lateral design of mid-rise wood structures for wind loads

84
Lateral Design of Mid- Rise Wood Structures for Wind Loads Presented by Ricky McLain, MS, PE, SE Houston Wood Solutions Fair September 14, 2016

Upload: trinhkhanh

Post on 03-Jan-2017

225 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Lateral Design of Mid-Rise Wood Structures for Wind Loads

LateralDesignofMid-RiseWoodStructuresforWindLoads

PresentedbyRickyMcLain,MS,PE,SEHoustonWoodSolutionsFairSeptember14,2016

Page 2: Lateral Design of Mid-Rise Wood Structures for Wind Loads

“TheWoodProductsCouncil”isaRegisteredProviderwithTheAmericanInstituteofArchitectsContinuingEducationSystems(AIA/CES),Provider#G516.

Credit(s)earnedoncompletionofthiscoursewillbereportedtoAIACESforAIAmembers.CertificatesofCompletionforbothAIAmembersandnon-AIAmembersareavailableuponrequest.

ThiscourseisregisteredwithAIACESforcontinuingprofessionaleducation.Assuch,itdoesnotincludecontentthatmaybedeemedorconstruedtobeanapprovalorendorsementbytheAIAofanymaterialofconstructionoranymethodormannerofhandling,using,distributing,ordealinginanymaterialorproduct.________________________________Questionsrelatedtospecificmaterials,methods,andserviceswillbeaddressedattheconclusionofthispresentation.

Page 3: Lateral Design of Mid-Rise Wood Structures for Wind Loads

CourseDescription

Asincreasesinurbandensitybecomenecessarytoaddressgrowingpopulations,manybuildingdesignersanddevelopersareleveragingwood’sabilitytoachievemultiple,simultaneousobjectiveswithmid-risestructures—oneofwhichiseffectiveperformancewhensubjecttowindforces.Thispresentationexaminesdesignprocessesforlateralframingcomponents,whicharecriticaltothedesignofcode-compliantmid-risewoodstructuressubjecttowindloads.Topicsinthishighlytechnicalpresentationwillincludewindloadspaths,stackedmulti-storyshearwalls,accumulatedshearwallforcesanddeflections,discontinuousshearwalls,andanchorageofshearwallstoconcretepodiumslabs.

Page 4: Lateral Design of Mid-Rise Wood Structures for Wind Loads

LearningObjectives

1. Reviewwindloadpathsinmulti-story,wood-framestructures.

2. Explorethedifferencesbetweenshearwallsanddiaphragmswhenstackingmultiplestoriesofwood-framelateralforce-resistingsystems.

3. Examinecommonshearwalldesignchecksforcomponentsinmulti-storybuildingsdesignedtoresistaccumulatedwindforces.

4. Demonstrateeffectivedetailingpracticesforwoodshearwalltie-downattachmentstoconcretepodiumsandfoundations.

Page 5: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Follow the

load

Page 6: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Loadpath,loadpath,loadpath!

Cables(load path)

CompleteLoadPaths

Page 7: Lateral Design of Mid-Rise Wood Structures for Wind Loads

….You’retheoneinthebasket!

Page 8: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Multi-StoryWoodDesign

Photocredit:MattTodd&PBArchitects

Following the load…

Page 9: Lateral Design of Mid-Rise Wood Structures for Wind Loads

LoadPathContinuity

Photocredit:MattTodd&PBArchitectsKaruna IHolst Architecture

Photo: Terry Malone

Page 10: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Multi-StoryConsiderations

• WindLoadPaths• Multi-StoryStackedShearWallEffects• AccumulationofOverturningLoads• ShearWallDeflection• DiaphragmModeling• DiscontinuousShearWalls

Page 11: Lateral Design of Mid-Rise Wood Structures for Wind Loads

WindLoadDistributiontoShearwalls

Page 12: Lateral Design of Mid-Rise Wood Structures for Wind Loads

WindLoadDistributiontoShearwalls

Page 13: Lateral Design of Mid-Rise Wood Structures for Wind Loads

WindLoadDistributiontoShearwalls

Photocredit:MattTodd&PBArchitects

Page 14: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Multi-StoryWindLoadDesign

Photocredit:MattTodd&PBArchitects

DesignPrinciplesaretheSame

Rememberto:FOLLOWTHELOAD!

