lattice qcd is fun

38
LATTICE QCD is FUN Tetsuo Hatsuda, Univ. Tokyo Second Berkeley School on Collective Dynamic s May 21-25, 2007 [1] Lattice QCD basics [2] Nuclear force on the lattice ( dense QCD) [3] In-medium hadrons on the lattice ( hot QCD) [4] Summary

Upload: kuniko

Post on 13-Jan-2016

76 views

Category:

Documents


1 download

DESCRIPTION

LATTICE QCD is FUN. [1] Lattice QCD basics [2] Nuclear force on the lattice (  dense QCD) [3] In-medium hadrons on the lattice (  hot QCD) [4] Summary. Tetsuo Hatsuda, Univ. Tokyo Second Berkeley School on Collective Dynamics May 21-25, 2007. QGP. QGP. c SB. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: LATTICE QCD is FUN

LATTICE QCD is FUN  

Tetsuo Hatsuda, Univ. Tokyo

Second Berkeley School on Collective Dynamics May 21-25, 2007

[1] Lattice QCD basics   [2] Nuclear force on the lattice ( dense QCD)

[3] In-medium hadrons on the lattice ( hot QCD)

[4] Summary

Page 2: LATTICE QCD is FUN

In-medium Hadrons

SB CSC

QGP

 

SB

CSC

QGP

B

●   Asakawa & Yazaki, Nuc. Phys A504 (‘89) 668●   Yamamoto, Tachibana, Baym & T.H.,   Phys. Rev. Lett. 97 (2006)122001

Page 3: LATTICE QCD is FUN

1/T

a

L

Lattice setup at finite TLattice setup at finite T

1/T = Nt a L = Ns a

1/T fixed, Nt/Ns small, Nt large “a” small

continuum limit

Page 4: LATTICE QCD is FUN

Bulk Thermodynamics in full QCDBulk Thermodynamics in full QCD

Critical temperature

Tc : 160 – 190 MeV ~ 1012 [K]

Critical energy density

εc : ~  2 GeV/fm3

~ 10 εnm

Order of the transition

  2nd order   (u,d; m=0)  1st order (u,d,s; m=0) crossover (real world)

MILC Coll., hep-lat/061001

(2+1)-flavor, O(a2) improved action, Ns/Nt=2

Page 5: LATTICE QCD is FUN

Karsch, hep-lat/0608003 Wuppertal-Budapest Coll., hep-lat/0510084 stout, Ccond/Cnt correction by hand Ns/Nt=3

Page 6: LATTICE QCD is FUN

What is Phase Transition ? What is Phase Transition ?

Susceptibilities

n-th order transition: non-analiticity starts from

e.g. 1st order: P smooth, dP/dT=s discontinuous 2nd order: P smooth, dP/dT=s smooth, (d/dT)2P=ds/dT=cV/T divergent

crossover: P(K) is everywhere analytic

Page 7: LATTICE QCD is FUN

Order of the transition in full QCD (Nf=2+1) Order of the transition in full QCD (Nf=2+1)

Fluctuation: chiral susceptibility

Wuppertal-Budapest Coll., Nature 443 (2006)

1/T

m/T

2

m/T

2

Page 8: LATTICE QCD is FUN

               2nd order transition

•Relation between and , e.g. (3-dimension)

x

xh

Z

Vht )0()(

ln1)0,(

2

2

r

er

r

~)0()(

2000

00

2

)0()()0,(

rrr

r

edrere

drrexdrrht

Page 9: LATTICE QCD is FUN

Wuppertal-Budapest Coll., Nature 443 (2006)

Page 10: LATTICE QCD is FUN

Pseudo critical temperature Tpc Pseudo critical temperature Tpc

n-th order transition: non-analiticity starts from

e.g. 1st order: P smooth, dP/dT=s discontinuous 2nd order: P smooth, dP/dT=s smooth, (d/dT)2P=ds/dT=cV/T divergent

crossover: P(K) is everywhere analytic

Intrinsic ambiguity to define Tpc

m/T

2

Page 11: LATTICE QCD is FUN

MILC Coll., hep-lat/0405029169(12)(4)(5) MeV

Asqtad, Nt=4,6,8, Ns/Nt=2, r_1=0.317(7) fm

RBC-Bielefeld Coll., hep-lat/0608013192(7)(4) MeV

P4fat3, Nt=4,6 Ns/Nt=2-4, r_0=0.469(7) fm

Wuppertal-Budapest Coll., hep-lat/0609068 151(3)(3) MeV + 9 MeV

stout, Nt=6,8,10, Ns/Nt=4, F_K scale

WHOT-QCD Coll., preliminary 175(4)(2) MeV (Nf=2, Nt=6, Polyakov-loop sus.)

clover, Nt=4, 6, Ns/Nt=3-4, m_V scale

Wilson fermion

Staggered fermion

Tpc (a 0) in full QCD (Nf=2+1) from m/T2 Tpc (a 0) in full QCD (Nf=2+1) from m/T2

[MeV]

[MeV]

