laura f. morales canadian space agency / agence spatiale canadienne

39
Laura F. Morales Canadian Space Agency / Agence Spatiale Canadienne Paul Charbonneau Département de Physique, Université de Montréal Markus Aschwanden Lockheed Martin, Adv. Tec. Center, Solar and Astrophysics Lab. Anisotropic braiding avalanche model for solar flares: A new 2D application

Upload: perry

Post on 18-Jan-2016

30 views

Category:

Documents


0 download

DESCRIPTION

Anisotropic braiding avalanche model for solar flares: A new 2D application. Laura F. Morales Canadian Space Agency / Agence Spatiale Canadienne Paul Charbonneau Département de Physique, Université de Montréal Markus Aschwanden Lockheed Martin, Adv. Tec. Center , - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Laura F. Morales Canadian Space Agency / Agence Spatiale Canadienne

Paul Charbonneau Département de Physique, Université de Montréal

Markus Aschwanden Lockheed Martin, Adv. Tec. Center,

Solar and Astrophysics Lab.

Anisotropic braidingavalanche model

for solar flares:A new 2D application

Page 2: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Outline

Solar Flares : Observations + Classical Th. Models

SOC paradigm: The sandpile model

SOC & Solar Flares: Lu & Hamilton's classic model

New SOC model for solar flares:* Cellular Automaton

* Statistical results & Spreading exponents

* Expanding the model capabilities:

Temperature

Density

Page 3: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Sun's AtmospherePHOTOSPHERE

CHROMOSPHERE

SOLAR CORONA

Sunspots Granules Super-granules

Spicules Filaments

Active regionsLoopsSolar FlaresEtc….

http://www-istp.gsfc.nasa.gov/istp/outreach/images/Solar/Educate/atmos.gif

Page 4: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

M-Class Flare - STEREO (March, 25 2008) – EUV

http://stereo.gsfc.nasa.gov/img/stereoimages/movies/Mflare2008.mpg

X-Class Flare - SOHO (November, 4 2003)

http://sohowww.nascom.nasa.gov/gallery/Movies/EITX27/StormEIT195sm.mpg

“...a solar flare is a process associated with a rapid temporary release of energy in the solar corona triggered by an

instability of the underlying magnetic field configuration …”

Page 5: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Magnetic Reconnection

tonset ~ 1-2s - tthermalization ~ 100s

tdiffusion~ 1016-18 sin the

solar corona

anothermechanism

http://www.sflorg.com/spacenews/images/imsn051906_01_04.gif

Page 6: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Parker's Model for solar

flares

B0

un

iform

High

conductivity

Photospheric motions shuffle the footpoints of magnetic coronal loops

Spontaneous Current Sheets in Magnetic Fields: With Applications to Stellar X-rays

(Oxford U. Press 1) – Figure 11.2

http://helio.cfa.harvard.edu/REU/images/TRACE171_991106_023044.gif

Page 7: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

PhotospherePhotosphereInjection of kinetic Energy

Solar CoronaSolar CoronaStorage of

Magnetic EnergyV

ery

sm

all

SolarSolar FlaresFlaresEnergy

Liberation

Magnetic

reconnection

Page 8: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

TURBULENCE OR

SELF ORGANIZED CRITICALITY?

(Dennis 1985, Solar Phys., 100, 465)

Power law self similar behavior

Energy is released in

a wide rangeof scales

~1024-1033 ergs

Page 9: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

SOC + Solar Corona

Intermitent release of energy: Magnetic Reconnection

Statistically stationary state: the solar corona is an

statistically stationary state

Slowly driven open system

Photospheric motions

instability threshold: Critical

Angle

Page 10: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

tflare ~ seconds

LB ~ 1010 cm

tphotosphere ~ hs

How can we obtain predictions by using this

model?Integrate MHD aquations

Cellular automaton-like simulations

Page 11: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Each node is a measure of the B

B(0)=0

Driving mechanism: add perturbations at some

randomly selected interior nodes

Stability criterion: associated

to the curvature of B

Classic SOC Models

(Charbonneau et al. SolPhys, 203:321-353, 2001)

Page 12: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Time series

of lattice

energy

& energy

released

for the

avalanches

produced by

48 X 48

lattice

(Charbonneau et al. SolPhys, 203:321-353,

2001)

soc

Page 13: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Probability Distributions

Page 14: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Classic SOC Models: Ups

Successfully reproduced statistical properties observed in solar flares:

pdf’s exhibiting power law form

good predictions for exponents: E, P, T

Page 15: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Classic SOC Models: Downs

