lect 16 ofdm - sonoma state university · ofdm divides each channel into many narrower subcarriers....

45
OFDM Notes 1 EE 442 – Spring 2017 Lecture 16 Orthogonal Frequency Division MulAplexing (OFDM) is a digital mulAcarrier modulaAon technique extending the concept of single subcarrier modulaAon by using mulAple subcarriers over the channel. Rather than transmit a highrate stream of data with a single carrier, OFDM makes use of a large number of closely spaced orthogonal subcarriers that are transmiAed in parallel. Each subcarrier is modulated with a convenEonal digital modulaEon scheme (such as QPSK, 16QAM, etc.) at a lower symbol rate. However, the combinaEon of many subcarriers enables data rates similar to convenEonal singlecarrier modulaEon schemes using equivalent bandwidths.

Upload: others

Post on 05-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

OFDM Notes

1  

EE  442  –  Spring  2017  Lecture  16  

Orthogonal  Frequency  Division  MulAplexing  (OFDM)  is  a  digital  mulA-­‐carrier  modulaAon  technique  extending  the  concept  of  single  subcarrier  modulaAon  by  using  mulAple  sub-­‐carriers  over  the  channel.      Rather  than  transmit  a  high-­‐rate  stream  of  data  with  a  single  carrier,  OFDM  makes  use  of  a  large  number  of  closely  spaced  orthogonal  sub-­‐carriers  that  are  transmiAed  in  parallel.          Each  sub-­‐carrier  is  modulated  with  a  convenEonal  digital  modulaEon  scheme  (such  as  QPSK,  16QAM,  etc.)  at  a  lower  symbol  rate.      However,  the  combinaEon  of  many  sub-­‐carriers  enables  data  rates  similar  to  convenEonal  single-­‐carrier  modulaEon  schemes  using  equivalent  bandwidths.  

Page 2: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

2  

OFDM  Benefits  

Q:  What  are  the  benefits  of  using  OFDM?      A:  The  first  reason  is  spectral  efficiency,  also  called  bandwidth  efficiency.    What  that  term  really  means  is  that  you  can  transmit  more  data  faster  in  a  given  bandwidth  in  the  presence  of  noise.    The  measure  of  spectral  efficiency  is  bits  per  second  per  Hertz,  or  bps/Hz.      For  a  given  chunk  of  spectrum  space,  different  modulaEon  methods  will  give  you  widely  varying  maximum  data  rates  for  a  given  bit  error  rate  (BER)  and  noise  level.    Simple  digital  modulaEon  methods  like  amplitude  shiX  keying  (ASK)  and  frequency  shiX  keying  (FSK)  are  simple  but  don’t  give  the  best  BER  performance.    BPSK  and  QPSK  do  much  beAer.    QAM  is  very  good  but  more  suscepEble  to  noise  and  low  signal  levels  issues.    Code  division  mulEple  access  (CDMA)  methods  are  even  beAer  performance.      But  none  is  beAer  than  OFDM  with  respect  to  aAaining  the  maximum  data  capacity  out  of  a  given  channel  bandwidth.  It  approaches  the  Shannon  limit  defining  channel  capacity  C  in  bits  per  second  (bps).  

Page 3: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

3  

MulAcarrier  CommunicaAon  Systems  (Uses  MulAple  Oscillators)  

Answer:  It  is  nearly  impossible  to  keep  mulAple  oscillators  in  synchronizaAon  with  each  other.    And  it  is  difficult  to  have  hundreds  of  oscillators    in  a  pracAcal  system.  

What  is  the  problem  with  this  architecture?  

Page 4: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

4  

Discrete  MulAtone  (aka  Frequency  Division  MulAplexing)  

POTS  

The  basic  idea  of  Discrete  MulAtone  (DMT)  is  to  split  the  available  bandwidth  into  a  large  number  of  sub-­‐channels.    ADSL2  is  an  example  applicaAon  of  DMT.  