Page 15: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Multi-StoryWindLoadDesign

WINDSURFACELOADSONWALLS

Page 16: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Multi-StoryWindLoadDesign

WINDINTODIAPHRAGMSASUNIFORMLINEARLOADS

Page 17: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Multi-StoryWindLoadDesign

DIAPHRAGMSSPANBETWEEN

SHEARWALLS

WINDINTOSHEARWALLSASCONCENTRATEDLOADS

Page 18: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Multi-StoryWindLoadDesign

DIAPHRAGMWINDFORCESDONOTACCUMULATE-THEYAREISOLATEDATEACHLEVEL

SHEARWALLWINDFORCESDOACCUMULATE-UPPERLEVELFORCESADDTOLOWERLEVELFORCES

Page 19: Lateral Design of Mid-Rise Wood Structures for Wind Loads

PublishedMulti-StoryShearWallDesignExamples

Freedownloadatwoodworks.org

SEAOCStructural/SeismicDesignManualVolume2PublishedbyICC

Page 20: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Multi-StoryWindDesign

ElevationSource:WoodWorks Five-StoryWood-FrameStructureoverPodiumSlabDesignExample

Page 21: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Multi-StoryWindDesign

FloorPlanSource:WoodWorks Five-StoryWood-FrameStructureoverPodiumSlabDesignExample

Page 22: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Multi-StoryWindDesign

Shearwall LayoutSource:WoodWorks Five-StoryWood-FrameStructureoverPodiumSlabDesignExample

Shearwall designwe’lllookat

Page 23: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Multi-StoryWindDesign

Shearwall LayoutSource:WoodWorks Five-StoryWood-FrameStructureoverPodiumSlabDesignExample

Page 24: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ComponentsofShearWallDesign

Collector&DragDesign

ShearWallConstruction

ShearTransferDetailing

ShearResistance

Page 25: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ComponentsofShearWallDesign

Typ.ShearWallElevationWindForcesPerStory29’-0”

10’-0”Typ.

F5 =5.2k

F4 =3.8k

F3 =3.7k

F2 =3.6k

F1 =3.4k

FP =1.7k

Page 26: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ComponentsofShearWallDesign

Typ.ShearWallElevationAccumulatedWindForces29’-0”

10’-0”Typ.

F =5.2k

F=9k

F=12.7k

F=16.3k

F=19.7k

F=21.4k

Page 27: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ComponentsofShearWallDesign

Holdown

Anchorage

BoundaryPosts

CompressionTension

OverturningResistance

Page 28: Lateral Design of Mid-Rise Wood Structures for Wind Loads

OverturningForceCalculation

F =5.2k

F=9k

F=12.7k

F=16.3k

F=19.7k

T=C=F*h/L

T&Carecumulativeatlowerstories

Lismomentarm,notentirewalllength

1.9k

5.1k

9.6k

15.4k

22.5k

h

LAssumeL=29ft-1ft=28ft

Page 29: Lateral Design of Mid-Rise Wood Structures for Wind Loads

SolePlateCrushing

Page 30: Lateral Design of Mid-Rise Wood Structures for Wind Loads

SolePlateCrushing

Compressionforcesperpendiculartograincancauselocalizedwoodcrushing.NDSvaluesforwithmetalplatebearingonwood resultinamaximumwoodcrushingof0.04”.Relationshipisnon-linear

Page 31: Lateral Design of Mid-Rise Wood Structures for Wind Loads

SolePlateCrushing

NDSCommentaryC4.2.6:whenajointismadeoftwowoodmembersandbothareloadedperpendiculartograin,theamountofdeformationwillbeapproximately2.5timesthatofametalplatetowoodjoint.

Source:WoodWorks Five-StoryWood-FrameStructureoverPodiumSlabDesignExample

Page 32: Lateral Design of Mid-Rise Wood Structures for Wind Loads

CompressionPostSize&SolePlateCrush

Level Compression RequiredBearingArea

PostSize

Story SolePlateCrush

5xSolePlateCrush

5th Floor 1.9k 4.4in2 (2)-2x4 0.011” 0.057”

4th Floor 5.1k 11.9in2 (2)-4x4 0.013” 0.067”

3rd Floor 9.6 k 22.6 in2 (2)-4x4 0.034” 0.171”

2nd Floor 15.4k 36.3in2 (3)-4x4 0.039” 0.195”

1st Floor 22.5k 39.8in2 (4)-4x4 0.026” 0.13”

