lecture 1 basics on data assimilation - earth online -...

65
Day 5 Lecture 1 Module name - Basics on Data Assimilation 1 Lecture 1 Basics on Data Assimilation H. Elbern Rhenish Institute for Environmental Research at the University of Cologne and Institute for Chemistry and dynamics of the Geosphere-2: Troposphere (ICG-2), Research Centre Jülich, Germany

Upload: others

Post on 02-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 1

Lecture 1Basics on Data Assimilation

H. ElbernRhenish Institute for Environmental Research at the

University of Cologneand

Institute for Chemistry and dynamics of the Geosphere-2: Troposphere (ICG-2), Research Centre Jülich, Germany

Page 2: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 2

Objective of this lectureUnderstanding of• the fundamental objectives of data

assimilation and inverse modelling• basic theoretical ideas of data

assimilation• numerical implementation measures for

spatio-temporal assimilation algorithms

Page 3: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 3

General textbook literature for data assimilation• Daley, R., Atmospheric Data Analysis, Cambridge University Press, pp. 457, 1991.

– Well established connection between statistics and practical data assimilation– Meanwhile behind cutting edge operational data assimilation implementations

• Bennet, A., Inverse Methods in Physical Oceanography, Cambridge University Press, pp. 346, 1992.

• Bennet, A., Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press, pp. 234, 2002.

– Mathematically very sound, with focus on oceangraphy– emphasis on science, rather than operational usage

• Geir Evensen Data Assimilation: The Ensemble Kalman Filter, Springer, 2006

• Kalnay, E., Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, pp. 341, 2003, Chap.

– Well presented pedagogical introduction to data assimilation theory

• Thiebaux, H.J. and Pedder, M.A. Spatial Objective Analysis with applications in atmospheric science, Academic Press1987.

– Mathematically rigorous formalism with Optimum Interpolation as central algorithm

Additionally, a collection of overview papers:• Special Issue: J. Met. Soc. Japan, Vol. 75, No. 1B, pages 1-138, 1997.• ECMWF tutorials: www.ecmwf.int

Page 4: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 4

Underlying mathematics(advanced level):

• Jazwinski, A., Stochastic Processes and Filtering Theory, Academic Press,San Diego, pp. 376, 1970.

• Marchuk, G., Numerical solutions of the problems of the problems of thedynamics of the atmosphere and ocean, Gidrometeoizadat, Leningrad, 1974.

• Courant, R. and Hilbert, D. Methods of mathematical physics, Volume 1, New York: Interscience, 1953.

• Courant, R. and Hilbert, D. Methods of mathematical physics, Partial differentialequations, Volume 2, New York: Interscience, 1962.

• Lions, J., Optimal control of systems governed by partial differential equations, Spinger Verlag, Berlin, 1971.

Page 5: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 5

TerminologyInverse ModellingThe inverse modelling problem consists of using

the actual result of some measurements to infer the values of the parameters that characterize the system.

A. Tarantola (2005)

Page 6: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 6

Objective of atmospheric data assimilation (1)

The ambitious and elusive goal of dataassimilation is to provide a dynamicallyconsistent motion picture of theatmosphere and oceans, in three spacedimensions, with known error bars.

M. Ghil and P. Malanotte-Rizzoli (1991)

Page 7: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 7

Objective of atmospheric data assimilation (2)• "is to produce a regular,

physically consistent four dimensionalrepresentation of the state of the atmosphere

• from a heterogeneousarray of in situ and remote instruments

• which sample imperfectly and irregularly in space and time.

Data assimilation • extracts the signal from

noisy observations (filtering)

• interpolates in space and time (interpolation) and

• reconstructs state variables that are not sampled by the observation network (completion).“ (Daley, 1997)

Page 8: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 8

This lecture introduces:Basic theoretical ideas of data

assimilation

1. three basic sources of information2. combination of information sources3. the basic ideas of 4D-var and Kalman-filter4. the limiting assumptions and a look forward

Page 9: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 9

y

a

b { |1

|0 x

y=ax+b

Data assimilation has much of curve fitting:e.g. quadratic optimisation

Page 10: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 10

Characteristics in data assimilation,in contrast to remote sensing retrievals

• high dimensional problem: dim (x) > 105

• highly underdetermined system (few observations with respect to model freedom: dim(x)>>dim(y) )

• regionally/locally highly nonlinear dynamics• constraints by physical laws are insufficient

Page 11: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Advanced data assimilation is an application of the principles of Data Analysis.

(As in satellite retrievals) we strive for estimating a latent, not apparent parameter set x.

