lecture 1: introduction to proteins · 09/22/2009 phys 461 & 561, fall 2009-2010 1 lecture 1:...

20
PHYS 461 & 561, Fall 2009-2010 1 09/22/2009 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc ([email protected])

Upload: others

Post on 14-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 109/22/2009

Lecture 1:Introduction to Proteins

Lecturer:Prof. Brigita Urbanc ([email protected])

Page 2: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 209/22/2009

WHY ARE WE INTERESTED IN PROTEINS?

➔ enzymes of all chemical reactions;➔ hormones;➔ regulate/control gene expression;➔ receptors in the membrane for intercellular    signaling;➔ immuno proteins (recognize good vs. bad cells);➔ structural proteins (microfilaments, microtubules);➔ transfer proteins.

Page 3: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 309/22/2009

Protein function:based on specific interactions with other molecules

Page 4: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 409/22/2009

Amino acid is a building block of a protein.

Page 5: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 509/22/2009

hydrophobic(“hate” water)

hydrophilic(“love” water)

20 AAs

Page 6: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 609/22/2009

Two AAs  Form a Peptide Bond

Page 7: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 709/22/2009

➔ a protein is made of a specific sequence of aas;

➔ an “operating” protein is folded into a specific    3D structure;

➔ protein structure in a crystal or in solution was   shown to be practically the same;

➔ protein structure depends on the presence/   absence of water in environment!

Page 8: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 809/22/2009

Protein Structure

Page 9: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 909/22/2009

Classes of proteins with respect to “environmental” conditions:

(1) fibrous proteins (high degree of regular structure      due to HBs);

(2) membrane proteins (HBs inside  the membrane);

(3) water­soluble globular proteins (less regular      structure, hydrophobic effect).

Page 10: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 1009/22/2009

Protein Data Bank*:

www.pdb.org

*Repository of information about the 3D structures of large biological molecules, including proteins and nucleic acids.

Page 11: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 1109/22/2009

Terminology:

➔ in vivo: in a living organism

➔ in vitro: in an “artificial” environment outside                 a living organism

➔ in silico: in a computer­generated environment

➔ native structure: biologically active protein   structure

Page 12: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 1209/22/2009

In vivo formation of the native tertiary structure happens during biosynthesis or immediately after.

If protein structure unfolded, the protein refoldsback into the native tertiary structure in vitro spontaneously (Christian B. Anfinsen).

The native state is unique, stable, & kineticallyaccessible (thermodynamic hypothesis).

Page 13: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 1309/22/2009

“The native conformation is determined by the totality of interatomic interactions and hence by 

the amino acid sequence, in a given environment.”

(Christian B. Anfinsen, Nobel Prize , Acceptance Speech, 1972)

Unfolding RNase enzyme under extreme chemical conditions, followed by refolding of the enzyme's amino acid structure refolded spontaneously back into its origin.

Page 14: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 1409/22/2009

Causal Relationship*:

Amino Acid Sequence

Protein Structure

Protein Function

*valid for small, up to 300 amino acids sequences

Page 15: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 1509/22/2009

Reverse NOT true:

Same function can be performed by proteins   of very different structure/architecture.

Protein function has no effect on its structure.

Page 16: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 1609/22/2009

Levinthal Paradox:

How does a protein manage to find itsnative structure within seconds (ms to

minutes of folding time)?

Page 17: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 1709/22/2009

Where is the paradox?

➔ consider a protein of 100 amino acids (residues);➔ assume 2 conformations possible for each residue;

➔ the number of possible conformations is 2100 !➔ each conformational change  ~ picosecond

➔ 2100 ps or 1010 years needed for folding!

Page 18: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 1809/22/2009

Levinthal's solution to the paradox:

The native structure is endpoint of some specificfolding pathway, independent of whether thisstructure is the most stable or not. The native statecorresponds to the most accessible local  minimumof the free energy (driven by kinetics) rather than to the global free energy minimum (driven bystability).

Page 19: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 1909/22/2009

CURRENT EXPLANATION:Free energy  (F = E – TS) changes upon folding: 

F = E – T S

Page 20: Lecture 1: Introduction to Proteins · 09/22/2009 PHYS 461 & 561, Fall 2009-2010 1 Lecture 1: Introduction to Proteins Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu)

PHYS 461 & 561, Fall 2009-2010 2009/22/2009

Thermodynamic quantities:➔ temperature T;➔ internal energy of protein conformation E;➔ conformational entropy S;

What happens upon folding?(1) S decreases (loss of conformational “freedom”);(2) E decreases (intramolecular interactions);

(1) F > 0 & (2) F < 0TO BE CONTINUED ...