Page 12: LATTICE QCD is FUN

Tpc on the lattice from chain rule Tpc on the lattice from chain rule

r0=0.469 (7) fm, HPQCD-UKQCD Coll. hep-lat/0507013

from bottomonium mass splitting (Nf=2+1, staggered)

r0=0.516 (21) fm, CP-PACS-JLQCD Coll., hep-lat/0610050

from ρ-meson mass (Nf=2+1, Wilson)

Sommer scales

Page 13: LATTICE QCD is FUN

Critical point Critical point

Cf. Asakawa & Yazaki, NPA504 (1989) 668 Klimt, Lutz & Weise, PLB249 (’90) 386

de Forcrand and Phillipsen, hep-lat/0607017 Nf=2+1, Nt=4, standard staggered

SB CSC

QGP

Page 14: LATTICE QCD is FUN

Spectral Properties of Hot QCD

What are the elementary excitations in the plasma?

T ΛQCD

pz

px

py

DeTar’s conjecturePhys.Rev.D32 (1985) 276

T/Tc

/s pQCD

AdS/CFT

Shear viscosity in quenched QCD

Quenched Lattce QCD: 24x24x24x8 Nakamura & Sakai, Phys.Rev.Lett.94:072305,2005 & hep-lat/0510100

Page 15: LATTICE QCD is FUN

Heavy probes Heavy probes

Matsui & Satz, PLB178 (’86) Miyamura et al., PRL57 (’86)

Dynamic probeStatic probe

Gluon matter (quenched QCD)Quark-gluon matter (full QCD)

Page 16: LATTICE QCD is FUN

Singlet free energy in full QCD (Nf=2+1)Singlet free energy in full QCD (Nf=2+1)

RBC-Bielefeld Coll., hep-lat/0610041

163x4, p4fat3 action, mud/ms=0.1

g,u,d,s

r

Page 17: LATTICE QCD is FUN

Charmonium “wave function” ( quenched QCD)

Charmonium “wave function” ( quenched QCD)

QCD-TARO Coll., Phys. Rev. D63 (’01)

Matsui & Satz, PLB178 (’86) Miyamura et al., PRL57 (’86)

gr r

(G

eV-1)

2

3

5

4

free

T/Tc=1.53

T/Tc=0.93

t (GeV-1)

0.5fm

Page 18: LATTICE QCD is FUN

),(ˆIm1

),( R pDpA

~

Imaginary-time (Matsubara) correlation

xdeJxJpD xpi 3)0,0(),(T),0(

dpAe

eT

),(10

/

dpAK ),(),(

0

Dynamic correlation & The spectral function (SPF) Dynamic correlation & The spectral function (SPF)

)0,0(),(R),(R JxtJixtD

Real-time (Retarded) correlation

Page 19: LATTICE QCD is FUN

dpAK

xdeJxJpD xpi

),(),(

)0,0(),(T),( 3

Maximum Entropy Method

LatticeQCD data

“Laplace” kernel

Maximum Entropy Method (MEM)Maximum Entropy Method (MEM)

P[A|D] ~ P[D|A] P[A]

T. Bayes C.E. Shannon (1702-1761) (1916-2001)

dmAAmAS

S

))/ln((

)exp(P[A]

Review + proofs : Asakawa, Nakahara & T.H., Prog. Part. Nucl. Phys. 46 (’01) 459

Page 20: LATTICE QCD is FUN

First application of MEM to LQCD: Asakawa, Nakahara & T.H, Phys. Rev. D60 (’99) 091503

Review + proofs : Asakawa, Nakahara & T.H., Prog. Part. Nucl. Phys. 46 (’01) 459  

1. No parameterization necessary for A

2. Unique solution D A

3. Error estimate for A possible

Why MEM is so powerful ?Why MEM is so powerful ?

P[A|D] ~ P[D|A] P[A]

Page 21: LATTICE QCD is FUN

D = K×A

D A D A

Image reconstruction by MEM

Page 22: LATTICE QCD is FUN

MEM: mock dataMEM: mock data

Page 23: LATTICE QCD is FUN

Asakawa, Nakahara & T.H.,

PRD60 (‘99) 091503

Wilsondoubler

Wilsondoubler

MEM for mesons at T=0MEM for mesons at T=0

Page 24: LATTICE QCD is FUN

MEM

MEM

JP=1/2+

JP=1/2-

N N’

N* N*’

WD1 WD2

WD1 WD2

Sasaki, Sasaki and T. H., Phys. Lett. B623 (’05) 208MEM for baryons at T=0MEM for baryons at T=0

Page 25: LATTICE QCD is FUN

Sp

ectr

al f

un

ctio

n ρ

(ω)

J/ψ(3.1GeV)

1. J/ψ survives even up to 1.6 Tc

2. J/ψ disappears in 1.6 Tc < T < 1.7 Tc

see also,• Umeda et al, hep-lat/0401010 • Datta et al., PRD 69 (’04) 094507• Jakovac et al., hep-lat/0611017

Asakawa & T.H., PRL 92 (’04) 012001

MEM: charmonium above Tc (quenched) MEM: charmonium above Tc (quenched)

Page 26: LATTICE QCD is FUN

Sp

ectr

al f

un

ctio

n ρ

(ω)

