lec10 mixers

Upload: gariyak

Post on 02-Jun-2018

233 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/11/2019 Lec10 Mixers

    1/45

    6.976 High Speed Communication Circuits and Systems

    Lecture 10 Mixers

    Michael Perrott

    Massachusetts Institute of Technology

    Copyright 2003 by Michael H. Perrott

  • 8/11/2019 Lec10 Mixers

    2/45

    M.H. Perrott MIT OCW

    Mixer Design for Wireless Systems

    Design Issues- Noise Figure impacts receiver sensitivity- Linearity (IIP3) impacts receiver blocking performance- Conversion gain lowers noise impact of following stages- Power match want max voltage gain rather than power

    match for integrated designs

    - Power want low power dissipation- Isolation want to minimize interaction between the RF, IF,and LO ports

    - Sensitivity to process/temp variations need to make itmanufacturable in high volume

    Zin

    Zo LNA To Filter

    From Antennaand Bandpass

    Filter

    PC boardtrace

    PackageInterface

    Local Oscillator Output

    Mixer RF in IF out

  • 8/11/2019 Lec10 Mixers

    3/45

  • 8/11/2019 Lec10 Mixers

    4/45M.H. Perrott MIT OCW

    The Issue of Aliasing

    When the IF frequency is nonzero, there is an imageband for a given desired channel band- Frequency content in image band will combine with that

    of the desired channel at the IF output

    - The impact of the image interference cannot be removedthrough filtering at the IF output!

    f -f o f o

    = 2cos(2 f ot)

    RF inRF in(f) Desired

    channelImage

    Interferer

    0

    f -f o f o0

    1 1

    Local Oscillator Output

    IF out

    LO out(f)

    f -f o f o

    IF out(f)

    0

    f -f

    f -f

  • 8/11/2019 Lec10 Mixers

    5/45M.H. Perrott MIT OCW

    LO Feedthrough

    LO feedthrough will occur from the LO port to IF output portdue to parasitic capacitance, power supply coupling, etc.- Often significant since LO output much higher than RF signal

    If large, can potentially desensitize the receiver due to the extradynamic range consumed at the IF outputIf small, can generally be removed by filter at IF output

    f -f o f o

    = 2cos(2 f ot)

    RF inRF in(f) Desired

    channelImage

    Interferer

    0

    f -f o f o0

    1 1

    Local Oscillator Output

    IF out

    LO out(f)

    f -f o f o

    IF out(f)

    0

    f -f

    f -f

    LOfeedthrough

    LOfeedthrough

  • 8/11/2019 Lec10 Mixers

    6/45M.H. Perrott MIT OCW

    Reverse LO Feedthrough

    Reverse LO feedthrough will occur from the LO portto RF input port due to parasitic capacitance, etc.- If large, and LNA doesnt provide adequate isolation,

    then LO energy can leak out of antenna and violateemission standards for radio

    - Must insure that isolate to antenna is adequate

    f -f o f o

    = 2cos(2 f ot)

    RF inRF in(f) Desired

    channelImage

    Interferer

    0

    f -f o f o0

    1 1

    Local Oscillator Output

    IF out

    LO out(f)

    f -f o f o

    IF out(f)

    0

    f -f

    f -f

    LOfeedthrough

    Reverse LOfeedthrough

    LOfeedthrough

    Reverse LOfeedthrough

  • 8/11/2019 Lec10 Mixers

    7/45M.H. Perrott MIT OCW

    Self-Mixing of Reverse LO Feedthrough

    LO component in the RF input can pass back throughthe mixer and be modulated by the LO signal- DC and 2f o component created at IF output- Of no consequence for a heterodyne system, but cancause problems for homodyne systems (i.e., zero IF)

    f -f o f o

    = 2cos(2 f ot)

    RF inRF in(f) Desired

    channelImage

    Interferer

    0

    f -f o f o0

    1 1

    Local Oscillator Output

    IF out

    LO out(f)

    f -f o f o

    IF out(f)

    0

    f -f

    f -f

    LOfeedthrough

    Reverse LOfeedthrough

    LOfeedthrough

    Reverse LOfeedthrough

    Self-mixingof reverse

    LO feedthrough

  • 8/11/2019 Lec10 Mixers

    8/45M.H. Perrott MIT OCW

    Removal of Image Interference Solution 1

    An image reject filter can be used before the mixer toprevent the image content from aliasing into the desiredchannel at the IF outputIssue must have a high IF frequency

    - Filter bandwidth must be large enough to pass all channels- Filter Q cannot be arbitrarily large (low IF requires high Q)

    f -f o f o

    = 2cos(2 f ot)

    RF inRF in(f) Desired

    channelImage

    Interferer

    0

    f -f o f o0

    1 1

    Local Oscillator Output

    IF out

    LO out(f)

    f -f o f o

    IF out(f)

    0

    f -f

    f -f

    LOfeedthrough

    Reverse LOfeedthrough

    Self-mixingof reverse

    LO feedthrough

    ImageRejectionFilter

  • 8/11/2019 Lec10 Mixers

    9/45M.H. Perrott MIT OCW

    Removal of Image Interference Solution 2

    Mix directly down to baseband (i.e., homodyne approach)

    - With an IF frequency of zero, there is no image bandIssues many!- DC term of LO feedthrough can corrupt signal if time-varying- DC offsets can swamp out dynamic range at IF output- 1/f noise, back radiation through antenna

    f -f o f o

    = 2cos(2 f ot)

    RF inRF in(f) Desired

    channel

    0

    f -f o f o0

    1 1

    Local Oscillator Output

    IF out

    LO out(f)

    f -f o f o

    IF out(f)

    0

    f=0

    LOfeedthrough

    Reverse LOfeedthrough

    LOfeedthrough

    Reverse LOfeedthrough

    Self-mixingof reverse

    LO feedthrough

  • 8/11/2019 Lec10 Mixers

    10/45M.H. Perrott MIT OCW

    Removal of Image Interference Solution 3

    Rather than filtering out the image, we can cancel it out

    using an image rejection mixer - Advantages Allows a low IF frequency to be used without requiring ahigh Q filter Very amenable to integration

    - DisadvantageLevel of image rejection is determined by mismatch in gain

    and phase of the top and bottom pathsPractical architectures limited to 40-50 dB image rejection

    f

    -f 1 f 1

    2cos(2 f 1t)

    2sin(2 f 1t)

    a(t)

    b(t)

    e(t)

    g(t)

    RF in IF out2cos(2 f 2t)

    2sin(2 f 2t)

    Lowpass

    RF in(f) Desired

    channelImage

    Interferer

    0

    c(t)

    d(t)

    Lowpass

  • 8/11/2019 Lec10 Mixers

    11/45M.H. Perrott MIT OCW

    Image Reject Mixer Principles Step 1

    f

    -f 1 f 1

    2cos(2 f 1t)

    2sin(2 f 1t)

    a(t)

    b(t)

    e(t)

    g(t)

    RF in IF out2cos(2 f 2t)

    2sin(2 f 2t)

    Lowpass

    RF in(f) Desired

    channelImage

    Interferer

    0

    f -f 1 f 10

    f -f 1

    f 10

    f -f 1 f 1

    A(f)

    0

    f -f 1 f 1

    B(f)

    0

    c(t)

    d(t)

    j

    -j

    1 1 1

    j

    -j

    Lowpass

    Lowpass

    Lowpass

    Note: we are assuming RF in(f)is purely real right now

  • 8/11/2019 Lec10 Mixers

    12/45M.H. Perrott MIT OCW

    f

    -f 1 f 1

    2cos(2 f 1t)

    2sin(2 f 1t)

    a(t)

    b(t)

    e(t)

    g(t)

    RF in IF out2cos(2 f 2t)

    2sin(2 f 2t)

    Lowpass

    RF in(f) Desired

    channelImage

    Interferer

    0

    f -f 1 f 10

    f -f 1

    f 10

    f -f 1 f 1

    C(f)

    0

    f -f 1 f 1

    D(f)

    0

    c(t)

    d(t)

    j

    -j

    1 1 1

    j

    -j

    Lowpass

    Image Reject Mixer Principles Step 2

  • 8/11/2019 Lec10 Mixers

    13/45

  • 8/11/2019 Lec10 Mixers

    14/45

    M.H. Perrott MIT OCW

    Image Reject Mixer Principles Step 4

    e(t)

    g(t)

    IF out

    -f 2 f 2

    E(f)

    0

    -f 2 f 2

    G(f) 1

    2

    12

    1

    -1

    1

    -1-2

    f

    f

    -f 2 f 20

    2

    f

    IF out(f)Baseband

    Filter

  • 8/11/2019 Lec10 Mixers

    15/45

  • 8/11/2019 Lec10 Mixers

    16/45

    M.H. Perrott MIT OCW

    What if RF in(f) is Purely Imaginary?

    Both desired and image signals disappear!- Architecture is sensitive to the phase of the RF input

    Can we modify the architecture to fix this issue?

    0 f

    IF out(f)(after baseband filtering)

    f

    -f 1 f 1

    2cos(2 f 1t)

    2sin(2 f 1t)

    a(t)

    b(t)

    e(t)

    g(t)

    RF in IF out2cos(2 f 2t)

    2sin(2 f 2t)

    Lowpass

    RF in(f)Desiredchannel

    ImageInterferer

    0

    c(t)

    d(t)

    Lowpass

    -j

    j

  • 8/11/2019 Lec10 Mixers

    17/45

    M.H. Perrott MIT OCW

    Modification of Mixer Architecture for Imaginary RF in(f)

    Desired channel now appears given two changes- Sine and cosine demodulators are switched in secondhalf of image rejection mixer

    - The two paths are now added rather than subtractedIssue architecture now zeros out desired channelwhen RF in(f) is purely real

    0 f

    IF out(f)(after baseband filtering)

    f

    -f 1 f

    1

    2cos(2 f 1t)

    2sin(2 f 1t)

    a(t)

    b(t)

    e(t)

    g(t)

    RF in IF out

    2cos(2 f 2t)

    2sin(2 f 2t)

    Lowpass

    RF in(f)Desiredchannel

    ImageInterferer

    0

    c(t)

    d(t)

    Lowpass

    -j

    j

    2

  • 8/11/2019 Lec10 Mixers

    18/45

    M.H. Perrott MIT OCW

    Overall Mixer Architecture Use I/Q Demodulation

    Both real and imag. parts of RF input now pass through

    0 f

    IF out(f) (I component)(after baseband filtering)

    f -f 1 f 1

    2cos(2 f 1t)2sin(2 f 1t)

    a(t)

    b(t)

    RF in

    IF outI

    2cos(2 f 2t)

    2sin(2 f 2t)

    Lowpass

    Desiredchannel

    ImageInterferer

    0

    Lowpass

    1

    2

    f -f 1 f 1

    real part of RF in(f)

    0

    -j

    j

    1

    imag. part of RF in(f)2cos(2 f 2t)

    2sin(2 f 2t)

    IF outQ

    0 f

    2

    IF out(f) (Q component)(after baseband filtering)

  • 8/11/2019 Lec10 Mixers

    19/45

    M.H. Perrott MIT OCW

    Mixer Single-Sideband (SSB) Noise Figure

    Issue broadband noise from mixer or front end filterwill be located in both image and desired bands- Noise from both image and desired bands will combine

    in desired channel at IF output

    Channel filter cannot remove this- Mixers are inherently noisy!

    f -f o f o

    = 2cos(2 f ot)

    RF in(f)Desiredchannel

    Imageband

    0

    f -f o f o0

    1 1

    LO out

    IF out

    LO out(f)

    f

    IF out(f)

    0

    f -f

    f -f

    ImageRejectionFilter

    Noise

    RF in

    Noise from Desiredand Image bands add

    Noise

    No

    2N o

    S RF

    S RF

    ChannelFilter

  • 8/11/2019 Lec10 Mixers

    20/45

    M.H. Perrott MIT OCW

    Mixer Double-Sideband (DSB) Noise Figure

    For zero IF, there is no image band

    - Noise from positive and negative frequencies combine, butthe signals do as wellDSB noise figure is 3 dB lower than SSB noise figure

    - DSB noise figure often quoted since it sounds better For either case, Noise Figure computed through simulation

    f -f o f o

    = 2cos(2 f ot)

    RF in(f)Desiredchannel

    0

    f -f o f o0

    1

    LO out

    LO out(f)

    f

    IF out(f)

    0 f -f

    ImageRejectionFilter

    Noise

    RF in

    Noise frompositive and negativefrequency bands add

    Noise

    No

    2N o

    S RF

    2S RF

    IF out

    ChannelFilter

  • 8/11/2019 Lec10 Mixers

    21/45

    M.H. Perrott MIT OCW

    A Practical Issue Square Wave LO Oscillator Signals

    Square waves are easier to generate than sine waves- How do they impact the mixing operation when used asthe LO signal?