We dispose of 1. indirect information on the state and processes in terms of

manifest, though insufficient or inappropriate data y, and2. a deterministic model M connecting x and y, in some way.

Bayes’ rule gives access to the probability of state x, given y and M

Page 12: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 12

inversion

radiance dataasimilation

dataretrieval

DA in the satellite data application chainlevel 0

detector tensions

level 1spectra

level 2geolocated

geophysical parameters

level 3 geophysical parameters

on regular grids

level 4 “user” applications

priordata

geophysicalmodels

Page 13: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 13

PredictabilityWhich credibility can the prediction claim?

Compute probability density function

(in some way by “optimal perturbations”)

ObservabilityGiven an observation set,“how unambiguous” can

the state estimate be?compute (some norm of)analysis error covariance

matrix

SensitivityHow probable/stable is the simulation/state ?

compute leading singular vectors

discontinuities

Data AssimilationInverse Modelling

estimate most probable stateparameter values

ill p

osed

ness

whi

ch o

bser

vatio

ns?

mos

t pro

babl

epr

edic

tion

optimal perturbations

DA and related algorithms: How can dynamic system understanding be

assessed?

Page 14: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 14

Ad hoc (empirical) approaches (1)Interpolation

Page 15: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 15

Ad hoc (empirical) approaches (2)Nudging

Caution: prone to excitement of artificial modes

Page 16: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 16

Optimality criteria: Which property can be attributed to our analysis result?

(Need for quantification)• maximum likelyhood:

– maximum of probability density function• minimal variance: l2 norm

– parameters optimal, for which analysis error spread is minimal (for Gaussian/normal and log-normal error distributions), Best Linear Unbiased Estimate (BLUE)

• minimax norm (discrete cases)• maximum entropy

Page 17: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 17

Data assimilation: Synergy of Information sourcesexample: 2 data sets with Gaussian distribution

(here: minimal variance= maximum likelihood)

a priori (=prediction or climatology) observation

Bayes’ rule:

xa

Analysis (=estimation) BLUEBLUEBest Linear Unbiased Estimate

xb yoxaxb yoxb

Example: inconsistent data

Page 18: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 18

Optimal Interpolation

Notation: Ide, K., P. Courtier, M. Ghil, and A. Lorenc, Unified notation for data assimilation: operational sequential and variational, J. Met. Soc. Jap., 75, 181--189, 1997.

Page 19: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 19

Kalman filter: basic equations

Page 20: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 20

4D-var

Kalman Filter

Types of assimilation algorithms:“smoother” and filter

Page 21: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 21

Why 4D-variational data assimilation?

• provides BLUE (Best Linear Unbiased Estimator). Remark: 3D-var ingested in model does not!

• Potential for “consisteny” within the assimilation intervall (O(1 day))Remark: fast manifold perturbations (=“initialisation problem”) mitigated, but not removed. Inconsistencies at the end of the assimilation windows.

• Allows for extensions to estimate analysis error covariance matrix and temporal correlations (red noise)

Page 22: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 22

How does 4D-var work?

Page 23: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 23

Derivation of 4D-var (1)

Page 24: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 24

Derivation of 4D-var (2)

Page 25: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 25

Derivation of 4D-var (3)

Page 26: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 26

Derivation of 4D-var (4)

Page 27: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 27

Derivation of 4D-var (5)

Page 28: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 28

Derivation of 4D-var (6)

Page 29: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 29

Derivation of 4D-var (7)

Page 30: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 30

CONTRACEConvective Transport of Trace Gases into

the upper Troposphere over

Europe: Budget and Impact of Chemistry

Coord.: H. Huntrieser, DLR

flight path Nov. 14, 2001

Page 31: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 31

CONTRACE Nov. 14, 2001 north (= home) bound

O3

H2O2CO

NO

1. guess assimilation result observations flight height [km]

Page 32: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 32

Collection of assimilation formulavariational data assimilation (3D-var und 4D-var)

Optimal Interpolation (OI)

Page 33: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 33

The “Initialisation” / Filtering Problem (1)• Constraints by physical/chemical equations are

insufficient, as they allow for physically/chemically admissible states, but partly very unlikely to occur: – high amplitude gravity waves (“fast

manifolds”)– pronounced chemical imbalances

• Legacy procedure: introduce penalty term for fast changes (Normal Mode Initialisation, NMI)

Page 34: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 34

The “Initialisation” / Filtering Problem (2)

• or filter function (Digital Filter Initialisation, DFI, here with Lanczos-filter ), x model state:

t=0 model start time

t=Mt=-M t=1

Page 35: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 35

Meteorological remote sensing observation suite (1)

• Atmospheric sounding channels from passive instruments: atmospheric temperature and humidity (Atmospheric sounding channels from the HIRS (High resolution Infrared Sounder) and AMSU (Advanced Microwave Sounding Unit) on board NOAA

• Surface sensing channels from passive instruments "imaging" channels: located in atmospheric "window" regions of the infra-red and microwave spectrum : surface temperature and cloud track information

• Surface sensing channels from active instruments: scatterometeremit microwave radiation for ocean wind retrievals. Some similar-class active instruments such as altimeters and SARS (Synthetic Aperture Radars) provide information on wave height and spectra.