Floors2-5useS-P-F#2SolePlate,Fcperp =425psiFloor1useSYP#2SolePlate,Fcperp =565psi

Page 33: Lateral Design of Mid-Rise Wood Structures for Wind Loads

StorytoStoryCompressionForceTransfer

Source:W

oodW

orks

Five-StoryWoo

d-Fram

eStructureoverPod

iumSlabDesignExam

ple

Page 34: Lateral Design of Mid-Rise Wood Structures for Wind Loads

RimJoistBuckling&Crushing

Page 35: Lateral Design of Mid-Rise Wood Structures for Wind Loads

IncreasingCompressionPostSize

Source:W

oodW

orks

Five-StoryWoo

d-Fram

eStructureoverPod

iumSlabDesignExam

ple

Page 36: Lateral Design of Mid-Rise Wood Structures for Wind Loads

OverturningTension

EqualandOppositeForces

CompressionTension

Page 37: Lateral Design of Mid-Rise Wood Structures for Wind Loads

UsingDeadLoadtoResistOverturning

Source:Strongtie

Deadloadfromabove(Wall,Floor,Roof)canbeusedtoresistsomeoralloverturningforces,dependingonmagnitude

LoadCombinationsofASCE7-10:06.D+0.6W

Page 38: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ShearWallHoldownOptions

StandardHoldownInstallationStrapHoldown

Installation

…………

………

Continuous RodTiedown Systems

6+kipstorytostorycapacities

13+kipcapacities

100+kipcapacities20+kips/level

Page 39: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ThreadedRodTieDownw/TakeUpDevice

Source:Strongtie Source:hardyframe.com

Page 40: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ThreadedRodTieDownw/oTakeUpDevice

Page 41: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ComponentsofShearWallDesign

Tensionaccumulatesinrod.Bearingplatesseelocaloverturningonly.Tensionzone

boundaryframingincompression!

ContinuousRodHoldown System

Overturningrestraintat

bearingplateattopofstory

1.9k

3.2k

4.5k

5.8k

7.1k

1.9k

5.1k

9.6k

15.4k

22.5k

F =5.2k

F=9k

F=12.7k

F=16.3k

F=19.7k

Page 42: Lateral Design of Mid-Rise Wood Structures for Wind Loads

TieDownRodSize&Elongation

Level PlateHght

Tension RodDia.

Steel RodCapacity

RodElong.

5thFloor

10ft 1.9k 3/8” A36 2.4k 0.10”

4thFloor

10ft 5.1k 5/8” A36 6.7k 0.09”

3rdFloor

10ft 9.6 k 5/8” A193 14.4 k 0.18”

2ndFloor

10ft 15.4k 3/4” A193 20.7 k 0.19”

1stFloor

10ft 22.5k 7/8” A193 28.2 k 0.2”

Page 43: Lateral Design of Mid-Rise Wood Structures for Wind Loads

BearingPlateCrushing

Page 44: Lateral Design of Mid-Rise Wood Structures for Wind Loads

BearingPlateSize&Thickness

LevelBearingPlate Bearing

LoadAllow.BearingCapacity

BearingPlateCrush

W L T HoleArea

Abrng

5thFloor

3 in 3.5in 3/8” 0.25in2

10.25in2

1.9k 4.4k 0.012”

4thFloor

3in 3.5in 3/8” 0.518in2

9.98in2 3.2k 4.2 k 0.022”

3rdFloor

3in 5.5in 1/2” 0.518in2

15.98in2

4.5k 6.8 k 0.018”

2ndFloor

3in 5.5in 1/2” 0.69in2

15.8in2 5.8k 6.7 k 0.03”

1stFloor

3 in 8.5in 7/8” 0.89in2

24.6in2 7.0k 10.4k 0.014”

Page 45: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Shearwall Deformation– SystemStretch

Totalsystemstretchincludes:• RodElongation• Take-updevice

displacement• BearingPlateCrushing• SolePlateCrushing

Source:WoodWorks Five-StoryWood-FrameStructureoverPodiumSlabDesignExample

Page 46: Lateral Design of Mid-Rise Wood Structures for Wind Loads

AccumulativeMovement

Level RodElong.

Shrinkage SolePlateCrush

BearingPlateCrush

TakeUpDeflect.Elong.

TotalDisplac.

5thFloor

0.1” 0.03” 0.057” 0.012” 0.03” 0.23”

4thFloor

0.09” 0.03” 0.067” 0.022” 0.03” 0.24”

3rdFloor

0.18” 0.03” 0.171” 0.018” 0.03” 0.43”

2ndFloor

0.19” 0.03” 0.195” 0.03” 0.03” 0.48”

1stFloor

0.2” 0.03” 0.13” 0.014” 0.03” 0.4”

WithShrinkageCompensatingDevices

Page 47: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ShearWallDeflection

SDPWS2008Eq 4.3-1

SDPWS2008Eq.C4.3.2-1

Deflection

Bendingofboundaryelements

IBC2000to2015Eq.23-2

Page 48: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ShearWallDeflection

SDPWS2008Eq 4.3-1

SDPWS2008Eq.C4.3.2-1

Deflection

ShearDeformationofSheathingPanels&

Slipofnails@paneltopanelconnections

IBC2000to2015Eq.23-2

Page 49: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ShearWallDeflection

SDPWS2008Eq 4.3-1

SDPWS2008Eq.C4.3.2-1

IBC2000to2015Eq.23-2

Deflection

RigidBodyRotation

b

h

Δa

Page 50: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Shearwall Deflection

Level UnitShear

EndPostA

EndPostE

Ga TotalDisplace.

Deflection

5thFloor

179plf 10.5in2 1400ksi

10k/in 0.23” 0.26”

4thFloor

310plf 24.5in2 1400ksi

10k/in 0.24” 0.4”

3rdFloor

438plf 24.5in2 1400ksi

10k/in 0.43” 0.59”

2ndFloor

562plf 36.8in2 1400ksi

13k/in 0.48” 0.6”

1stFloor

679plf 49in2 1400ksi

13k/in 0.4” 0.67”

Page 51: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Shearwall DeflectionMethods

Multiplemethodsforcalculatingaccumulativeshearwall deflectionexistMechanicsBasedApproach:• Usessinglestorydeflection

equationateachfloor• Includesrotational&crushing

effects• UsesSDPWS3partequation

Othermethodsexistwhichusealternatedeflectionequations,FEM

Page 52: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Shearwall DeflectionCriteriaforWind

Unlikeseismic,nocodeinformationexistsondeflection/driftcriteriaofstructuresduetowindloads

Serviceabilitychecktominimizedamagetocladdingandnonstructuralwalls

ASCE7-10:C.2.2DriftofWallsandFrames.Lateraldeflectionordriftofstructuresanddeformationofhorizontaldiaphragmsandbracingsystemsduetowindeffectsshallnotimpairtheserviceabilityofthestructure.

Whatwindforceshouldbeused?Whatdriftcriteriashouldbeapplied?

Allowable=?

Page 53: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Shearwall DeflectionCriteriaforWind

WindForcesConsensusisthatASDdesignlevelforcesaretooconservativeforbuilding/framedriftcheckduetowind• CommentarytoASCE7-10AppendixCsuggeststhatsome

recommendusing10yearreturnperiodwindforces:• ~70%of700returnperiodwind(ultimatewindspeed

forriskcategoryIIbuildings)• Others(AISCDesignGuide3)recommendusing75%of50

yearreturnperiodforces

DriftCriteriaCanvarywidelywithbrittlenessoffinishesbutgenerallyrecommendationsareintherangeofH/240toH/600

Page 54: Lateral Design of Mid-Rise Wood Structures for Wind Loads

DiaphragmModelingMethods

Possible Shear Wall Layouts

Typical Unit

7654321

D

C

B

A

NotusingallsharedwallsforShear

RobustDiaphragmAspectRatio

Page 55: Lateral Design of Mid-Rise Wood Structures for Wind Loads

DiaphragmModelingMethods

Possible Shear Wall Layouts

Typical Unit

7654321

D

C

B

A

Butmaybenotmuchwallavailableonexterior

RobustDiaphragmAspectRatio

Page 56: Lateral Design of Mid-Rise Wood Structures for Wind Loads

LightFrameWoodDiaphragmsoftendefaulttoFlexibleDiaphragms

CodeBasis:ASCE7-1026.2Definitions(Wind)Diaphragmsconstructedofwoodstructuralpanelsarepermittedtobeidealizedasflexible

CodeBasis:ASCE7-1012.3.1.1(Seismic)Diaphragmsconstructedofuntopped steeldeckingorwoodstructuralpanelsarepermittedtobeidealizedasflexible ifanyofthefollowingconditionsexist:[…]c.Instructuresoflight-frameconstructionwhereallofthefollowingconditionsaremet:

1.Toppingofconcreteorsimilarmaterials isnotplacedoverwoodstructuralpaneldiaphragmsexceptfornonstructuraltoppingnogreaterthan11/2in.thick.2.Eachlineofverticalelementsoftheseismic forceresistingsystemcomplieswiththeallowablestorydriftofTable12.12-1..