    -We will briefly review Fourier transforms (series) tounderstand this issue

    = 2sgn(cos(2 f ot))

    RF in

    Local Oscillator Output

    IF out

    1t

    TT

    W

    LO out(t)

  • 8/11/2019 Lec10 Mixers

    22/45

    M.H. Perrott MIT OCW

    Two Important Transform Pairs

    Transform of an impulse train in time is an impulsetrain in frequency

    T2

    T2

    1

    x(t)

    t

    X(f)

    f

    T1

    T

    s(t)

    t

    S(f)

    f

    T1

    T1

    T1

    T

    1

    T

    Transform of a rectangle pulse in time is a sinc functionin frequency

  • 8/11/2019 Lec10 Mixers

    23/45

    M.H. Perrott MIT OCW

    Decomposition of Square Wave to Simplify Analysis

    Decomposition in time

    1

    y(t)

    tTT

    W

    s(t)

    tT

    1

    T

    *1x(t)

    t

    W

    Consider now a square wave with duty cycle W/T

  • 8/11/2019 Lec10 Mixers

    24/45

    M.H. Perrott MIT OCW

    Associated Frequency Transforms

    Decomposition in frequency

    1

    y(t)

    tTT

    W

    X(f)

    fW1

    W S(f)

    f

    T1

    T1

    T1

    Consider now a square wave with duty cycle W/T

  • 8/11/2019 Lec10 Mixers

    25/45

    M.H. Perrott MIT OCW

    Overall Frequency Transform of a Square Wave

    Fundamental at frequency 1/T- Higher harmonics have lower magnitude

    If W = T/2 (i.e., 50% duty cycle)- No even harmonics!

    If amplitude varies between 1 and -1 (rather than 1 and 0)

    - No DC component

    1

    y(t)

    tTT

    W

    Y(f)

    f

    T1

    1

    TW

    W

    Resulting transform relationship

  • 8/11/2019 Lec10 Mixers

    26/45

    M.H. Perrott MIT OCW

    Analysis of Using Square-Wave for LO Signal

    Each frequency component of LO signal will now mixwith the RF input- If RF input spectrum sufficiently narrowband with respect

    to f o , then no aliasing will occur

    Desired output (mixed by the fundamental component)can be extracted using a filter at the IF output

    f -f o f o

    = 2sgn(cos(2 f ot))

    RF inRF in(f)

    0

    f -f o f o0

    Local Oscillator Output

    IF out

    LO out(f)

    f -f o f o

    IF out(f)

    03f o-3f o -3f o 3f o2f o2f o2f o-2f o

    DesiredOutput

    Even order harmonicdue to not having anexact 50% duty cycle

    DC componentof LO waveform

  • 8/11/2019 Lec10 Mixers

    27/45

    M.H. Perrott MIT OCW

    Voltage Conversion Gain

    Defined as voltage ratio of desired IF value to RF inputExample: for an ideal mixer with RF input = Asin(2 (f o +

    f)t) and sine wave LO signal = Bcos(2 f o t)

    For practical mixers, value depends on mixer topologyand LO signal (i.e., sine or square wave)

    f -f o f o

    Bcos(2 f ot)

    RF in = Acos(2 ( f o+f)t)

    RF in(f)

    0

    f -f o f o0

    LO ouput =

    IF out

    LO out(f)

    f -f o f o

    IF out(f)

    0

    f

    f -f

    A2

    B2

    AB4

  • 8/11/2019 Lec10 Mixers

    28/45

    M.H. Perrott MIT OCW

    Impact of High Voltage Conversion Gain

    Benefit of high voltage gain- The noise of later stages will have less of an impact

    Issues with high voltage gain- May be accompanied by higher noise figure than could beachieved with lower voltage gain

    - May be accompanied by nonlinearities that limitinterference rejection (i.e., passive mixers can generallybe made more linear than active ones)

    f -f o f o

    Bcos(2 f ot)

    RF in = Acos(2 ( f o+f)t)

    RF in(f)

    0

    f -f o f o0

    LO ouput =

    IF out

    LO out(f)

    f -f o f o

    IF out(f)

    0

    f

    f -f

    A2

    B2

    AB4

  • 8/11/2019 Lec10 Mixers

    29/45

    M.H. Perrott MIT OCW

    Impact of Nonlinearity in Mixers

    Ignoring dynamic effects, we can model mixer asnonlinearities around an ideal mixer

    -Nonlinearity A will have the same impact as LNAnonlinearity (measured with IIP3)

    - Nonlinearity B will change the spectrum of the LO signalCauses additional mixing that must be analyzed

    Changes conversion gain somewhat- Nonlinearity C will cause self mixing of IF output

    MemorylessNonlinearity A

    y

    w10 w2W

    RF in(w) DesiredNarrowbandSignal

    Interferers

    IdealMixer

    RF in IF out

    LO signal

    MemorylessNonlinearity B

    MemorylessNonlinearity C

  • 8/11/2019 Lec10 Mixers

    30/45

    M.H. Perrott MIT OCW

    Primary Focus is Typically Nonlinearity in RF Input Path

    Nonlinearity B not detrimental in most cases- LO signal often a square wave anyway

    Nonlinearity C can be avoided by using a linear load(such as a resistor)Nonlinearity A can hamper rejection of interferers

    - Characterize with IIP3 as with LNA designs- Use two-tone test to measure (similar to LNA)

    MemorylessNonlinearity A

    y

    w10 w2W

    RF in(w) DesiredNarrowbandSignal

    Interferers

    0 w12w 2+w1

    w2 2w 22w 1-w2 2w 1+w22w 2-w1 w1+w2

    w2-w1 2w 1 3w 23w 1W

    Y(w) Corruption of desired signal

    IdealMixer

    RF in IF out

    LO signal

    MemorylessNonlinearity B

    MemorylessNonlinearity C

    x

    z

  • 8/11/2019 Lec10 Mixers

    31/45

    M.H. Perrott MIT OCW

    The Issue of Balance in Mixers

    A balanced signal is defined to have a zero DCcomponent

    Mixers have two signals of concern with respect tothis issue LO and RF signals- Unbalanced RF input causes LO feedthrough- Unbalanced LO signal causes RF feedthrough

    Issue transistors require a DC offset

    f -f o f o

    RF in

    RF in(f)

    0

    f -f o f o0

    LO sig

    IF out

    LO sig(f)

    f -f o f o

    IF out(f)

    0

    f

    f -f

    LOfeedthrough

    RFfeedthrough

    DC component

    DC component

  • 8/11/2019 Lec10 Mixers

    32/45

    M.H. Perrott MIT OCW

    Achieving a Balanced LO Signal with DC Biasing

    Combine two mixer paths with LO signal 180 degreesout of phase between the paths

    - DC component is cancelled

    RF in

    LO sig

    IF out

    1

    -1

    RF in

    LO sig

    IF out1

    0

    LO sig

    1

    0

    0

  • 8/11/2019 Lec10 Mixers

    33/45

    M.H. Perrott MIT OCW

    Single-Balanced Mixer

    Works by converting RF input voltage to a current, thenswitching current between each side of differential pair Achieves LO balance using technique on previous slide

    - Subtraction between paths is inherent to differential outputLO swing should be no larger than needed to fully turn onand off differential pair - Square wave is best to minimize noise from M 1 and M 2

    Transconductor designed for high linearity

    M1

    I1

    Io = G mVRFTransconductor VRF

    Io

    I2

    M2VLO VLO

    DC

    VRF (t)

  • 8/11/2019 Lec10 Mixers

    34/45

    M.H. Perrott MIT OCW

    Transconductor Implementation 1

    Apply RF signal to input of common source amp- Transistor assumed to be in saturation- Transconductance value is the same as that of thetransistor

    High V bias places device in velocity saturation

    - Allows high linearity to be achieved

    M1R s

    VRF

    Vbias

    Cbig

    Io

    Rbig

  • 8/11/2019 Lec10 Mixers

    35/45

    M.H. Perrott MIT OCW

    Transconductor Implementation 2

    Apply RF signal to a common gate amplifier Transconductance value set by inverse of seriescombination of R

    sand 1/g

    mof transistor

    - Amplifier is effectively degenerated to achieve higherlinearity

    Ibias can be set for large current density throughdevice to achieve higher linearity (velocity saturation)

    M1R s

    VRF Ibias

    Cbig

    Io

    Vbias

  • 8/11/2019 Lec10 Mixers

    36/45

    M.H. Perrott MIT OCW

    Transconductor Implementation 3

    Add degeneration to common source amplifier - Inductor better than resistor

    No DC voltage dropIncreased impedance at high frequencies helps filter outundesired high frequency components

    - Dont generally resonate inductor with C gsPower match usually not required for IC implementationdue to proximity of LNA and mixer

    M1R s

    VRF

    Vbias

    Cbig

    Ldeg

    Io

    Rbig

  • 8/11/2019 Lec10 Mixers

    37/45

    M.H. Perrott MIT OCW

    LO Feedthrough in Single-Balanced Mixers

    DC component of RF input causes very large LOfeedthrough

    -Can be removed by filtering, but can also be removed byachieving a zero DC value for RF input

    M1

    I1

    Io = G mVinTransconductor VRF

    Io

    I2

    M2VLO VLO

    DC

    0-f 1 f 1

    VRF (t)

    VRF (f)

    0-f o f o

    VLO(f)-VLO(f)

    f

    f

    0 f o-f 1

    I1(f)-I2(f)

    f f o f o+f 1-f o-f o-f 1 -f o+f 1

    Higher order harmonics

    Higher order harmonics

    Higher order harmonics

    Higher order harmonics

    D bl B l d Mi

  • 8/11/2019 Lec10 Mixers

    38/45

    M.H. Perrott MIT OCW

    Double-Balanced Mixer

    DC values of LO and RF signals are zero (balanced)LO feedthrough dramatically reduced!

