lecture 1: introduction to dislocation dynamics · lecture 1: introduction to dislocation dynamics...

80

Upload: others

Post on 23-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Lecture 1:Introduction to dislocation dynamics

Régis Monneau

Paris-Est University

Sapporo; July 28, 2010

R. Monneau Lecture 1

Page 2: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Physical motivation

R. Monneau Lecture 1

Page 3: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Experiment 1 : compression of a cylinder

R. Monneau Lecture 1

Page 4: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Experiment 1 : compression of a cylinder

R. Monneau Lecture 1

Page 5: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Experiment 1 : compression of a cylinder

compression of a micro-pillar of metal

R. Monneau Lecture 1

Page 6: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Experiment 2 : traction of a sample

F−F

l

R. Monneau Lecture 1

Page 7: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Experiment 2 : stress-strain curve

Y

F

F

l

−l

0

0l

R. Monneau Lecture 1

Page 8: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Experiment 2 : Persistent plastic strain

Y

F

F

l

−l

0

0l

R. Monneau Lecture 1

Page 9: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Experiment 2 : Persistent plastic strain

l0

l > l 0

initial length

after unloading

R. Monneau Lecture 1

Page 10: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Propagation of a defect

R. Monneau Lecture 1

Page 11: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Propagation of a defect

R. Monneau Lecture 1

Page 12: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Propagation of a defect

R. Monneau Lecture 1

Page 13: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Propagation of a defect

R. Monneau Lecture 1

Page 14: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Propagation of a defect

R. Monneau Lecture 1

Page 15: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Concept of dislocation introduced independently

by Orowan, Polanyi and Taylor in 1934.

R. Monneau Lecture 1

Page 16: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

E. Orowan M. Polanyi G.I. Taylor(1902-1989) (1891-1976) (1886-1975)

R. Monneau Lecture 1

Page 17: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Plan of the Lecture

I Description of dislocations

I Dynamics with normal velocity

I The stress created by a dislocation

I Regularization of the singular stress on the dislocation core

I Dislocation dynamics and Non-uniqueness of distribution solutions

R. Monneau Lecture 1

Page 18: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Description of dislocations

R. Monneau Lecture 1

Page 19: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Observation by electronic microscopy (1956)

Denition : a dislocation is a curve of crystal defects.

Length = 10−6m, Thickness = 10−9m

Velocity ' 10−6ms−1 to 102ms−1

R. Monneau Lecture 1

Page 20: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Observation by electronic microscopy (1956)

Denition : a dislocation is a curve of crystal defects.

Length = 10−6m, Thickness = 10−9m

Velocity ' 10−6ms−1 to 102ms−1

R. Monneau Lecture 1

Page 21: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Observation by electronic microscopy (1956)

Denition : a dislocation is a curve of crystal defects.

Length = 10−6m, Thickness = 10−9m

Velocity ' 10−6ms−1 to 102ms−1

R. Monneau Lecture 1

Page 22: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Dislocations

R. Monneau Lecture 1

Page 23: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

3D continuous model

elastic medium

dislocation line

R. Monneau Lecture 1

Page 24: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

2D continuous model

defect

elastic medium

R. Monneau Lecture 1

Page 25: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

2D atomic model

R. Monneau Lecture 1

Page 26: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

A dislocation in cubic Boron Nitride

High Resolution Transmission Electronic Microscopy

R. Monneau Lecture 1

Page 27: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Perfect crystal

R. Monneau Lecture 1

Page 28: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

The Burgers vector

R. Monneau Lecture 1

Page 29: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

J.M. Burgers (1895-1981)

R. Monneau Lecture 1

Page 30: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Consequences

closed loopsdislocations goes to the surface of the crystal

R. Monneau Lecture 1

Page 31: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Consequences

closed loops

dislocations goes to the surface of the crystal

R. Monneau Lecture 1

Page 32: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Consequences

closed loops

dislocations goes to the surface of the crystal

triple junctions

b

b

b

1

3

2

2 3b + b + b = 0

1

bi ∈ Z3

R. Monneau Lecture 1

Page 33: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Frank network

R. Monneau Lecture 1

Page 34: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Singular deformation of the crystal

R. Monneau Lecture 1

Page 35: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Motion of a dislocation

R. Monneau Lecture 1

Page 36: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Dynamics with normal velocity

R. Monneau Lecture 1

Page 37: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Planar dislocations

e3

dislocation curve

slip plane

R. Monneau Lecture 1

Page 38: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Dislocation dynamics with normal velocity c

c ntΓ

t∆

Γt

Γt+∆t

dΓtdt

= c nΓt

R. Monneau Lecture 1

Page 39: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Velocity c

c = resolved Peach-Koehler force

c = σ : (b⊗ e3) =3∑i=1

σi3bi

with

σ ∈ R3×3

sym, stress (σij = σji)

b ∈ R3, Burgers vector

e3 ∈ R3 unit normal to the slip plane

R. Monneau Lecture 1

Page 40: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

The stress created by a dislocation

R. Monneau Lecture 1

Page 41: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

V. Volterra (1860-1940)

R. Monneau Lecture 1

Page 42: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Volterra 1907

3e

b

Burgers vector

Ω

R. Monneau Lecture 1

Page 43: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Volterra 1907

3e

b

Burgers vector

Ω

ρ(x′) =

1 if x′ = (x1, x2) ∈ Ω0 otherwise

u(x) = (u1, u2, u3) displacement for x = (x′, x3) ∈ R3

σ(x) = (σij)i,j=1,2,3 stress (σij = σji)

R. Monneau Lecture 1

Page 44: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Volterra 1907

3e

b

Burgers vector

Ω

3∑i=1

∂σij∂xi

= 0 on R3\ x3 = 0 (elasticity)

u(x′, 0+)− u(x′, 0−) = b ρ(x′) for x′ ∈ R2 (jump)

σi3(x′, 0+)− σi3(x′, 0−) = 0

σij =∑

k,l=1,2,3

Λijkl ekl(u), (Λijkl = elastic coef.)

ekl(u) =12

(∂uk∂xl

+∂ul∂xk

)R. Monneau Lecture 1

Page 45: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Isotropic homogeneous elasticity

Λijkl = λδijδkl + µ (δikδjl + δilδjk)

Lamé coef. λ, µ such that for m > 0

∑i,j,k,l=1,2,3

Λijkl eij ekl ≥ m∑

i,j=1,2,3

(eij)2, for all eij = eji

⇐⇒ elasticity stability

⇐⇒ coercivity to apply Lax-Milgram thm

⇐⇒

µ > 0 and 3λ+ 2µ > 0

ν =λ

2(λ+ µ)∈ (−1, 1/2) (Poisson ratio)

Example : Aluminium crystal (almost isotropic) with ν ∼ 0, 33

R. Monneau Lecture 1

Page 46: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Explicit expression of the stress

for a simplied scalar model

R. Monneau Lecture 1

Page 47: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Simplied scalar model

u(x) ∈ Rσ = ∇u ∈ R3 on R3\ x3 = 0c = σ · e3 = σ3

div σ = 0 on R3\ x3 = 0

u(x′, 0+)− u(x′, 0−) = 2ρ(x′) for x′ ∈ R2

∂u

∂x3(x′, 0+)− ∂u

∂x3(x′, 0−) = 0

R. Monneau Lecture 1

Page 48: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Simplied scalar model

If u(x′,−x3) = −u(x′, x3), then∆u = 0 on R3\ x3 > 0

u = ρ on x3 = 0

and

c =∂u

∂x3=: I[ρ] on x3 = 0

I is a Dirichlet to Neumann operator.

R. Monneau Lecture 1

Page 49: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Proposition (Fourier expression of the operator I)

We have

I[ρ] = − (−∆)12 ρ

and for ξ′ = (ξ1, ξ2)I[ρ](ξ′) = −|ξ′| ρ(ξ′)

R. Monneau Lecture 1

Page 50: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Formal proof

The function v =∂u

∂x3satises

∆v = 0 on R3\ x3 > 0

v = I[ρ] on x3 = 0

Then

I[I[ρ]] =∂v

∂x3=∂2u

∂x23

= ∆u−∆x′u = 0−∆x′ρ

and I is a square root of −∆x′ .

R. Monneau Lecture 1

Page 51: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Sketch of the proof

Step 1 : Show thatσ = ∇u− 2ρe3δ0(x3)

solvesdiv σ = 0 on R3

Step 2 : Compute I[ρ](ξ′) = σ3(ξ′)

R. Monneau Lecture 1

Page 52: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Theorem (Lévy-Khintchine formula for the operator I)

We have (for ρ smooth enough)

I[ρ](x′) =1

∫R2

dz

|z|3ρ(x′ + z)− ρ(x′)− z · ∇ρ(x′) · 1|z|<1

R. Monneau Lecture 1

Page 53: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Formal proof

We have for some distribution L

I[ρ] = L ? ρ and − |ξ′|ρ(ξ′) = I[ρ](ξ′) = L(ξ′)ρ(ξ′)

We simply have to compute L. Because we haveL is homogeneous of degree − 3L is invariant by rotations,

we formally get

L(ξ′) =∫

R2

dx′ L(x′) eix′·ξ′ ∼ (x′)2 · (x′)−3 ∼ (x′)−1 ∼ (ξ′) ∼ K|ξ′|

It is more dicult to see that K = −1.