1. No magnetic reconnection

2. Link between CA elements & MHD

If Bk ↔ B .B ≠ 0

If Bk ↔ A .B ≠ 0 solved &

A interpreted as a twist in the magnetic field

Bk2 is no longer a measure of the lattice energy

3. No good predictions for A

Page 16: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Lattice Energy ~ ∑ Li(t)2

i

Latt

ice +

pert

urb

ati

on

NEW MODEL (2008)

Threshold = 1 + 2

angle formed by 2 fieldlines

1

2

Page 17: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

E=1.25E0

Reconnect+ @ (1,3)

Perturbation starts

again

On

e-s

tep

re

dis

trib

uti

on

E = 1.22 E0

Elim/reduce angle

Page 18: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Tw

o-s

tep

re

dis

trib

uti

on

Reconnect

(3,2) unstable E = 1.32E0

E=1.4E0 E=1.19E0

Perturbation starts

again

(3,1)

E = 1.19E0

Page 19: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

The lattice in action

32 x 32 64 x 64

Page 20: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Latt

ice E

nerg

y &

Rele

ased

En

erg

y

Morales, L. & Charbonneau, P. ApJ. 682,(1), 654-666. 2008

SOC

P

TE

T

Page 21: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

1.73-1.84P

1.63-1.71E

New SOCClassic SOCObservations

1.54 1.40

1.71.79-2.11

Morales, L. & Charbonneau, P. ApJ. 682,(1), 654-666. 2008

Page 22: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

1.79-1.95T

New SOCClassic SOCObservations

1.15 – 2.93 1.70

Morales, L. & Charbonneau, P. ApJ. 682,(1), 654-666. 2008

Page 23: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Are

a c

overe

d b

y a

n

avala

nch

e:

a m

ovie

Page 24: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Area covered by Avalanches

unstable (12,2)

unstable (10,1)

t

0

t0

+30

tf = t0

+332

t0 +116 = tmax

t0

+150

Time integrated Area

Peak Area

Page 25: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Geometric Properties

New SOC

Classic SOC

EUV –TRACE

0.55 ± 0.02

1.02 ± 0.06

1.83 – 2.45

1.93 ± 0.07

2.45 ± 0.11

A*A

Morales, L. & Charbonneau, P. GRL., 35, L04108

Page 26: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Spreading Exponents

Number of unstable nodes at time t

Probability of existence at t

Size of an avalanche ‘death’ by t

Probability of an avalanche

to reach a size S

Page 27: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

128 x 128 c=2.5

0.09±0.02

1.1 ± 0.1

1.83±0.25

1.70±0.2

th=1+ 2.19±0.1

th=(1+ +2)/ th

1.48 ±0.01

Just an example…Morales, L. & Charbonneau, P.

GRL., 35, L04108

Page 28: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Fro

m a

2D

latt

ice t

o

a loop

fold

bend

Page 29: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Avalanching strands

in the loop

Page 30: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Projection

Page 31: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Projections

Page 32: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Geometrical properties for the projected areas

A = 2.39 ± 0.05 A = 1.84 ± 0.07

Page 33: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

N D (stretch=1) D (stretch=10)

32 1.26 ± 0.04 1.21 ± 0.04

64 1.21 ± 0.04 1.23 ± 0.04

128 1.20 ± 0.03 1.25 ± 0.05

Observations

1 – 1.93

N=64

N=32

Page 34: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Another way of looking at the simulations

Near vertical current sheet that extends

from the coronal

reconnection regions to the photospheric flare ribbons

mapped into

Page 35: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Temperature & Density Evolution

The maximum loop temperature based on the maximum heating rate and the loop length for uniform heating case:

Pressure

Density

k = 9.210-7 erg s-1 K7/2

(Spitzer conductivity)Emax

Page 36: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Temperatures

Avalanche duration:

106 it.

Avalanche duration:

138 it.

N=64 THR=2 51013 avalanches in 4e5 iterations

Max duration ~ 700 it

Page 37: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Density]

]

Page 38: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

With the temperature T(t) and density evolution n(t) of each avalanche we can compute the resulting peak fluxes and time durations for a given wavelength filter in EUV or SXR, because for optically thin emission we just have:

I(t) = ∫ n(t)2 w R(T) dT

w is the loop widthR(T) is the instrumental response function.

We can plot the frequency distributions of energies:

W =E_Hmax * duration

peak fluxes (I_EUV, I_SXR)

Coming up…..

Page 39: Laura F. Morales        Canadian Space Agency /  Agence Spatiale Canadienne

Conclusions

Every element in the model can be directly mapped to Parker's model for solar flares thus solving the major problems of interpretation posed by classical SOC models.

For the first time a SOC model for solar flares succeeded in reproducing observational results for all the typical magnitudes that characterize a SOC model: E, P, T, T & the time integrated A and the peak A*.

The new cellular automaton we introduced and fully analyzed represents a major breakthrough in the field of self-organized critical models for solar flares since: