lca of renewable enrgy systems

16
Life Cycle Assessment of Renewable Energy Systems Dr Gareth Harrison University of Edinburgh Bath, 9 th July 2008

Upload: amir19890

Post on 04-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 1/16

Life Cycle Assessment of

Renewable Energy Systems

Dr Gareth HarrisonUniversity of Edinburgh

Bath, 9th July 2008

Page 2: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 2/16

Overview

• Renewable energy and LCA

• Renewable energy life cycle

• Wave energy case study

• Technology comparisons

Page 3: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 3/16

Renewable Energy and LCA

• Renewable energy sources are regarded as one of the

solutions to the twin challenges of climate change andenergy security

• Increasing interest in carbon footprint among companiesand the general public –  many renewable developers are asked for this information

• Persistent myth that renewable energy devices never pay back the energy or CO2 embedded in them

 –   particularly prevalent among anti-wind lobby

• Increasing number of technologies now assessed

Page 4: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 4/16

Renewable Energy and LCA

• Functional unit is kWh of electrical output

• Key indicators

 –  Energy intensity (kJ/kWh)

 –  Carbon intensity or footprint (gCO2/kWh)

 –  Energy payback (months)

 –  Carbon payback (months)

 –  Energy Return on Energy Invested (multiples)

Page 5: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 5/16

Renewable Technologies

Page 6: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 6/16

Renewable Energy Life Cycle

Page 7: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 7/16

Wave Energy Case Study

• Pelamis

 –  Pelamis Wave Power Ltd, Edinburgh –  120 m long, 3.5m diameter

 –  750 kW capacity, designed for survival

 –  designed to be laid out in farms

• Scope of assessment

 –  20 year life, single converter 

• LCA datasets used

 –  Bath’s Inventory of Carbon and Energy and others (pref. ISO 14040)

• Life cycle stages examined

Decommissioningand Disposal

Materials andManufacturing

Assembly andInstallation

Operations andMaintenance

Page 8: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 8/16

Materials and Manufacturing

• Materials account for 96% of

embodied energy/CO2 in structure

• Structure

 –  several subcomponents –  mostly steel plate

 –  cut, welded, sand-blasted, painted

 –   ballast (sand) to set buoyancy

Decommissioningand Disposal

Materials andManufacturing

Assembly andInstallation

Operations andMaintenance

Page 9: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 9/16

Materials and Manufacturing

• Hydraulic systems

 –  rams, accumulators, motors –  mostly within power conversion module

• Electrical and electronics

 –  mostly within power conversion module

 –  in excess of 500 components

 –  derived cost-energy/CO2 relationships

• Moorings

 –  anchors, chains, lines, release mechanism

Decommissioningand Disposal

Materials andManufacturing

Assembly andInstallation

Operations andMaintenance

Page 10: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 10/16

Assembly and Installation

• Site off Western Isles (~55 kW)

• Device assembly –  PCMs assembled at Methil

 –  Structure manufactured near Stornaway

 –  Components transported to port near site

• Installation –  Moorings installation

 –  Power cable installation

 –  Sea trials

 –  Tow and latching

• Inputs are mostly fuel related

Methil

Decommissioningand Disposal

Materials andManufacturing

Assembly andInstallation

Operations andMaintenance

SiteStornaway

Page 11: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 11/16

Operations and Maintenance

• Pelamis is remotely operated and controlled

 –  System redundancy –  Limited need for intervention

• Device inspection every 6 months

 –  Towed to and from port using multicat vessel

• Moorings inspected every 2 months

 –  Use of ROV and smaller boat

• Impacts again fuel derrived

Decommissioningand Disposal

Materials andManufacturing

Assembly andInstallation

Operations andMaintenance

Page 12: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 12/16

Decommissioning and Disposal

• Decommissioning

 –  final detachment and towing –  recovery of moorings

• Disassembly and recycling

 –  credit based on avoided primary materials

 –  standard method for metals

 –  90% recycling rate for metals

 –  recovery of 500+ tonnes of steel

Decommissioningand Disposal

Materials andManufacturing

Assembly andInstallation

Operations andMaintenance

Page 13: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 13/16

Life Cycle Summary

•  Net life cycle emissions 1356 tCO2

 –  manufacture of structure mostsignificant

• Recycling credit

 –  ~26% energy and 28% CO2

 –  comparable with wind turbines

• Functional split revealing

 –  shipping emissions significant

• Indicators –  Energy intensity 293 kJ/kWh

 –  Carbon intensity 23 gCO2/kWh

 –  Carbon payback 13 months

Page 14: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 14/16

Evaluating Design Changes

• Pelamis design evolving

 –  opportunities to reduce cost

and environmental impact

• Options to replace steel

tubes with reinforced

concrete or glass

reinforced plastic (GRP)

• Footprint reduced by –  6% for GRP

 –  19% for concrete

Page 15: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 15/16

Comparing Generating Technologies

• Renewables much less

intensive than fossilgeneration

• Pelamis appears to be low

carbon option

 –  opportunities to reduce footprint

• Challenges in comparing

technologies

 –  international manufacturing –  electricity network CO2 intensity

 –  stage of development

0 200 400 600 800 1000

Coal

Oil

Natural Gas

Nuclear 

Solar PV

Hydro

Wind

Tidal stream

Pelamis

Carbon Footprint (gCO2 /kWh)

Page 16: LCA of Renewable Enrgy Systems

8/13/2019 LCA of Renewable Enrgy Systems

http://slidepdf.com/reader/full/lca-of-renewable-enrgy-systems 16/16

Conclusions

• Much interest in carbon footprint of renewable

energy• Most of the embodied energy and CO2 derives

from the manufacture of the renewable generator 

• For marine technologies shipping may besignificant factor 

• Lots of challenges in comparing technologies

•  Need for proper guidance on performing LCAs

and comparisons (e.g. FP7 EquiMar)