R. Monneau Lecture 1

Page 54: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Proposition (Maximum principle for the operator I)

At the maximum of ρ (smooth), we have

I[ρ] ≤ 0

ProofMaximum at x′0 =⇒ ∇ρ(x′0) = 0 and ρ(x′) ≤ ρ(x′0).Then

I[ρ](x′0) =1

∫R2

dz

|z|3ρ(x′0 + z)− ρ(x′0)

≤ 0

R. Monneau Lecture 1

Page 55: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Proposition (Singular stress on the dislocation)

For ρ = 1x1<0, we have

c = I[ρ] =1πx1

and σ =1π

eθr

with

x1 = r cos θx3 = r sin θ

x

x

1

3

x2

x

θe

θ

Sketch of the proofSet σ = (−∂3ψ, 0, ∂1ψ) with ψ(x1, x3) and compute the curl of σ.

R. Monneau Lecture 1

Page 56: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Explicit expression of the stress

for linear elasticity

(results admitted)

R. Monneau Lecture 1

Page 57: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Theorem (Lévy operator for linear elasticity)

For general elasticity coecients satisfying the stability condition, we have

c = L ? ρ =1

∫R2

dzg(z/|z|)|z|3

ρ(x′ + z)− ρ(x′)− z · ∇ρ(x′) · 1|z|<1

with

g(−z) = g(z)

and

L(λξ′) = |λ|L(ξ′) ≤ 0, for all λ ∈ R

Remark : in physical applications, we usually have g ≥ 0, but there are alsophysical examples of unstable dislocations where g is not non-negative.

R. Monneau Lecture 1

Page 58: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Unstable dislocations in brass (= zinc + copper)

[Head (1967)]

R. Monneau Lecture 1

Page 59: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Proposition (Lévy operator for isotropic elasticity)

In the case of isotropic elasticity with a dislocation in the slip plane (x1, x2)and with Burgers vector b = e1, we have

L(ξ1, ξ2) = −µ2

(ξ2

2 + 11−ν ξ

21√

ξ21 + ξ2

2

)≤ 0 with ν ∈ (−1, 1/2)

and

g(z1, z2) = (2γ − 1)z21 + (2− γ)z2

2 ≥ 0 with γ =1

1− ν∈ (1/2, 2)

Even for isotropic elasticity, the Lévy operator is anisotropic (if ν 6= 0) :the dislocation loop wants to be elongated in the direction of the Burgersvector b.

b

R. Monneau Lecture 1

Page 60: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Anisotropic evolution of a circle

R. Monneau Lecture 1

Page 61: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Regularization of the singular stress

on the dislocation core

R. Monneau Lecture 1

Page 62: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Regularization of the singular stress

For ρ = 1x1<0, we have

x

c

1

physical stress

core thickness = ε

R. Monneau Lecture 1

Page 63: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Regularizations of the singular stress

Phase eld regularization

Convolution by the core function

Monotone regularization

R. Monneau Lecture 1

Page 64: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Regularizations of the singular stress

Phase eld regularization (ex : Peierls-Nabarro model) :

Total energy = elastic energy + Emist(ρ)

with

Emist(ρ) =∫W (ρ) with W double-well potential

Convolution by the core function χ :

creg = χ ? (L ? ρ) = c0 ? ρ

andχ(ξ′) = e−ε|ξ

′| for the classical Peierls-Nabarro model

R. Monneau Lecture 1

Page 65: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Main diculty

Physics =⇒∫

R2

c0 = 0 and c0(−x) = c0(x).

=⇒ no inclusion principle

R. Monneau Lecture 1

Page 66: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Graph can be lost in nite time

−2 −1 0 1 2−2

0

10

0

X−AxisY

−A

xis

−2

0

10

−2 −1 0 1 2−2

0

10

0.000974359

X−Axis

Y−

Axi

s

−2

0

10

−2 −1 0 1 2−2

0

10

0.00194872

X−Axis

Y−

Axi

s

−2

0

10

−2 −1 0 1 2−2

0

10

0.00292308

X−Axis

Y−

Axi

s

−2

0

10

−2 −1 0 1 2−2

0

10

0.00389744

X−Axis

Y−

Axi

s

−2

0

10

−2 −1 0 1 2−2

0

10

0.00487179

X−Axis

Y−

Axi

s

−2

0

10

R. Monneau Lecture 1

Page 67: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Monotone regularization