DMT  uses  available  frequencies  on  the  telephone  line  and  splits  them  into  256/512  equal  sized  frequency  bins  of  4.3125  kHz  each.  

ADSL2  

hAp://educypedia.karadimov.info/computer/modemadsl.htm    

Page 5: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

5  

Can  we  get  rid  of  the  guard-­‐bands  in  DMT?  

Recall  from  Fourier  Transform:  

OFDM  Spectrum  

YES  

Spectrum  of  one  OFDM  Sub-­‐channel  

Page 6: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

6  

OFDM  Packs  Sub-­‐channels  Closer  Together  

OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere with one another in spite of the lack of guard bands between them. This results from the subcarrier spacing equal to the reciprocal of symbol time. All subcarriers have a complete number of sine wave cycles that sum to zero upon demodulation.

Four  sub-­‐channels  shown  

Page 7: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

7  

Spectrum  of  OFDM  Signal  Transmission  

8  sub-­‐carriers  

Page 8: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

8  

In  OFDM  the  Sub-­‐Carriers  are  Or_hogonal  

Page 9: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

Parallel  data  streams  (all  at  lower  data  rates)    ⇒    large  number  of  subcarriers  without  guard  bands  

 

Data  coding  based  upon  amplitude  modulaEon    

MulEple  subcarriers  are  mulEplexed  into  one  symbol    

Subcarriers  are  computed  using  IFFT  (i.e.,  Inverse  Fast  Fourier  Transform)  

 They  are  spaced  at  precise  frequencies  and  phases    This  spacing  selecEon  provides  orthogonality    

 

Orthogonality  Principle  results  in  close  packing  of  subcarriers    

Provides  for  mulA-­‐user  diversity    

SynchronizaEon  using  pilot  signals  

9  

OFDM  Summary  

Serial  Data  Source  

Serial  to  

Parallel  Encode   IFFT  

Parallel  to  

Serial  

Cyclic  Prefix  

OFDM  Signal  

Page 10: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

10  

What  Makes  OFDM  Possible?  

Q:  How  is  OFDM  implemented  in  the  real  world?    A:  OFDM  is  accomplished  using  digital  signal  processing  (DSP).  You  can  program  IFFT  and  FFT  math  funcEons  on  any  fast  PC,  but  it  is  usually  done  using  a  special  DSP  IC,  or  an  appropriately  programmed  FPGA,  or  hardwired  digital  logic.    With  today’s  super-­‐fast  chips,  even  complex  math  rouEnes  like  the  FFT  are  relaEvely  easy  to  implement.      In  brief,  you  can  put  it  all  on  a  single  IC  chip.  

Page 11: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

11  

What  Does  Orthogonality  Mean?  

Page 12: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

12  

Subcarrier  Orthogonality  

Page 13: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

13  

Example:    OFDM  Subcarriers  in  802.11a/g  Wi-­‐Fi  Each  20  MHz  channel,  whether  it's  802.11a/g/n/ac,  is  composed  of  64  sub-­‐carriers  spaced  312.5  KHz  apart.    This  spacing  is  chosen  because  we  use  64-­‐point  FFT  sampling.    802.11a/g  use  48  subcarriers  for  data,  4  for  pilot,  and  12  as  null  subcarriers.    802.11n/ac  use  52  subcarriers  for  data,  4  for  pilot,  and  8  as  null.  

A standard Wi-Fi symbol is 4µs, composed of a 3.2µs IFFT useful symbol duration plus 0.8µs guard interval. (When using a shorter guard interval of 0.4µs then the total symbol time is reduced to 3.6µs).