Page 36: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 36

Meteorological remote sensing observation suite (2)

• visible (Lidars) or the microwave (radars) analyse the signal backscattered – molecules, aerosols, water droplets or ice particles. – penetration capability allow the derivation of information on cloud

base, cloud top, wind profiles (Lidars) or cloud and rain profiles

(radars).

• Radio-occulation technique using GPS (Global Positioning System). GPS receivers (e.g. METOP/GRAS) measure the Doppler shift of a GPS signal refracted along the atmospheric limb path.

Page 37: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 37

Observation systems (1)

Type and number of observations used to estimate the atmosphere initial conditions during a typical day. (Buizza, 2000)

dimobservation space= O(106)

Page 38: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 38

Observation systems (2): In-situ observations

Page 39: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 39

Observation systems (3): polar orbiting satellites (e.g. AMSU-A)

Data coverage for the NOAA-15 (red), NOAA-16 (cyan) and NOAA-17 (blue) AMSU-A instruments, for the four 6-hourperiods centred at 00, 06, 12 and 18 UTC 12 November 2002. The plots show the data used for AMSU-A channel 5, which is atemperature-sounding channel in the mid and lower troposphere.

Page 40: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 40

Observation systems (4): geostationary

Data coverage provided by the GOES satellites (cyan and orange) and the METEOSAT satellites (magenta and red) for 00 UTC 10 May 2003. The total number of observations was 266,878.

Source: ECMWF

Page 41: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 41

0

5

10

15

20

25

30

35

40

45

50

55

No. of sources

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009Year

Number of satellite sources used at ECMWF

AEOLUSSMOSTRMMCHAMP/GRACECOSMICMETOPMTSAT radMTSAT windsJASONGOES radMETEOSAT radGMS windsGOES windsMETEOSAT windsAQUATERRAQSCATENVISATERSDMSPNOAA

Satellite data sources in 2007+

Source: ECMWF

Page 42: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 42

Information source: numerical model

nowT799L91(~25 km)

dim O(108)

Page 43: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 43

At which retrieval level to assimilate remote sensing data ?

• Assimilation of retrieved products from space agencies or research institutes (“level 2”)– Pro: most simple for assimilation (assimilation “like in situ observations”)– Con: inexact as xb and B are inconsistent, if retrieval and assimilation

are independent• Locally produced or “1D-Var” or “Averaging Kernel” retrievals

– Pro: xb and B much better known (e.g. fronts featured and consistent with model)

– Con: xb and B used twice with the subsequent assimilation: y and xbcorrelated

• Direct assimilation of radiances (“level 1”)– Pro: retrieval step is essentially incorporated within the main analysis by

finding the model variables that minimize a cost function measuring the departure between the analysed state and both the background andavailable observations.

– Con: Fast linearized radiative transfer scheme and its adjoint is needed.

Page 44: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 44

Example for averaging kernels

Averaging kernels (in K/K) for AIRS (left panel) and HIRS (right panel) instruments.

Page 45: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 45

Background Error Covariance MatrixThe design of the BECM is of utmost importance, as it•weights the model error against the competing observation errors•spreads information from observations to the adjacent area•influences coupled parameters: temperature wind field, chemical constituents (i.e. multivariate correlation)•(serves for preconditioning in the case of variationalassimilation) 2 simple, isotropic and

homogeneouscovariance models:Gaussian

Balgovind

Page 46: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 46

Background Error Covariance Matrix B(2 pragmatic methods to estimate B)

( )( )∑=

−−=K

nj

nji

niij xxxx

KB

1

1Ensemble integration

K= # ensemble members;

i,j grid cells

1. Ensemble approach: (e.g. Evensen, 1994)

2. NMC method: (e.g. Parrish and Derber, 1992)

Difference column vector of model statesof two forecasts at some absolute time ti, one starting 24 hours earlier than the other,thus trying to capture the most sensitive errors.Covariances calculated by outer product.