    But, practical transconductor needs bias current

    M1

    I1

    Io = G mVinTransconductor VRF

    Io

    I2

    M2VLO VLO

    DC0-f 1 f 1

    VRF (t)

    VRF (f)

    0-f o f o

    VLO(f)-VLO(f)

    f

    f

    0 f o-f 1

    I1(f)-I2(f)

    f f o f o+f 1-f o-f o-f 1 -f o+f 1

    Higher order harmonics

    Higher order harmonics

    Higher order harmonics

    Higher order harmonics

    A hi i B l d RF Si l i h Bi i

  • 8/11/2019 Lec10 Mixers

    39/45

    M.H. Perrott MIT OCW

    Achieving a Balanced RF Signal with Biasing

    Use the same trick as with LO balancing

    RF in

    LO sig

    IF out1

    0

    LO sig

    1

    0DC

    VRF (t) RF in

    LO sig

    IF out1

    0

    LO sig

    1

    0

    RF in

    LO sig

    IF out

    10

    LO sig

    1

    0

    DC

    VRF (t)

    DC

    VRF (t)

    signal

    signal

    DC componentcancels

    signal componentadds

    D bl B l d Mi I l t ti

  • 8/11/2019 Lec10 Mixers

    40/45

    M.H. Perrott MIT OCW

    Double-Balanced Mixer Implementation

    Applies technique from previous slide- Subtraction at the output achieved by cross-couplingthe output current of each stage

    M1

    I1

    Io = G mVRFTransconductor VRF

    Io

    I2

    M2

    VLO VLO

    DC

    VRF (t)

    M1

    I3

    Io = G mVRFTransconductor VRF

    Io

    I4

    M2

    VLO VLO

    DC

    VRF (t)

  • 8/11/2019 Lec10 Mixers

    41/45

    A Highly Linear CMOS Mixer

  • 8/11/2019 Lec10 Mixers

    42/45

    M.H. Perrott MIT OCW

    A Highly Linear CMOS Mixer

    Transistors are alternated between the off and trioderegions by the LO signal- RF signal varies resistance of channel when in triode

    - Large bias required on RF inputs to achieve triode operationHigh linearity achieved, but very poor noise figure

    VLO

    VLO

    R f1

    Cf1

    Cb1

    R f2

    C f2

    Cb2

    VRF VRF

    M1M2

    M3M4

    VIF

    VIF

    Passive Mixers

  • 8/11/2019 Lec10 Mixers

    43/45

    M.H. Perrott MIT OCW

    Passive Mixers

    We can avoid the transconductor and simply useswitches to perform the mixing operation- No bias current required allows low power operation to

    be achieved

    You can learn more about it in Homework 4!

    VRF

    CL

    RL/2 R L/2

    RS

    /2 Cbig

    RS /2 C big

    VIF VIF2A in

    VLO VLO

    VLO VLO

    Square Law Mixer

  • 8/11/2019 Lec10 Mixers

    44/45

    M.H. Perrott MIT OCW

    Square-Law Mixer

    Achieves mixing through nonlinearity of MOS device- Ideally square law, which leads to a multiplication term

    - Undesired components must be filtered outNeed a long channel device to get square law behavior Issue no isolation between LO and RF ports

    M1

    VRF

    Vbias

    LL R L C L

    VIFVLO

    Alternative Implementation of Square Law Mixer

  • 8/11/2019 Lec10 Mixers

    45/45

    M.H. Perrott MIT OCW

    Alternative Implementation of Square Law Mixer

    Drives LO and RF inputs on separate parts of the

    transistor - Allows some isolation between LO and RF signalsIssue - poorer performance compared to multiplication-based mixers

    - Lots of undesired spectral components- Poorer isolation between LO and RF ports

    Ibias

    M1

    Vbias

    LL R L C L

    VIF

    Rbig

    Cbig

    VRF

    Cbig2

    VLO