall , R. B., Bull. APS 24, 1003 (1979).

Holmes, B. S., "Pulsed Laser Thermal Mechanical Damage Study, Vol 1 - Surface Pressure from LSA Waves," AFWL-TR-80-31, A i r Force Weapons Laboratory, Kir t land A i r Force Base, NM (Dec. 1979).

14. P i r r i , A. N . , Kemp, N. H., Root, R. G . , and 34. Wu, P. K. and Root, R. G . , AIAA Jour. 2, 857 Wu, P. K. S., "Theoretical Laser E f f e c t s (1980). Studies ," F ina l Report, PSI TR-89, Physical Sciences Inc. , Woburn, MA, Feb. 1977. 35. Ballantyne, A. e t a l . , "Modelling of the In-

t e r a c t i o n s of 10.6 v m Pulsed Laser Radiation 15. Boni, . A., Su, F. Y . , Thomas, P. D . , and Musal, with Reinforced P l a s t i c Mater ials , AIAA Paper

H. M . , "Theoretical Study of Laser-Target In te r - 80-1318, Snowmass, CO, Ju ly 1980. ac t ions , " F ina l Tech. Rept., SAI 77-77a567-LJ, Science Application Inc., LaJol la , CA, May 1977.

16. P i r r i , A. N . , Phys. F lu ids 3, 1435 (1973).

17. McKay, J. A. e t a l , J. Appl. Phys. 50, 3231 (19791.

18. Maher, W. E . , and Hall, R. B., J. Appl. Phys., 49, 2254 (1978). -

19. P i r r i , A. N . , Root, R. G . , and Wu, P. K. S . ; AIAA Jour . 16, 1296 (1978) .

20. Mitchel l , R. W. e t a l . , J.Q.S.R.T. 20, 519 (19781.

21. Root, R. G. and P i r r i , A. N . , "Theoretical Analysis of Radiation from Laser Produced Plasma," AIAA Paper 79-1489, Williamsburg, VA, Ju ly 1979.

22. Root, R. G., P i r r i , A. N . , Wu, P. K. S., and Gelman, H., "Analysis of Laser Target In te r - act ion," F ina l Report, PSI TR-170, physical Sciences Inc., Woburn, MA, March 1979.

23. Rudder, R. R. and Augustoni, A. L., "Thermal