Page 47: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 47

Construction of the adjoint code

forward model(forward differential equation)

algorithm(solver)

code

backward model(backward differential equation)

adjoint algorithm(adjoint solver)

adjoint code

Page 48: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 48

Constructing the adjoint from forward code

Page 49: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 49

Constructing the adjoint from forward code

Page 50: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 50

Adjoint code verification

Page 51: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 51

Adjoint compilerSome examples• Odyssee• TAMC • Tapenade• ADOL-C and ADOL-F (includes ability for higher

order derivatives)• IMASFor much more comprehensive list see:www.autodiff.org/?module=Tools&submenu=&language=ALL

Also codes from adjoint compilers must be tested!!Algorithm and performance bugs occur!

Page 52: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 52

Adjoint integration Adjoint integration ““backward in timebackward in time””How to make the parameters of resolvents iM(ti-1,ti) available in reverseorder??

Page 53: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 53

Isopleths of the cost function and transformed cost function and minimisation steps

Minimisation by mere gradients, quasi-Newon method L-BFGS(Large dimensional Broyden Fletcher Goldfarb Shanno),and preconditioned (transformed) L-BFGS application

concentration species 1 transformed species 1

conc

entra

tion

spec

ies

2tra

nsfo

rmed

spe

cies

2

Page 54: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 54

Page 55: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 55

Computation of inverse B, square root B, inverse square root Bby (Sca)LAPACK eigenpair decomposition, but better choices available.

Transformed cost functiondefine

transformation

transformed cost function

transformed gradient of the cost function

Pro transformation:minimisation problem is better conditionedContra:strictly positive definite approximation to B required

Page 56: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 56

Kalman filter: basic equationsForecast equations

Analysis equations

Page 57: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 57

Reduced rank Kalman filter (basic idea)Appoximate covariance matrices Pb,a (n x n) by a product of suitably low ranked matrix Sb,a (n x p), and p << n . Same procedure for the system noise matrix Q with T (n x r).

The forecast step remains unchanged.

The forecast error covariance matrix rests on 2 x p model integrations only!

The enlargement of p by r enforces periodic reductions of columns (with lowest ranked eigenvalues)

Page 58: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 58

Reduced rank Kalman filter (calculus)

In practice, all calculations can be performed without actually calculating matrices P!

Positive semidefinitenes is maintained!

Page 59: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 59

Implementing ensemble Kalman filter in practice

Page 60: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 60

εi perturbation vector of potential optimisation parameters: initial values boundary values, emission rates, deposition velocities

C norm inducing pos. def., sym. operator at initial time t0 (Mahalanobis)M tangent linear modelE norm inducing pos. def., sym. operator at optimisation time t1(P projection operator, extinguishing areas or species outside focus)λ Lagrange parameter and generalised eigenvalues

unit constraint (scalar product):maximiseRaleigh quotient:

maximise⇒generalised

EV problem

Some advanced auxiliary calculations (1)Some advanced auxiliary calculations (1)singular value analysis singular value analysis

Page 61: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 61

Assumptions:• Gaussian error distribution assumption sufficiently valid• First guess not too far from “solution” (tangent-linear approximation

must hold)• A priori defined error covariances (background, observations)

Necessary condition for a posteriorivalidation:adjust B and R such that:

ExpectationVariance

Some advanced auxiliary calculations (2)a posteriori validation of data assimilation results

Page 62: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 62

Some advanced auxiliary calculations (3)a posteriori validation of data assimilation results

The partition of costs in terms of all observations and the background at the final analysis

How do the partial costs in the cost function divide?

partial costs of observations (Ip identity matrix in observation space with p observations)

partial costs of background:

Page 63: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 63

The partition of costs in terms of individual classes of information sources zj

Page 64: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 64

Summary• Satellite data still not fully exploited, but

within the scope of variational calculus• 4Dvar is presently regarded as the most

rewarding data assimilation method• Kalman Filtering with suitably reduced

complexity (square root and/or ensemble) feasible, but superiority yet to be proved

Page 65: Lecture 1 Basics on Data Assimilation - Earth Online - ESAearth.esa.int/atmostraining2008/Fri_elbern_DAbasic_v1.pdf · Day 5 Lecture 1 Module name - Basics on Data Assimilation 11

Day 5 Lecture 1 Module name - Basics on Data Assimilation 65

Outlook• So far, only systems with Gaussian errors are

treated.• Sophisticted related algorithms (4D-var, KF) are

far from being fully exploited.• However, limits of Gaussian assumptions are

obvious: assimilation for precipitation forecasts and aerosol process poor.

• Further, more general approaches necessary: MCMC, importance resampling, …