ρ1

x’0

1/2

We have

creg(x′) =∫

R2\Bε

dz1

2πg(z/|z|)|z|3

ρ(x′ + z)− ρ(x′)−z · ∇ρ(x′) · 1|z|<1

= c0 ? ρ with

c0 = J −

(∫R2

J

)δ0

J(z) =1

2πg(z/|z|)|z|3

· 1|z|≥ε

i.e.

creg(x′) = J ? ρ− 12

∫R2

J

R. Monneau Lecture 1

Page 68: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Monotone regularization

ρ1

x’0

1/2

We set

creg(x′) =∫

R2\Bε

dz1

2πg(z/|z|)|z|3

ρ(x′ + z)− ρ(x′)−z · ∇ρ(x′) · 1|z|<1

= c0 ? ρ with

c0 = J −

(∫R2

J

)δ0

J(z) =1

2πg(z/|z|)|z|3

· 1|z|≥ε

i.e.creg(x′) = J ? ρ− 1

2

∫R2 J

R. Monneau Lecture 1

Page 69: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Monotone regularization for ρ = 1x1<0

x1

c = stress

R. Monneau Lecture 1

Page 70: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Dislocation dynamics

R. Monneau Lecture 1

Page 71: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

n

ρ=1

ρ=0

For ρ = 1Ωt , the normal velocity

c = c0 ? ρ + c1 with c1 = prescribed exterior stress eld

R. Monneau Lecture 1

Page 72: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

n

ρ=1

ρ=0

For ρ = 1Ωt , the normal velocity

c = c0 ? ρ + c1 with c1 = prescribed exterior stress eld

R. Monneau Lecture 1

Page 73: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Proposition

The function ρ solves

ρt = c|∇ρ|

Formal proofIf ρ is smooth, then

ρ(x′ + cn∆t, t+ ∆t) ' ρ(x′, t)

i.e. by Taylor explansion

∆tρt + ∆tcn · ∇ρ ' 0

i.e.

ρt + cn · ∇ρ = 0 with n = − ∇ρ|∇ρ|

which implies the result.

R. Monneau Lecture 1

Page 74: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Dislocation dynamics

n

ρ=1

ρ=0

For ρ = 1Ωt , we have

ρt = (c0 ? ρ+ c1) |∇ρ|

R. Monneau Lecture 1

Page 75: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Non-uniqueness of distribution solutions

R. Monneau Lecture 1

Page 76: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

First solution

A+A− A− A+00

t=0 t=1

We setΩ1t = B2−t(A+) ∪B2−t(A−)

andρ1 = 1Ω1

t

is a distribution solution of

ρt = c|∇ρ| with c = −1

R. Monneau Lecture 1

Page 77: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Second solution

A+A− A− A+0

t=0 t=1

0

C+

C−

C+

C−

L = (A+)(C+)(A−)(C−)

0

We set with lozenge L = A+C+A−C− :

Ω2t = Ω1

t ∪ (L\ (Bt(C+) ∪Bt(C−)))

andρ2 = 1Ω2

t

is a distribution solution of

ρt = c|∇ρ| with c = −1R. Monneau Lecture 1

Page 78: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

Necessity of a good notion of solution :

notion of viscosity solution (included in Lecture 2)

R. Monneau Lecture 1

Page 79: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

A few references

Some books about physics of dislocations[Read (1953)],[Nabarro (1969)],[Lardner (1974)],[Hull, Bacon (1984)],[Hirth, Lothe (1992)],[Bulatov, Cai (2006)]

Article[Alvarez, Hoch, Le Bouar, M. (2006)]

R. Monneau Lecture 1

Page 80: Lecture 1: Introduction to dislocation dynamics · Lecture 1: Introduction to dislocation dynamics Régis Monneau Paris-Est University Sapporo; July 28, 2010 R. Monneau Lecture 1

A few references

Non local, non monotone dynamics

ut =(c0 ? 1u≥0 + c1

)(x, t) |Du| on RN × (0, T )

Dynamics of sets (with interior ball)[Alvarez, Cardaliaguet, M. (2005)], [Cardaliaguet, Marchi (2006)],Level sets[Barles, Ley (2006)],Notion of weak solutions[Barles, Cardaliaguet, Ley, M. (2008)],[Barles, Cardaliaguet, Ley, Monteillet (2009)],Numerical method[Carlini, Forcadel, M., (preprint HAL)]For Fitzhugh-Nagumo equations[Giga, Goto, Ishii (1992)],[Soravia, Souganidis (1996)],[Barles, Cardaliaguet, Ley, Monteillet (2009)] (Notion of interior cones)[Barles, Ley, Mitake (2010)]

R. Monneau Lecture 1