laser laboratory (-ies) peter müller. 2 search for edm of 225 ra transverse cooling oven: 225 ra...

21
Laser Laboratory (-ies) Peter Müller

Upload: rolf-kelly

Post on 17-Jan-2016

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

Laser Laboratory (-ies)

Peter Müller

Page 2: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

2

Search for EDM of 225Ra

Transversecooling

Oven:225Ra (+Ba)

Zeeman Slower

Opticaldipole trap

EDMprobe

Advantages:

•Large enhancement:

EDM(Ra) / EDM(Hg) ~ 200 – 2000

•Efficient use of 225Ra atoms

•High electric field (> 100 kV/cm)

•Long coherence times (~ 100 s)

•Negligible “v x E” systematic effect

Page 3: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

3

Search for

EDM of 225Ra

Status:

•Trapped 225Ra and 226Ra

•EDM probing region constructed

10-10 Torr, 100 kV/cm, 10 mG

Next steps:

•Dipole trap transfer

•Optical pumping and detection

2 mm gap> 100 kV/cm

~ 1x104

226Ra atoms

Page 4: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

4

81Kr / 39Ar Atom Trap Trace Analysis

Argon-39 :• cosmogenic• half-life = 270 a• 39Ar/Ar = 8 x 10-16

Radio-Argon Dating : • 50 – 1000 year range• study ocean and groundwater• previously with LLC and AMS

Dark Matter Searches : • LAr detectors

(WARP,

DEAP/CLEAN)• 39Ar major

background• search for

old / depleted

ArgonWIMP Argon Programme

Krypton-81 :• cosmogenic• half-life = 230 ka• 81Kr/Kr = 1 x 10-12

Page 5: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

5

Atom Trapping & Nuclear Charge Radii of 6,8He

He-6: L.-B. Wang et al., PRL 93, 142501 (2004)He-8: P. Mueller et al., PRL 99, 252501 (2007)

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

Nuclear Radii, fm

4He rms point-proton matter Experiment Theory

8He

6He

389 nm

1083 nm

Atom Trap Setup

0 5 10 15 200.0

0.2

0.4

0.6

0.8

1.0

1.2

Ph

oto

n c

ou

ntr

ate

/ kH

z

Time (s)

Singleatomsignal

-10 -8 -6 -4 -2 0 2 4 6 8 100

20

40

60

80

100

C

ounts

per

Channel

Rel. Laser Frequency, MHz

8He Spectroscopy

Page 6: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

6

Page 7: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

7

MCPDSSD+ Scint.

MOTchamber

Atomtraps

Dipole traplaser

Atomic beam

Beta-Decay Study with Laser Trapped 6He

• 6He trapping rate: 1104 s-1,

• 2105 coincidence events in 15 min: a = ± 0.008

• 1 week: a/a = 0.1%

Cou

nts

500450400350300250200150Time of Flight (ns)

a = +1/3

a = -1/3

Simulated time-of-flight signal

Standard Model

New Physics

6He yields:• ATLAS: 1107 s-1

• CENPA: ~1109 s-1

• SARAF / SPIRAL2: ~11012 s-1

Page 8: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

8

Beta-Neutrino Correlation in the Decay of 6He

6He

6Li

t1/2=0.808 sec

100%

0+

1+

E0=3.5097 MeV

, 1 cosap

N EE

Johnson et al., Phys. Rev. (1963)

2 2

2 2 0.4%T T

A A

C C

C C

Best experimental limit:

a = - 0.3343 ± 0.0030

-1.0

-0.5

0.0

0.5

1.0

Cor

rela

tion

Coe

f. a

1.00.80.60.40.20.0

T

A

V

S

-50

-40

-30

-20

-10

0

10

20

a(e

xp)

- a

(SM

)

x10

-3

1.00.80.60.40.20.0

Fermi fraction

6He n

21Na

32Ar

38mK

21Na

Page 9: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

9

He-6 Production @ CENPA

< 18 MeV~ 5 pA

2H

Page 10: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

10

Isotopic Menu for Laser Spectroscopy

Low-energyyield, s-1

> 106

105 - 106

104 - 105

103 - 104

102 - 103

10 - 102

1 - 10< 1

•Isotope shifts -> charge radii, deformations

• Hyperfine structure -> moments (dipole,…) -> spin

Page 12: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

12

TRIGA Trap & Laser

Page 13: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

13

TRIGA Laser

Page 14: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

14

Laser Lab Layout @ CARIBU

AC

H

EP

A

Laser Enclosure(~ 6’ x 10’)

Laser Table(~ 3’ x 7’)

Ion Trap

Collinear Beamline

Tape Station

Cf-252 source80 mCi -> 1Ci

High-resolutionmass separatorm/m > 1/20000

Gas catcher

RF Cooler & Buncher

… starting in fall 2010

Page 15: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

15

Linear Paul Trap for Spectroscopy PMT /EMCCD

• open geometry, linear Paul trap -> large light collection efficiency• buffer gas w. LN2 cooling, -> good spectroscopic resolution, quenching of dark states