J/ψ(3.1 GeV)

ηc(3.0GeV)

J/ψ and ηc above Tc (quenched)J/ψ and ηc above Tc (quenched)

Page 27: LATTICE QCD is FUN

Asakawa, Nakahara & Hatsuda, [hep-lat/0208059]

mud << ms~Tc << mc < mbA

(ω)

/ω2

mφ(T=0)=1.03 GeV at T/Tc= 1.4ss-channel

Light meson spectra in quenched QCDLight meson spectra in quenched QCD

Page 28: LATTICE QCD is FUN

1. Strong correlations

in JP=0+ (σ) and JP=0- (π) channels above Tc ? Kunihiro and T.H., Phys. Rev. Lett. 55 (’85) 88

2. Dynamical confinement in all color singlet channels above Tc ? DeTar, Phys. Rev. D32 (’85) 276

Possible mechanisms of

supporting “hadrons” above Tc

Possible mechanisms of

supporting “hadrons” above Tc

3. Strong Coulomb interaction in color singlet and non-singlet channels above Tc ?

Shuryak and Zahed, Phys. Rev. D70 (2004) 054507 Brown, Lee, Rho and Shuryak, Nucl. Phys.A740 (’04) 171

Page 29: LATTICE QCD is FUN

anisotropic lattice, 323 x (96-32)=4.0, at=0.01 fm, (Ls=1.25fm)Asakawa & Hatsuda, hep-lat/0308034

g

J/ c

Charmonium spectra in quenched QCDCharmonium spectra in quenched QCD

anisotropic lattice, 243 x (160-34)=4.0, at=0.056 fm, (Ls=1.34 fm)Jakovac, Petreczky, Petrov & Velytsky hep-lat/0611017

c

isotropic lattice, 483 x(24-12), a=0.04 fm (Ls=1.9 fm)

J/ c

Datta, Karsch, Petreczky & Wetzorke, hep-lat/0312034

g

Page 30: LATTICE QCD is FUN

Hatsuda, hep-ph/0509306 Net dissociation rate may even be smaller in full QCD

g,u,d

Charmonium spectra in full QCD (Nf=2)Charmonium spectra in full QCD (Nf=2)

Hamber-Wu, stout, ξ=6, at=0.025fm, 83 x (16,24,32), m/m=0.5Aarts et al., hep-lat/0610065, 0705.2198 [hep-lat]

Jc

Page 31: LATTICE QCD is FUN

Datta, Karsch, Wissel, Petreczky & Wetzorke, [hep-lat/0409147]

Aarts, Allton, Foley, Hands & Kim, [hep-lat/0610061]

g

J/ moving in the plasma in quenched QCD J/ moving in the plasma in quenched QCD

g

Page 32: LATTICE QCD is FUN

quenched, a = 0.02 fmDatta, Jakovac, Karsch & Petreczky, [hep-lat/0603002]

Bottomonium spectra in quenched QCDBottomonium spectra in quenched QCD

anisotropic lattice, 243 x (160-34)=4.0, at=0.056 fm, (Ls=1.34 fm)Jakovac, Petreczky, Petrov & Velytsky hep-lat/0611017

Page 33: LATTICE QCD is FUN

Hot QCD -- a “paradigm” -- Hot QCD -- a “paradigm” -- viscou

s fluid

p

erfect fluid

visco

us flu

id Pion gas

Resonance gas

q + g +”extra”plasma ?

weakly int.  q + g plasma

q + g plasma

0

f

Tc

2Tc

10 Tc3

T

T*~T ΛQCD

pz

px

py

Chen, Stajic, Tan & Levin,

Phys. Rep. (’05)

High Tc superconductor

Page 34: LATTICE QCD is FUN

SummarySummary

2. Progress in bulk thermodynamics Equation of state, Pseudo-critical temperature, Susceptibilities precision science

3. Progress in spectral analysis elementary excitations in QGP still exploratory

1. Progress in lattice QCD Improved action, Faster algorithm, Faster computer simulations of the REAL world

RHIC LATTICE

AdS/CFT HTS/BEC

4. Progress in finite density no conclusion yet

Page 35: LATTICE QCD is FUN

Back up slides

Page 36: LATTICE QCD is FUN

Inter-particledistance

Electric screening

Magneticscreening

1/T

1/gT

1/g2T

QGP for g << 1 ( T >> 100 GeV )QGP for g << 1 ( T >> 100 GeV )

Relativistic plasma :

“Coulomb” coupling parameter :

Debye number :

S. Ichimaru, Rev. Mod. Phys. 54 (’82) 1071

Page 37: LATTICE QCD is FUN

QCD is non-perturbative even at T = ∞

Non-Abelian magnetic problem Non-Abelian magnetic problem

  μ   ν

EOS : A. Linde, Phys. Lett. B96 (’80) 289

“Debye” screening :

Kraemmer & Rebhan, Rept.Prog.Phys.67 (’04)351

magnetic screening :

Page 38: LATTICE QCD is FUN

(m~ g2T)

soft magnetic gluons are always non-perturbative even if g 0 (T ∞)

pertubation theory from O(g6)