RigidorFlexibleDiaphragm?

Page 57: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Hypothetical FlexibleDiaphragm Distribution

Typical Unit

7654321

D

C

B

A

Areatributarytocorridorwallline

Areatributarytoexteriorwall

line

23%

23%

27%27%

Largeportionofloadonlittle

wall

Changing wall construction does NOT impact load to wall line

Page 58: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Hypothetical RigidDiaphragm Distribution

Typical Unit

7654321

D

C

B

A

Longer,stifferwallsreceivemoreload

Diaphragmassumedtoberigidbody.

10%

10%

40%40%

Narrow,flexiblewallsreceiveless

load

Changing wall construction impacts load to wall line

Page 59: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ASCE7-1012.3.1.3(Seismic)

[Diaphragms]arepermittedtobeidealizedasflexiblewherethecomputedmaximum in-planedeflectionofthediaphragmunderlateralloadismorethantwotimestheaveragestorydriftofadjoiningverticalelementsoftheseismic force-resistingsystemoftheassociatedstoryunderequivalent

tributarylateralloadasshowninFig.12.3-1.

IBC2012Chapter2Definition(Wind&Seismic)

Adiaphragmisrigid forthepurposeofdistributionofstoryshearandtorsionalmomentwhenthelateraldeformationofthediaphragmislessthanorequaltotwotimestheaveragestorydrift.

CanaRigidDiaphragmbeJustified?

Average drift of walls

Maximum diaphragm deflection

Page 60: Lateral Design of Mid-Rise Wood Structures for Wind Loads

SomeAdvantagesofRigidDiaphragm

• Moreload(plf)tolongerinterior/corridorwalls• Lessload(plf)tonarrowwallswhereoverturningrestraintistougher• Cantuneloadstowallsandwalllinesbychangingstiffnessofwalls

SomeDisadvantagesofRigidDiaphragm

• Considerationsoftorsionalloadingnecessary• Morecomplicatedcalculationstodistributeloadtoshearwalls• Mayunderestimate“Real”loadstonarrowexteriorwalls• Justificationofrigidassumption

RigidDiaphragmAnalysis

Page 61: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Semi-RigidDiaphragmAnalysis

• Neitheridealizedflexiblenoridealizedrigid• Explicitmodelingofdiaphragmdeformationswithshearwalldeformationstodistributelateralloads

• Noteasy.

EnvelopingMethod

• IdealizedasBOTHflexibleandrigid.• Individualcomponentsdesignedforworstcasefromeachapproach• Beenaroundawhile,officiallyrecognizedinthe2015SDPWS

TwoMoreDiaphragmApproaches

Page 62: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Possible Shear Wall Layouts

Typical Unit

7654321

D

C

B

A

TheCantileverDiaphragmOption

Page 63: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Possible Shear Wall Layouts

Typical Unit

7654321

D

C

B

A

RobustAspectRatiobutonlysupportedon3sides…

Page 64: Lateral Design of Mid-Rise Wood Structures for Wind Loads

OpenFrontStructure CantileverDiaphragm

CantileveredDiaphragmsinSDPWS2008

AWCSDPWS2008Figure4AAWCSDPWS2008Figure4B

Page 65: Lateral Design of Mid-Rise Wood Structures for Wind Loads

OpenFrontStructureSDPWS4.2.5.1.1L≤25ftL/W≤1,onestory

≤2/3,multi-story

CantileveredDiaphragmsinSDPWS2008

Exception:Wherecalculationsshowthediaphragmdeflectionscanbetolerated,thelength,L,canbeincreasedtoL/W≤1.5forWSPsheatheddiaphragms.

Page 66: Lateral Design of Mid-Rise Wood Structures for Wind Loads

CantileveredDiaphragmSDPWS4.2.5.2Lc ≤25ftLc/W≤2/3

CantileveredDiaphragmsinSDPWS2008

Page 67: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Possible Shear Wall Layouts

Typical Unit

7654321

D

C

B

A

OpenFrontStructureorCantileveredDiaphragm?

Page 68: Lateral Design of Mid-Rise Wood Structures for Wind Loads

CantileveredDiaphragmsinSDPWS2015

OpenFrontStructurewithaCantileveredDiaphragm

AWCSDPWS2015Figure4A

Page 69: Lateral Design of Mid-Rise Wood Structures for Wind Loads

CantileveredDiaphragm SDPWS4.2.5.2L’/W’≤1.5WhenTorsionally Irregular

L’/W’≤1,onestory2/3,multi-story

L’≤35 ft

OpenFrontStructure&CantileveredDiaphragmsinSDPWS2015

Provideddiaphragmsmodelledasrigidorsemi-rigidandforseismic,thestorydriftateachedgeofthestructurewithinallowablestorydriftofASCE7.Storydriftsincludetorsionandaccidentaltorsionalloadsanddeformationsofthediaphragm.

Page 70: Lateral Design of Mid-Rise Wood Structures for Wind Loads

CantileveredDiaphragm SDPWS4.2.5.2L’/W’≤1.5WhenTorsionally Irregular

L’/W’≤1,onestory≤2/3,multi-story

L’≤35 ft

OpenFrontStructure&CantileveredDiaphragmsinSDPWS2015

IfL’≤6ft ,sectiondoesn’tapply.Exception:

Page 71: Lateral Design of Mid-Rise Wood Structures for Wind Loads

WindLoadDistributiontoShearwalls

Page 72: Lateral Design of Mid-Rise Wood Structures for Wind Loads

TieDownAttachmenttoConcrete

Source:Strongtie

Page 73: Lateral Design of Mid-Rise Wood Structures for Wind Loads

TieDownBoltwithWasher

Source:Strongtie

Page 74: Lateral Design of Mid-Rise Wood Structures for Wind Loads

TieDownBoltwithWasher- Reinforcing

Source:Strongtie

Page 75: Lateral Design of Mid-Rise Wood Structures for Wind Loads

TieDownAnchorChairinCastSlab

Source:EarthboundAnchors

Page 76: Lateral Design of Mid-Rise Wood Structures for Wind Loads

EmbeddedSteelPlates– WeldonRods

Page 77: Lateral Design of Mid-Rise Wood Structures for Wind Loads

TieDownAnchors– PrecastThroughBolt

Page 78: Lateral Design of Mid-Rise Wood Structures for Wind Loads

TieDownAnchors– ThroughPodium

Page 79: Lateral Design of Mid-Rise Wood Structures for Wind Loads

LateralLoadPathContinuity:WallElevation

ShearWall

ShearWall

Header

Header

Headerdistributesuppershearwall

endpostconcentrated load

towallbelowHeaderalso

distributes uppershearwallshearto

wallbelow

Postsinlowerwalltransfer

upperwallendpost

concentratedloadsto

foundation

Wallplatesactasdragstrutstotransfershearloadsfromupperwalltolowerwall

Note:anymembersupportingadiscontinuous wallmustbedesigned fortheover-strengthfactorunderASCE7-10Section12.3.3.3,forSDCB-F

Page 80: Lateral Design of Mid-Rise Wood Structures for Wind Loads

OffsetShearWallOverturningResistance

Source:Strongtie

Page 81: Lateral Design of Mid-Rise Wood Structures for Wind Loads

TieDowntoSteelBeamAttachment

Source:Strongtie

Page 82: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Recap

• WindLoadPaths• Multi-StoryStackedShearWallEffects• AccumulationofOverturningLoads• ShearWallDeflection• DiaphragmModeling• DiscontinuousShearWalls

Page 83: Lateral Design of Mid-Rise Wood Structures for Wind Loads

Questions?

ThisconcludesTheAmericanInstituteofArchitectsContinuingEducationSystemsCourse

RickyMcLain,MS,PE,SE

[email protected](802)498-3310

Visitwww.woodworks.org formoreeducationalmaterials,casestudies,designexamples,aprojectgallery,andmore

Page 84: Lateral Design of Mid-Rise Wood Structures for Wind Loads

ThispresentationisprotectedbyUSandInternationalCopyrightlaws.

Reproduction,distribution,displayanduseofthepresentationwithoutwrittenpermission

ofthespeakerisprohibited.

©TheWoodProductsCouncil2016

CopyrightMaterials