Wi-­‐Fi  channels  

Page 14: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

14  

OFDM  Sub-­‐Carriers  with  Guard-­‐bands  &  Pilot  Signals  

Page 15: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

15  

Page 16: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

16  

Page 17: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

17  

Page 18: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

18  

Page 19: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

19  

Page 20: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

20  

The  MulApath  Problem  in  Wireless  

Page 21: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

21  

Path  Losses  and  Fading  In  wireless  telecommunicaEons,  mulApath  is  the  propagaEon  phenomenon  that  results  in  radio  signals  reaching  the  receiving  antenna  by  two  or  more  paths.        Causes  of  mulEpath  include  atmospheric  ducEng,  ionospheric  reflecEon  and  refracEon,  and  reflecEon  from  water  bodies  and  terrestrial  objects  such  as  mountains  and  buildings.    Path  losses  generally  vary  inversely  with  distance,  namely,  ∼  1/dn,  where  n  is  approximately  2,  but  can  be  as  high  as  n  =  4.    MulApath  causes  mulApath  interference  including  construcAve  and  destrucAve  interference,  and  phase  shieing  of  the  signal.    DestrucAve  interference  causes  fading.    

Page 22: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

22  

OFDM  Performs  To  Reduce  the  Problem  of  Fading  MulEpath  destroys  orthogonality.    The  figure  below  shows  two  copies    of  the  signal  (direct  path  and  reflected  path  with  Eme  difference).  

Time  delay  is  evident  

Page 23: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

23  

Adding  a  Cyclic  Prefix  

Page 24: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

24  

Page 25: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

25  

Page 26: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

26  

Cyclic  Prefix  

Copy  

A  guard-­‐Eme  interval  is  used  to  increase  the  robustness  of  OFDM.    A  cyclic  prefix  is  formed  by  part  of  the  OFDM  symbol  which  is  copied  to  the  beginning  of  the  symbol  period.  

Page 27: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

27  

Page 28: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

28  

Page 29: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

29  

Thus,  OFDM  is  Resistant  to  MulApath  Signal  Fading  

Q:  What  else  is  good  about  OFDM?    A:  OFDM  is  resistant  to  the  mulApath  problem  in  high-­‐frequency  wireless.      Very  short-­‐wavelength  signals  normally  travel  in  a  straight  line  (line  of  sight)  from  the  transmit  antenna  to  the  receive  antenna.      Yet  trees,  buildings,  cars,  planes,  hills,  water  towers,  and  even  people  will  reflect  some  of  the  radiated  signal.      These  reflecEons  are  copies  of  the  original  signal  that  also  go  to  the  receive  antenna.      If  the  Eme  delays  of  the  reflecEons  are  in  the  same  range  as  the  bit  or  symbol  periods  of  the  data  signal,  then  the  reflected  signals  will  add  to  the  most  direct  signal  and  create  cancellaEons  or  other  anomalies.      MulEpath  fading  is  also  called  Raleigh  fading.  

Page 30: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

30  

Antenna  Diversity  

Antenna  diversity,  also  known  as  space  diversity  or  spaAal  diversity,  is  any  one  of  several  wireless  diversity  schemes  that  uses  two  or  more  antennas  to  improve  the  quality  and  reliability  of  a  wireless  link.  

Antenna  diversity  is  especially  effecEve  at  miEgaEng  these  mulEpath  situaEons.    This  is  because  mulEple  antennas  offer  a  receiver  several  observaEons  of  the  same  signal.    Each  antenna  will  experience  a  different  interference  environment.    Thus,  if  one  antenna  is  experiencing  a  deep  fade,  it  is  likely  that  another  has  a  sufficient  signal.    CollecEvely  such  a  system  can  provide  a  robust  link.    

Page 31: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

31  

MulAple  Input  MulAple  Output  (MIMO)  

Antenna  Diversity  

Page 32: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

32  

Single-­‐Input  Single-­‐Output  (SISO)  

TransmiAer   Receiver  

ConvenAonal  communicaAon  systems  use  one  transmit  antenna  and  on  receive  antenna.        

This  is  Single  Input  Single  Output  (SISO)  .    Shannon-­‐Hartley:    

2log 1S

C BN

⎛ ⎞⎡ ⎤= +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

1  1  

Page 33: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

33  

 We  have  a  nine-­‐element  transmission  matrix  [H]  Note:  Antenna  spacing  is  important  in  using  MIMO.  