-> few (single ?) ion detection sensitivity

ITO coatedoptics

Ba+

black, conductivelycoated electrodes

Page 16: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

16

Ion Trap Spectroscopy at CARIBU

Linear Paul trap for spectroscopy

– Initially with neutron-rich Ba+

– Isotope shift + moments (HFS)

– Use RF cooler / buncher & transfer line

To investigate:

– optimized trap geometry and detection

system

– Buffer gas cooling + quenching (with H2)

– Cooling of trap with LN2

Future:

– other CARIBU beams

• High mass: Pr, Nd, Eu, …

• Low mass: Y, Zr, Nb, Sr, …

– Yb+ -> No+ with ATLAS Upgrade

A t_1/2 yield, 1/s139 1.45E-01 1.396h 3.22E+05140 5.16E-01 12.75d 1.15E+06141 1.11E+00 18.3 m 2.46E+06142 2.70E+00 10.7 m 5.99E+06143 4.40E+00 14.3 s 9.77E+06144 3.37E+00 11.4 s 7.48E+06145 2.06E+00 4.0 s 4.57E+06146 9.81E-01 2.20 s 2.18E+06147 2.50E-01 0.892s 5.55E+05148 4.80E-02 0.64 s 1.07E+05149 4.04E-03 0.36 s 8.97E+03150 3.27E-04 0.962s 7.26E+02152 3.77E-07 0.420s 8.37E-01

Ba Isotopes

Page 17: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

17

Collinear Laser Spectroscopy

• High spectroscopic resolution

• High sensitivity through bunched beams

• Neutral atoms w/charge-exchange

• Measure for the first time: Rh, Ru, …

• Extend isotopic chains on: Sn, Mo, Nb, …

Other opportunities:

• Laser polarized beams, e.g., Kr, Xe …

• Laser polarization in matrix (solid noble gasses)

• Resonance ionization to suppress isobars/isomers

• … … 2011

Page 18: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

18

Isotopic Menu – “Low Mass”

 

Wavelengths, nm Laser Spectroscopy CARIBU

I II LS Method Range > 100/s

30 Zn 589.4       75 79

31 Ga 417.2       76 83

32 Ge *265.16       77 86

33 As 197.2       79 89

34 Se 207.48       80 92

35 Br *827.47       83 94

36 Kr *811.52   72 .. 96 CS 85 97

37 Rb 780.0   76 - 96 CS 87 97

38 Sr 460.86 421.7 77 - 100 CS 89 102

39 Y 414.4   JYFL .. 102 CS 91 104

40 Zr 388.65   87 … 102 CS 94 106

41 Nb 492.45    .. 103 CS 97 109

42 Mo 390.41   … 108  CS  100 112

43 Tc 429.82       101 113

44 Ru 392.7       103 115

45 Rh 369.34       105 118

46 Pd 276.39       109 124

47 Ag 328.16   101 … 110 CS 111 125

48 Cd 326.1 214.5 102 … 120 CS 112 126

49 In 451.3 236.5 104 - 127 CS 115 133

50 Sn 452.5   108 - 132 CS, RIMS 124 136

N = 50

Refractoryelements

N = 82

MOTCollinear

Page 19: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

19

Menu of Isotopes – “High Mass”

 

Wavelengths, nm Laser Spectroscopy CARIBU

I II LS Method Range > 100/s

51 Sb 231.22       124 138

52 Te 214.35       129 140

53 I 183.04       131 142

54 Xe *882.18   116 … 146 CS 133 146

55 Cs 455.65   118 - 146 CS 135 148

56 Ba 553.7 455.4 120 – 146,148 CS 137 150

57 La 418.84   … @ TRIUMF CS 139 152

58 Ce 450.64 331 … @ JYFL CS 141 155

59 Pr 495.14 590     144 157

60 Nd 468.34 590 132 … 150 RIS 146 159

61 Pm ?       149 161

62 Sm 471.71   138 - 154 RIS 151 164

63 Eu 459.4 604.9 138 - 159 RIS 154 166

64 Gd 432.71   146 - 160 RIS 156 168

65 Tb 432.64   147 ... 159 RIS 159 169

66 Dy 404.71   146 … 165 RIS 162 171

67 Ho 410.38   151 … 165 RIS 166 171

68 Er 415.23   150 … 167 RIS 169 172

N = 82

MOTCollinear

Page 20: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

20

Ion Beam Line for Laser Spec Setup

PDT

90

3/10 kV -5 kVPostAccel.

50 kV

15 kV3 kV

+ 2.9 kV

Charge X

Fluor.Det.

9 ft

StableSource

@ +10/3 kV

Lens

X/YDefl.

StableSource@ 3 kV

90

Page 21: Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

21

Discussion Points

Need 1+ charge state for “heavy” isotopes

– Operate RF cooler & buncher with neon ?

– Charge exchange 2+ to 1+ (???) on gas target

Beam energies, extraction voltage etc.

Location and type of stable beam sources

Gas catcher after gas filled separator

– Where to put it to have “low energy beams” area?

– For heavy elements or, e.g., Sn-100