MulAple  Input  MulAple  Output  (MIMO)  3  x  3  MIMO  

3  transmit  antennas  

3  receive  antennas  

TransmiAer   Receiver  

h11  

h22  

h33  

h31  

h32  

h21  

h23  

h12  

1  

2  

3  

1  

2  

3  

h13  

&  

Page 34: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

34  

TransmiAer   Receiver  

h11  

h22  

h33  

h31  

h32  

h13  

h23  h31  

h12  

Data  to  be  transmiAed  is  divided  into  individual  data  streams.      Three  transmit  antennas  mean  three  data  streams.      If  m  transmiAers  is  not  equal  to  n  receiver  antennas,  then  the  number  of  data  streams  is  the  smaller  of  integers  m  and  n.    The  capacity  can  increase  directly  with  the  number  of  data  streams.  

⎛ ⎞⎡ ⎤= ⋅ +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠=

2log 1

number of data streams

D

D

SC N B

NN

MulAple  Input  MulAple  Output  (MIMO)  

Page 35: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

35  

Single  User  MIMO  (SU-­‐MIMO)  

TransmiAer   Receiver  

h11  

h22  

h21   h12  

This  configuraEon  doubles  the  data  rate  under  ideal  condiEons.    

Why?  

Page 36: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

36  

MulA-­‐User  MIMO  (MU-­‐MIMO)  

When  individual  data  streams  are  assigned  to  individual  users  we  have  mulE-­‐user  MIMO.    This  mode  is  very  useful  for  cellular    uplinks  because  of  the  power  limitaEons  of  the  UE  (cell  phone)  –    it  must  be  kept  to  a  minimum  in  complexity.    The  base  staEon  has  mulEple  antennas  to  enhance  recepEon  of  the  UE’s  signal.  

TransmiAer   Receiver  

h11  

h22  

h21   h12  

1  

2  

1  

2  

Page 37: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

37  

SpaAal  Diversity  

The  purpose  of  spaAal  diversity  is  to  make  the  transmission  more  robust.    In  the  case  shown  there  is  no  increase  in  the  data  rate.        When  does  it  make  transmission  more  robust?  

TransmiAer   Receiver  

h11  

h22  

h21   h12  

1  

2  

1  

2  

Page 38: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

38  

Receiver  Diversity  

TransmiAer  

Receiver  

h11  

h21  

1   1  

2  

Receiver  diversity  uses  more  antennas  on  the  receiver  than  the  transmiAer.    A  1  x  2  MIMO  configuraEon  is  the  simplest  version  of  receiver  diversity.    Redundant  data  is  transmiAed  to  the  receiver.        

Receiver  1  x  2  diversity  is  simple  to  implement  and  requires  no    special  coding.  

Page 39: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

39  

Example  of  Receiver  Diversity  

( )C A B= +max( , )C A B=

Receiver   C

A

B

andA B

Page 40: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

40  

Transmi_er  Diversity  

The  simplest  transmi_er  diversity  configuraAon  is  shown  here.    The  same  data  is  redundantly  transmi_ed  to  the  receiver.    Space-­‐Ame  codes  are  used  in  transmi_er  diversity.      

TransmiAer  

Receiver  

h11  

h12  

1  

2  

1  

Page 41: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

41  

MIMO  in  Wi-­‐Fi  (802.11n)  Some  ApplicaAons  Using  MIMO  

Page 42: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

42  

MIMO  in  4G  LTE-­‐Advanced  

Page 43: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

43  

hAps://www.researchgate.net/figure/272623859_fig1_Figure-­‐1-­‐Block-­‐Diagram-­‐of-­‐OFDM-­‐Transmission-­‐System    

Digital  Processing  in  OFDM  Transmission  System  

Page 44: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

44  

Page 45: Lect 16 OFDM - Sonoma State University · OFDM divides each channel into many narrower subcarriers. The spacing is such that these subcarriers are orthogonal so they don’t interfere

45